Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +1110 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1096 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py +1557 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_magvit.py +1094 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py +1131 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_qwenimage.py +1070 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +363 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_wan.py +1419 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_oobleck.py +465 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_tiny.py +346 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/consistency_decoder_vae.py +462 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/vae.py +896 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/vq_model.py +185 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/__init__.py +26 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet.py +867 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_flax.py +408 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_flux.py +509 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_qwenimage.py +359 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_sana.py +290 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_sd3.py +513 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_sparsectrl.py +785 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_union.py +841 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_xs.py +1907 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/multicontrolnet.py +182 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/multicontrolnet_union.py +195 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/__init__.py +40 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/auraflow_transformer_2d.py +564 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/cogvideox_transformer_3d.py +531 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/consisid_transformer_3d.py +789 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/dit_transformer_2d.py +226 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/dual_transformer_2d.py +156 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/hunyuan_transformer_2d.py +579 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/latte_transformer_3d.py +331 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/lumina_nextdit2d.py +342 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/pixart_transformer_2d.py +430 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/prior_transformer.py +384 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/sana_transformer.py +597 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/stable_audio_transformer.py +439 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/t5_film_transformer.py +436 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_2d.py +551 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_allegro.py +414 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_bria.py +719 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_chroma.py +641 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_cogview3plus.py +370 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_cogview4.py +788 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_cosmos.py +586 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_easyanimate.py +527 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_flux.py +776 -0
- exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_hidream_image.py +942 -0
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_cosmos.py
ADDED
|
@@ -0,0 +1,1110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The NVIDIA Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
from typing import List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...utils import get_logger
|
| 24 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 25 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 26 |
+
from ..modeling_utils import ModelMixin
|
| 27 |
+
from .vae import DecoderOutput, IdentityDistribution
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = get_logger(__name__)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# fmt: off
|
| 34 |
+
# These latents and means are from CV8x8x8-1.0. Each checkpoint has different values, but since this is the main VAE used,
|
| 35 |
+
# we will default to these values.
|
| 36 |
+
LATENTS_MEAN = [0.11362758, -0.0171717, 0.03071163, 0.02046862, 0.01931456, 0.02138567, 0.01999342, 0.02189187, 0.02011935, 0.01872694, 0.02168613, 0.02207148, 0.01986941, 0.01770413, 0.02067643, 0.02028245, 0.19125476, 0.04556972, 0.0595558, 0.05315534, 0.05496629, 0.05356264, 0.04856596, 0.05327453, 0.05410472, 0.05597149, 0.05524866, 0.05181874, 0.05071663, 0.05204537, 0.0564108, 0.05518042, 0.01306714, 0.03341161, 0.03847246, 0.02810185, 0.02790166, 0.02920026, 0.02823597, 0.02631033, 0.0278531, 0.02880507, 0.02977769, 0.03145441, 0.02888389, 0.03280773, 0.03484927, 0.03049198, -0.00197727, 0.07534957, 0.04963879, 0.05530893, 0.05410828, 0.05252541, 0.05029899, 0.05321025, 0.05149245, 0.0511921, 0.04643495, 0.04604527, 0.04631618, 0.04404101, 0.04403536, 0.04499495, -0.02994183, -0.04787003, -0.01064558, -0.01779824, -0.01490502, -0.02157517, -0.0204778, -0.02180816, -0.01945375, -0.02062863, -0.02192209, -0.02520639, -0.02246656, -0.02427533, -0.02683363, -0.02762006, 0.08019473, -0.13005368, -0.07568636, -0.06082374, -0.06036175, -0.05875364, -0.05921887, -0.05869788, -0.05273941, -0.052565, -0.05346428, -0.05456541, -0.053657, -0.05656897, -0.05728589, -0.05321847, 0.16718403, -0.00390146, 0.0379406, 0.0356561, 0.03554131, 0.03924074, 0.03873615, 0.04187329, 0.04226924, 0.04378717, 0.04684274, 0.05117614, 0.04547792, 0.05251586, 0.05048339, 0.04950784, 0.09564418, 0.0547128, 0.08183969, 0.07978633, 0.08076023, 0.08108605, 0.08011818, 0.07965573, 0.08187773, 0.08350263, 0.08101469, 0.0786941, 0.0774442, 0.07724521, 0.07830418, 0.07599796, -0.04987567, 0.05923908, -0.01058746, -0.01177603, -0.01116162, -0.01364149, -0.01546014, -0.0117213, -0.01780043, -0.01648314, -0.02100247, -0.02104417, -0.02482123, -0.02611689, -0.02561143, -0.02597336, -0.05364667, 0.08211684, 0.04686937, 0.04605641, 0.04304186, 0.0397355, 0.03686767, 0.04087112, 0.03704741, 0.03706401, 0.03120073, 0.03349091, 0.03319963, 0.03205781, 0.03195127, 0.03180481, 0.16427967, -0.11048453, -0.04595276, -0.04982893, -0.05213465, -0.04809378, -0.05080318, -0.04992863, -0.04493337, -0.0467619, -0.04884703, -0.04627892, -0.04913311, -0.04955709, -0.04533982, -0.04570218, -0.10612928, -0.05121198, -0.06761009, -0.07251801, -0.07265285, -0.07417855, -0.07202412, -0.07499027, -0.07625481, -0.07535747, -0.07638787, -0.07920305, -0.07596069, -0.07959418, -0.08265036, -0.07955471, -0.16888915, 0.0753242, 0.04062594, 0.03375093, 0.03337452, 0.03699376, 0.03651138, 0.03611023, 0.03555622, 0.03378554, 0.0300498, 0.03395559, 0.02941847, 0.03156432, 0.03431173, 0.03016853, -0.03415358, -0.01699573, -0.04029295, -0.04912157, -0.0498858, -0.04917918, -0.04918056, -0.0525189, -0.05325506, -0.05341973, -0.04983329, -0.04883146, -0.04985548, -0.04736718, -0.0462027, -0.04836091, 0.02055675, 0.03419799, -0.02907669, -0.04350509, -0.04156144, -0.04234421, -0.04446109, -0.04461774, -0.04882839, -0.04822346, -0.04502493, -0.0506244, -0.05146913, -0.04655267, -0.04862994, -0.04841615, 0.20312774, -0.07208502, -0.03635615, -0.03556088, -0.04246174, -0.04195838, -0.04293778, -0.04071276, -0.04240569, -0.04125213, -0.04395144, -0.03959096, -0.04044993, -0.04015875, -0.04088107, -0.03885176]
|
| 37 |
+
LATENTS_STD = [0.56700271, 0.65488982, 0.65589428, 0.66524369, 0.66619784, 0.6666382, 0.6720838, 0.66955978, 0.66928875, 0.67108786, 0.67092526, 0.67397463, 0.67894882, 0.67668313, 0.67769569, 0.67479557, 0.85245121, 0.8688373, 0.87348086, 0.88459337, 0.89135885, 0.8910504, 0.89714909, 0.89947474, 0.90201765, 0.90411824, 0.90692616, 0.90847772, 0.90648711, 0.91006982, 0.91033435, 0.90541548, 0.84960359, 0.85863352, 0.86895317, 0.88460612, 0.89245003, 0.89451706, 0.89931005, 0.90647358, 0.90338236, 0.90510076, 0.91008312, 0.90961218, 0.9123717, 0.91313171, 0.91435546, 0.91565102, 0.91877103, 0.85155135, 0.857804, 0.86998034, 0.87365264, 0.88161767, 0.88151032, 0.88758916, 0.89015514, 0.89245576, 0.89276224, 0.89450496, 0.90054202, 0.89994133, 0.90136105, 0.90114892, 0.77755755, 0.81456852, 0.81911844, 0.83137071, 0.83820474, 0.83890373, 0.84401101, 0.84425181, 0.84739357, 0.84798753, 0.85249585, 0.85114998, 0.85160935, 0.85626358, 0.85677862, 0.85641026, 0.69903517, 0.71697885, 0.71696913, 0.72583169, 0.72931731, 0.73254126, 0.73586977, 0.73734969, 0.73664582, 0.74084908, 0.74399322, 0.74471819, 0.74493188, 0.74824578, 0.75024873, 0.75274801, 0.8187142, 0.82251883, 0.82616025, 0.83164483, 0.84072375, 0.8396467, 0.84143305, 0.84880769, 0.8503468, 0.85196948, 0.85211051, 0.85386664, 0.85410017, 0.85439342, 0.85847849, 0.85385275, 0.67583984, 0.68259847, 0.69198853, 0.69928843, 0.70194328, 0.70467001, 0.70755547, 0.70917857, 0.71007699, 0.70963502, 0.71064079, 0.71027333, 0.71291167, 0.71537536, 0.71902508, 0.71604162, 0.72450989, 0.71979928, 0.72057378, 0.73035461, 0.73329622, 0.73660028, 0.73891461, 0.74279994, 0.74105692, 0.74002433, 0.74257588, 0.74416119, 0.74543899, 0.74694443, 0.74747062, 0.74586403, 0.90176988, 0.90990674, 0.91106802, 0.92163783, 0.92390233, 0.93056196, 0.93482202, 0.93642414, 0.93858379, 0.94064975, 0.94078934, 0.94325715, 0.94955301, 0.94814706, 0.95144123, 0.94923073, 0.49853548, 0.64968109, 0.6427654, 0.64966393, 0.6487664, 0.65203559, 0.6584242, 0.65351611, 0.65464371, 0.6574859, 0.65626335, 0.66123748, 0.66121179, 0.66077942, 0.66040152, 0.66474909, 0.61986589, 0.69138134, 0.6884557, 0.6955843, 0.69765401, 0.70015347, 0.70529598, 0.70468754, 0.70399523, 0.70479989, 0.70887572, 0.71126866, 0.7097227, 0.71249932, 0.71231949, 0.71175605, 0.35586974, 0.68723857, 0.68973219, 0.69958478, 0.6943453, 0.6995818, 0.70980215, 0.69899458, 0.70271689, 0.70095056, 0.69912851, 0.70522696, 0.70392174, 0.70916915, 0.70585734, 0.70373541, 0.98101336, 0.89024764, 0.89607251, 0.90678179, 0.91308665, 0.91812348, 0.91980827, 0.92480654, 0.92635667, 0.92887944, 0.93338072, 0.93468094, 0.93619436, 0.93906063, 0.94191772, 0.94471723, 0.83202779, 0.84106231, 0.84463632, 0.85829508, 0.86319661, 0.86751342, 0.86914337, 0.87085921, 0.87286359, 0.87537396, 0.87931138, 0.88054478, 0.8811838, 0.88872558, 0.88942474, 0.88934827, 0.44025335, 0.63061613, 0.63110614, 0.63601959, 0.6395812, 0.64104342, 0.65019929, 0.6502797, 0.64355946, 0.64657205, 0.64847094, 0.64728117, 0.64972943, 0.65162975, 0.65328044, 0.64914775]
|
| 38 |
+
_WAVELETS = {
|
| 39 |
+
"haar": torch.tensor([0.7071067811865476, 0.7071067811865476]),
|
| 40 |
+
"rearrange": torch.tensor([1.0, 1.0]),
|
| 41 |
+
}
|
| 42 |
+
# fmt: on
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class CosmosCausalConv3d(nn.Conv3d):
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
in_channels: int = 1,
|
| 49 |
+
out_channels: int = 1,
|
| 50 |
+
kernel_size: Union[int, Tuple[int, int, int]] = (3, 3, 3),
|
| 51 |
+
dilation: Union[int, Tuple[int, int, int]] = (1, 1, 1),
|
| 52 |
+
stride: Union[int, Tuple[int, int, int]] = (1, 1, 1),
|
| 53 |
+
padding: int = 1,
|
| 54 |
+
pad_mode: str = "constant",
|
| 55 |
+
) -> None:
|
| 56 |
+
kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
| 57 |
+
dilation = (dilation, dilation, dilation) if isinstance(dilation, int) else dilation
|
| 58 |
+
stride = (stride, stride, stride) if isinstance(stride, int) else stride
|
| 59 |
+
|
| 60 |
+
_, height_kernel_size, width_kernel_size = kernel_size
|
| 61 |
+
assert height_kernel_size % 2 == 1 and width_kernel_size % 2 == 1
|
| 62 |
+
|
| 63 |
+
super().__init__(
|
| 64 |
+
in_channels,
|
| 65 |
+
out_channels,
|
| 66 |
+
kernel_size,
|
| 67 |
+
stride=stride,
|
| 68 |
+
dilation=dilation,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
self.pad_mode = pad_mode
|
| 72 |
+
self.temporal_pad = dilation[0] * (kernel_size[0] - 1) + (1 - stride[0])
|
| 73 |
+
self.spatial_pad = (padding, padding, padding, padding)
|
| 74 |
+
|
| 75 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 76 |
+
hidden_states_prev = hidden_states[:, :, :1, ...].repeat(1, 1, self.temporal_pad, 1, 1)
|
| 77 |
+
hidden_states = torch.cat([hidden_states_prev, hidden_states], dim=2)
|
| 78 |
+
hidden_states = F.pad(hidden_states, (*self.spatial_pad, 0, 0), mode=self.pad_mode, value=0.0)
|
| 79 |
+
return super().forward(hidden_states)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class CosmosCausalGroupNorm(torch.nn.Module):
|
| 83 |
+
def __init__(self, in_channels: int, num_groups: int = 1):
|
| 84 |
+
super().__init__()
|
| 85 |
+
self.norm = nn.GroupNorm(
|
| 86 |
+
num_groups=num_groups,
|
| 87 |
+
num_channels=in_channels,
|
| 88 |
+
eps=1e-6,
|
| 89 |
+
affine=True,
|
| 90 |
+
)
|
| 91 |
+
self.num_groups = num_groups
|
| 92 |
+
|
| 93 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 94 |
+
if self.num_groups == 1:
|
| 95 |
+
batch_size = hidden_states.size(0)
|
| 96 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) # [B, C, T, H, W] -> [B * T, C, H, W]
|
| 97 |
+
hidden_states = self.norm(hidden_states)
|
| 98 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(
|
| 99 |
+
0, 2, 1, 3, 4
|
| 100 |
+
) # [B * T, C, H, W] -> [B, C, T, H, W]
|
| 101 |
+
else:
|
| 102 |
+
hidden_states = self.norm(hidden_states)
|
| 103 |
+
return hidden_states
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class CosmosPatchEmbed3d(nn.Module):
|
| 107 |
+
def __init__(self, patch_size: int = 1, patch_method: str = "haar") -> None:
|
| 108 |
+
super().__init__()
|
| 109 |
+
|
| 110 |
+
self.patch_size = patch_size
|
| 111 |
+
self.patch_method = patch_method
|
| 112 |
+
|
| 113 |
+
wavelets = _WAVELETS.get(patch_method).clone()
|
| 114 |
+
arange = torch.arange(wavelets.shape[0])
|
| 115 |
+
|
| 116 |
+
self.register_buffer("wavelets", wavelets, persistent=False)
|
| 117 |
+
self.register_buffer("_arange", arange, persistent=False)
|
| 118 |
+
|
| 119 |
+
def _dwt(self, hidden_states: torch.Tensor, mode: str = "reflect", rescale=False) -> torch.Tensor:
|
| 120 |
+
dtype = hidden_states.dtype
|
| 121 |
+
wavelets = self.wavelets
|
| 122 |
+
|
| 123 |
+
n = wavelets.shape[0]
|
| 124 |
+
g = hidden_states.shape[1]
|
| 125 |
+
hl = wavelets.flip(0).reshape(1, 1, -1).repeat(g, 1, 1)
|
| 126 |
+
hh = (wavelets * ((-1) ** self._arange)).reshape(1, 1, -1).repeat(g, 1, 1)
|
| 127 |
+
hh = hh.to(dtype=dtype)
|
| 128 |
+
hl = hl.to(dtype=dtype)
|
| 129 |
+
|
| 130 |
+
# Handles temporal axis
|
| 131 |
+
hidden_states = F.pad(hidden_states, pad=(max(0, n - 2), n - 1, n - 2, n - 1, n - 2, n - 1), mode=mode).to(
|
| 132 |
+
dtype
|
| 133 |
+
)
|
| 134 |
+
xl = F.conv3d(hidden_states, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
|
| 135 |
+
xh = F.conv3d(hidden_states, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
|
| 136 |
+
|
| 137 |
+
# Handles spatial axes
|
| 138 |
+
xll = F.conv3d(xl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
|
| 139 |
+
xlh = F.conv3d(xl, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
|
| 140 |
+
xhl = F.conv3d(xh, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
|
| 141 |
+
xhh = F.conv3d(xh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
|
| 142 |
+
|
| 143 |
+
xlll = F.conv3d(xll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 144 |
+
xllh = F.conv3d(xll, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 145 |
+
xlhl = F.conv3d(xlh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 146 |
+
xlhh = F.conv3d(xlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 147 |
+
xhll = F.conv3d(xhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 148 |
+
xhlh = F.conv3d(xhl, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 149 |
+
xhhl = F.conv3d(xhh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 150 |
+
xhhh = F.conv3d(xhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 151 |
+
|
| 152 |
+
hidden_states = torch.cat([xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh], dim=1)
|
| 153 |
+
if rescale:
|
| 154 |
+
hidden_states = hidden_states / 8**0.5
|
| 155 |
+
return hidden_states
|
| 156 |
+
|
| 157 |
+
def _haar(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 158 |
+
xi, xv = torch.split(hidden_states, [1, hidden_states.shape[2] - 1], dim=2)
|
| 159 |
+
hidden_states = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2)
|
| 160 |
+
for _ in range(int(math.log2(self.patch_size))):
|
| 161 |
+
hidden_states = self._dwt(hidden_states, rescale=True)
|
| 162 |
+
return hidden_states
|
| 163 |
+
|
| 164 |
+
def _arrange(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 165 |
+
xi, xv = torch.split(hidden_states, [1, hidden_states.shape[2] - 1], dim=2)
|
| 166 |
+
hidden_states = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2)
|
| 167 |
+
|
| 168 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 169 |
+
p = self.patch_size
|
| 170 |
+
|
| 171 |
+
hidden_states = hidden_states.reshape(
|
| 172 |
+
batch_size, num_channels, num_frames // p, p, height // p, p, width // p, p
|
| 173 |
+
)
|
| 174 |
+
hidden_states = hidden_states.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(1, 4).contiguous()
|
| 175 |
+
return hidden_states
|
| 176 |
+
|
| 177 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 178 |
+
if self.patch_method == "haar":
|
| 179 |
+
return self._haar(hidden_states)
|
| 180 |
+
elif self.patch_method == "rearrange":
|
| 181 |
+
return self._arrange(hidden_states)
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError(f"Unsupported patch method: {self.patch_method}")
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class CosmosUnpatcher3d(nn.Module):
|
| 187 |
+
def __init__(self, patch_size: int = 1, patch_method: str = "haar"):
|
| 188 |
+
super().__init__()
|
| 189 |
+
|
| 190 |
+
self.patch_size = patch_size
|
| 191 |
+
self.patch_method = patch_method
|
| 192 |
+
|
| 193 |
+
wavelets = _WAVELETS.get(patch_method).clone()
|
| 194 |
+
arange = torch.arange(wavelets.shape[0])
|
| 195 |
+
|
| 196 |
+
self.register_buffer("wavelets", wavelets, persistent=False)
|
| 197 |
+
self.register_buffer("_arange", arange, persistent=False)
|
| 198 |
+
|
| 199 |
+
def _idwt(self, hidden_states: torch.Tensor, rescale: bool = False) -> torch.Tensor:
|
| 200 |
+
device = hidden_states.device
|
| 201 |
+
dtype = hidden_states.dtype
|
| 202 |
+
h = self.wavelets.to(device)
|
| 203 |
+
|
| 204 |
+
g = hidden_states.shape[1] // 8 # split into 8 spatio-temporal filtered tesnors.
|
| 205 |
+
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1])
|
| 206 |
+
hh = (h * ((-1) ** self._arange.to(device))).reshape(1, 1, -1).repeat(g, 1, 1)
|
| 207 |
+
hl = hl.to(dtype=dtype)
|
| 208 |
+
hh = hh.to(dtype=dtype)
|
| 209 |
+
|
| 210 |
+
xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh = torch.chunk(hidden_states, 8, dim=1)
|
| 211 |
+
|
| 212 |
+
# Handle height transposed convolutions
|
| 213 |
+
xll = F.conv_transpose3d(xlll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 214 |
+
xll = F.conv_transpose3d(xllh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) + xll
|
| 215 |
+
|
| 216 |
+
xlh = F.conv_transpose3d(xlhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 217 |
+
xlh = F.conv_transpose3d(xlhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) + xlh
|
| 218 |
+
|
| 219 |
+
xhl = F.conv_transpose3d(xhll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 220 |
+
xhl = F.conv_transpose3d(xhlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) + xhl
|
| 221 |
+
|
| 222 |
+
xhh = F.conv_transpose3d(xhhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
|
| 223 |
+
xhh = F.conv_transpose3d(xhhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)) + xhh
|
| 224 |
+
|
| 225 |
+
# Handles width transposed convolutions
|
| 226 |
+
xl = F.conv_transpose3d(xll, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
|
| 227 |
+
xl = F.conv_transpose3d(xlh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)) + xl
|
| 228 |
+
xh = F.conv_transpose3d(xhl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
|
| 229 |
+
xh = F.conv_transpose3d(xhh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)) + xh
|
| 230 |
+
|
| 231 |
+
# Handles time axis transposed convolutions
|
| 232 |
+
hidden_states = F.conv_transpose3d(xl, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
|
| 233 |
+
hidden_states = (
|
| 234 |
+
F.conv_transpose3d(xh, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1)) + hidden_states
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if rescale:
|
| 238 |
+
hidden_states = hidden_states * 8**0.5
|
| 239 |
+
|
| 240 |
+
return hidden_states
|
| 241 |
+
|
| 242 |
+
def _ihaar(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 243 |
+
for _ in range(int(math.log2(self.patch_size))):
|
| 244 |
+
hidden_states = self._idwt(hidden_states, rescale=True)
|
| 245 |
+
hidden_states = hidden_states[:, :, self.patch_size - 1 :, ...]
|
| 246 |
+
return hidden_states
|
| 247 |
+
|
| 248 |
+
def _irearrange(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 249 |
+
p = self.patch_size
|
| 250 |
+
hidden_states = hidden_states.unflatten(1, (-1, p, p, p))
|
| 251 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4)
|
| 252 |
+
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
| 253 |
+
hidden_states = hidden_states[:, :, p - 1 :, ...]
|
| 254 |
+
return hidden_states
|
| 255 |
+
|
| 256 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 257 |
+
if self.patch_method == "haar":
|
| 258 |
+
return self._ihaar(hidden_states)
|
| 259 |
+
elif self.patch_method == "rearrange":
|
| 260 |
+
return self._irearrange(hidden_states)
|
| 261 |
+
else:
|
| 262 |
+
raise ValueError("Unknown patch method: " + self.patch_method)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class CosmosConvProjection3d(nn.Module):
|
| 266 |
+
def __init__(self, in_channels: int, out_channels: int) -> None:
|
| 267 |
+
super().__init__()
|
| 268 |
+
|
| 269 |
+
self.conv_s = CosmosCausalConv3d(in_channels, out_channels, kernel_size=(1, 3, 3), stride=1, padding=1)
|
| 270 |
+
self.conv_t = CosmosCausalConv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=0)
|
| 271 |
+
|
| 272 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 273 |
+
hidden_states = self.conv_s(hidden_states)
|
| 274 |
+
hidden_states = self.conv_t(hidden_states)
|
| 275 |
+
return hidden_states
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class CosmosResnetBlock3d(nn.Module):
|
| 279 |
+
def __init__(
|
| 280 |
+
self,
|
| 281 |
+
in_channels: int,
|
| 282 |
+
out_channels: int,
|
| 283 |
+
dropout: float = 0.0,
|
| 284 |
+
num_groups: int = 1,
|
| 285 |
+
) -> None:
|
| 286 |
+
super().__init__()
|
| 287 |
+
out_channels = out_channels or in_channels
|
| 288 |
+
|
| 289 |
+
self.norm1 = CosmosCausalGroupNorm(in_channels, num_groups)
|
| 290 |
+
self.conv1 = CosmosConvProjection3d(in_channels, out_channels)
|
| 291 |
+
|
| 292 |
+
self.norm2 = CosmosCausalGroupNorm(out_channels, num_groups)
|
| 293 |
+
self.dropout = nn.Dropout(dropout)
|
| 294 |
+
self.conv2 = CosmosConvProjection3d(out_channels, out_channels)
|
| 295 |
+
|
| 296 |
+
if in_channels != out_channels:
|
| 297 |
+
self.conv_shortcut = CosmosCausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 298 |
+
else:
|
| 299 |
+
self.conv_shortcut = nn.Identity()
|
| 300 |
+
|
| 301 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 302 |
+
residual = hidden_states
|
| 303 |
+
residual = self.conv_shortcut(residual)
|
| 304 |
+
|
| 305 |
+
hidden_states = self.norm1(hidden_states)
|
| 306 |
+
hidden_states = F.silu(hidden_states)
|
| 307 |
+
hidden_states = self.conv1(hidden_states)
|
| 308 |
+
|
| 309 |
+
hidden_states = self.norm2(hidden_states)
|
| 310 |
+
hidden_states = F.silu(hidden_states)
|
| 311 |
+
hidden_states = self.dropout(hidden_states)
|
| 312 |
+
hidden_states = self.conv2(hidden_states)
|
| 313 |
+
|
| 314 |
+
return hidden_states + residual
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class CosmosDownsample3d(nn.Module):
|
| 318 |
+
def __init__(
|
| 319 |
+
self,
|
| 320 |
+
in_channels: int,
|
| 321 |
+
spatial_downsample: bool = True,
|
| 322 |
+
temporal_downsample: bool = True,
|
| 323 |
+
) -> None:
|
| 324 |
+
super().__init__()
|
| 325 |
+
|
| 326 |
+
self.spatial_downsample = spatial_downsample
|
| 327 |
+
self.temporal_downsample = temporal_downsample
|
| 328 |
+
|
| 329 |
+
self.conv1 = nn.Identity()
|
| 330 |
+
self.conv2 = nn.Identity()
|
| 331 |
+
self.conv3 = nn.Identity()
|
| 332 |
+
|
| 333 |
+
if spatial_downsample:
|
| 334 |
+
self.conv1 = CosmosCausalConv3d(
|
| 335 |
+
in_channels, in_channels, kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=0
|
| 336 |
+
)
|
| 337 |
+
if temporal_downsample:
|
| 338 |
+
self.conv2 = CosmosCausalConv3d(
|
| 339 |
+
in_channels, in_channels, kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=0
|
| 340 |
+
)
|
| 341 |
+
if spatial_downsample or temporal_downsample:
|
| 342 |
+
self.conv3 = CosmosCausalConv3d(
|
| 343 |
+
in_channels, in_channels, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=0
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 347 |
+
if not self.spatial_downsample and not self.temporal_downsample:
|
| 348 |
+
return hidden_states
|
| 349 |
+
|
| 350 |
+
if self.spatial_downsample:
|
| 351 |
+
pad = (0, 1, 0, 1, 0, 0)
|
| 352 |
+
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
|
| 353 |
+
conv_out = self.conv1(hidden_states)
|
| 354 |
+
pool_out = F.avg_pool3d(hidden_states, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
| 355 |
+
hidden_states = conv_out + pool_out
|
| 356 |
+
|
| 357 |
+
if self.temporal_downsample:
|
| 358 |
+
hidden_states = torch.cat([hidden_states[:, :, :1, ...], hidden_states], dim=2)
|
| 359 |
+
conv_out = self.conv2(hidden_states)
|
| 360 |
+
pool_out = F.avg_pool3d(hidden_states, kernel_size=(2, 1, 1), stride=(2, 1, 1))
|
| 361 |
+
hidden_states = conv_out + pool_out
|
| 362 |
+
|
| 363 |
+
hidden_states = self.conv3(hidden_states)
|
| 364 |
+
return hidden_states
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
class CosmosUpsample3d(nn.Module):
|
| 368 |
+
def __init__(
|
| 369 |
+
self,
|
| 370 |
+
in_channels: int,
|
| 371 |
+
spatial_upsample: bool = True,
|
| 372 |
+
temporal_upsample: bool = True,
|
| 373 |
+
) -> None:
|
| 374 |
+
super().__init__()
|
| 375 |
+
|
| 376 |
+
self.spatial_upsample = spatial_upsample
|
| 377 |
+
self.temporal_upsample = temporal_upsample
|
| 378 |
+
|
| 379 |
+
self.conv1 = nn.Identity()
|
| 380 |
+
self.conv2 = nn.Identity()
|
| 381 |
+
self.conv3 = nn.Identity()
|
| 382 |
+
|
| 383 |
+
if temporal_upsample:
|
| 384 |
+
self.conv1 = CosmosCausalConv3d(
|
| 385 |
+
in_channels, in_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=0
|
| 386 |
+
)
|
| 387 |
+
if spatial_upsample:
|
| 388 |
+
self.conv2 = CosmosCausalConv3d(
|
| 389 |
+
in_channels, in_channels, kernel_size=(1, 3, 3), stride=(1, 1, 1), padding=1
|
| 390 |
+
)
|
| 391 |
+
if spatial_upsample or temporal_upsample:
|
| 392 |
+
self.conv3 = CosmosCausalConv3d(
|
| 393 |
+
in_channels, in_channels, kernel_size=(1, 1, 1), stride=(1, 1, 1), padding=0
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 397 |
+
if not self.spatial_upsample and not self.temporal_upsample:
|
| 398 |
+
return hidden_states
|
| 399 |
+
|
| 400 |
+
if self.temporal_upsample:
|
| 401 |
+
num_frames = hidden_states.size(2)
|
| 402 |
+
time_factor = int(1.0 + 1.0 * (num_frames > 1))
|
| 403 |
+
hidden_states = hidden_states.repeat_interleave(int(time_factor), dim=2)
|
| 404 |
+
hidden_states = hidden_states[..., time_factor - 1 :, :, :]
|
| 405 |
+
hidden_states = self.conv1(hidden_states) + hidden_states
|
| 406 |
+
|
| 407 |
+
if self.spatial_upsample:
|
| 408 |
+
hidden_states = hidden_states.repeat_interleave(2, dim=3).repeat_interleave(2, dim=4)
|
| 409 |
+
hidden_states = self.conv2(hidden_states) + hidden_states
|
| 410 |
+
|
| 411 |
+
hidden_states = self.conv3(hidden_states)
|
| 412 |
+
return hidden_states
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
class CosmosCausalAttention(nn.Module):
|
| 416 |
+
def __init__(
|
| 417 |
+
self,
|
| 418 |
+
num_attention_heads: int,
|
| 419 |
+
attention_head_dim: int,
|
| 420 |
+
num_groups: int = 1,
|
| 421 |
+
dropout: float = 0.0,
|
| 422 |
+
processor: Union["CosmosSpatialAttentionProcessor2_0", "CosmosTemporalAttentionProcessor2_0"] = None,
|
| 423 |
+
) -> None:
|
| 424 |
+
super().__init__()
|
| 425 |
+
self.num_attention_heads = num_attention_heads
|
| 426 |
+
|
| 427 |
+
self.norm = CosmosCausalGroupNorm(attention_head_dim, num_groups=num_groups)
|
| 428 |
+
self.to_q = CosmosCausalConv3d(attention_head_dim, attention_head_dim, kernel_size=1, stride=1, padding=0)
|
| 429 |
+
self.to_k = CosmosCausalConv3d(attention_head_dim, attention_head_dim, kernel_size=1, stride=1, padding=0)
|
| 430 |
+
self.to_v = CosmosCausalConv3d(attention_head_dim, attention_head_dim, kernel_size=1, stride=1, padding=0)
|
| 431 |
+
self.to_out = nn.ModuleList([])
|
| 432 |
+
self.to_out.append(
|
| 433 |
+
CosmosCausalConv3d(attention_head_dim, attention_head_dim, kernel_size=1, stride=1, padding=0)
|
| 434 |
+
)
|
| 435 |
+
self.to_out.append(nn.Dropout(dropout))
|
| 436 |
+
|
| 437 |
+
self.processor = processor
|
| 438 |
+
if self.processor is None:
|
| 439 |
+
raise ValueError("CosmosCausalAttention requires a processor.")
|
| 440 |
+
|
| 441 |
+
def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 442 |
+
return self.processor(self, hidden_states=hidden_states, attention_mask=attention_mask)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
class CosmosSpatialAttentionProcessor2_0:
|
| 446 |
+
def __init__(self):
|
| 447 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 448 |
+
raise ImportError(
|
| 449 |
+
"CosmosSpatialAttentionProcessor2_0 requires PyTorch 2.0 or higher. To use it, please upgrade PyTorch."
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
def __call__(
|
| 453 |
+
self, attn: CosmosCausalAttention, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
|
| 454 |
+
) -> torch.Tensor:
|
| 455 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 456 |
+
residual = hidden_states
|
| 457 |
+
|
| 458 |
+
hidden_states = attn.norm(hidden_states)
|
| 459 |
+
query = attn.to_q(hidden_states)
|
| 460 |
+
key = attn.to_k(hidden_states)
|
| 461 |
+
value = attn.to_v(hidden_states)
|
| 462 |
+
|
| 463 |
+
# [B, C, T, H, W] -> [B * T, H * W, C]
|
| 464 |
+
query = query.permute(0, 2, 3, 4, 1).flatten(2, 3).flatten(0, 1)
|
| 465 |
+
key = key.permute(0, 2, 3, 4, 1).flatten(2, 3).flatten(0, 1)
|
| 466 |
+
value = value.permute(0, 2, 3, 4, 1).flatten(2, 3).flatten(0, 1)
|
| 467 |
+
|
| 468 |
+
# [B * T, H * W, C] -> [B * T, N, H * W, C // N]
|
| 469 |
+
query = query.unflatten(2, (attn.num_attention_heads, -1)).transpose(1, 2)
|
| 470 |
+
key = key.unflatten(2, (attn.num_attention_heads, -1)).transpose(1, 2)
|
| 471 |
+
value = value.unflatten(2, (attn.num_attention_heads, -1)).transpose(1, 2)
|
| 472 |
+
|
| 473 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
|
| 474 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3).type_as(query)
|
| 475 |
+
hidden_states = hidden_states.unflatten(1, (height, width)).unflatten(0, (batch_size, num_frames))
|
| 476 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
| 477 |
+
|
| 478 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 479 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 480 |
+
|
| 481 |
+
return hidden_states + residual
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class CosmosTemporalAttentionProcessor2_0:
|
| 485 |
+
def __init__(self):
|
| 486 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 487 |
+
raise ImportError(
|
| 488 |
+
"CosmosSpatialAttentionProcessor2_0 requires PyTorch 2.0 or higher. To use it, please upgrade PyTorch."
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
def __call__(
|
| 492 |
+
self, attn: CosmosCausalAttention, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None
|
| 493 |
+
) -> torch.Tensor:
|
| 494 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 495 |
+
residual = hidden_states
|
| 496 |
+
|
| 497 |
+
hidden_states = attn.norm(hidden_states)
|
| 498 |
+
query = attn.to_q(hidden_states)
|
| 499 |
+
key = attn.to_k(hidden_states)
|
| 500 |
+
value = attn.to_v(hidden_states)
|
| 501 |
+
|
| 502 |
+
# [B, C, T, H, W] -> [B * T, H * W, C]
|
| 503 |
+
query = query.permute(0, 3, 4, 2, 1).flatten(0, 2)
|
| 504 |
+
key = key.permute(0, 3, 4, 2, 1).flatten(0, 2)
|
| 505 |
+
value = value.permute(0, 3, 4, 2, 1).flatten(0, 2)
|
| 506 |
+
|
| 507 |
+
# [B * T, H * W, C] -> [B * T, N, H * W, C // N]
|
| 508 |
+
query = query.unflatten(2, (attn.num_attention_heads, -1)).transpose(1, 2)
|
| 509 |
+
key = key.unflatten(2, (attn.num_attention_heads, -1)).transpose(1, 2)
|
| 510 |
+
value = value.unflatten(2, (attn.num_attention_heads, -1)).transpose(1, 2)
|
| 511 |
+
|
| 512 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
|
| 513 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3).type_as(query)
|
| 514 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, height, width))
|
| 515 |
+
hidden_states = hidden_states.permute(0, 4, 3, 1, 2)
|
| 516 |
+
|
| 517 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 518 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 519 |
+
|
| 520 |
+
return hidden_states + residual
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
class CosmosDownBlock3d(nn.Module):
|
| 524 |
+
def __init__(
|
| 525 |
+
self,
|
| 526 |
+
in_channels: int,
|
| 527 |
+
out_channels: int,
|
| 528 |
+
num_layers: int,
|
| 529 |
+
dropout: float,
|
| 530 |
+
use_attention: bool,
|
| 531 |
+
use_downsample: bool,
|
| 532 |
+
spatial_downsample: bool,
|
| 533 |
+
temporal_downsample: bool,
|
| 534 |
+
) -> None:
|
| 535 |
+
super().__init__()
|
| 536 |
+
|
| 537 |
+
resnets, attentions, temp_attentions = [], [], []
|
| 538 |
+
in_channel, out_channel = in_channels, out_channels
|
| 539 |
+
|
| 540 |
+
for _ in range(num_layers):
|
| 541 |
+
resnets.append(CosmosResnetBlock3d(in_channel, out_channel, dropout, num_groups=1))
|
| 542 |
+
in_channel = out_channel
|
| 543 |
+
|
| 544 |
+
if use_attention:
|
| 545 |
+
attentions.append(
|
| 546 |
+
CosmosCausalAttention(
|
| 547 |
+
num_attention_heads=1,
|
| 548 |
+
attention_head_dim=out_channel,
|
| 549 |
+
num_groups=1,
|
| 550 |
+
dropout=dropout,
|
| 551 |
+
processor=CosmosSpatialAttentionProcessor2_0(),
|
| 552 |
+
)
|
| 553 |
+
)
|
| 554 |
+
temp_attentions.append(
|
| 555 |
+
CosmosCausalAttention(
|
| 556 |
+
num_attention_heads=1,
|
| 557 |
+
attention_head_dim=out_channel,
|
| 558 |
+
num_groups=1,
|
| 559 |
+
dropout=dropout,
|
| 560 |
+
processor=CosmosTemporalAttentionProcessor2_0(),
|
| 561 |
+
)
|
| 562 |
+
)
|
| 563 |
+
else:
|
| 564 |
+
attentions.append(None)
|
| 565 |
+
temp_attentions.append(None)
|
| 566 |
+
|
| 567 |
+
self.resnets = nn.ModuleList(resnets)
|
| 568 |
+
self.attentions = nn.ModuleList(attentions)
|
| 569 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
| 570 |
+
|
| 571 |
+
self.downsamplers = None
|
| 572 |
+
if use_downsample:
|
| 573 |
+
self.downsamplers = nn.ModuleList([])
|
| 574 |
+
self.downsamplers.append(CosmosDownsample3d(out_channel, spatial_downsample, temporal_downsample))
|
| 575 |
+
|
| 576 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 577 |
+
for resnet, attention, temp_attention in zip(self.resnets, self.attentions, self.temp_attentions):
|
| 578 |
+
hidden_states = resnet(hidden_states)
|
| 579 |
+
if attention is not None:
|
| 580 |
+
hidden_states = attention(hidden_states)
|
| 581 |
+
if temp_attention is not None:
|
| 582 |
+
num_frames = hidden_states.size(2)
|
| 583 |
+
attention_mask = torch.tril(hidden_states.new_ones(num_frames, num_frames)).bool()
|
| 584 |
+
hidden_states = temp_attention(hidden_states, attention_mask)
|
| 585 |
+
|
| 586 |
+
if self.downsamplers is not None:
|
| 587 |
+
for downsampler in self.downsamplers:
|
| 588 |
+
hidden_states = downsampler(hidden_states)
|
| 589 |
+
|
| 590 |
+
return hidden_states
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
class CosmosMidBlock3d(nn.Module):
|
| 594 |
+
def __init__(self, in_channels: int, num_layers: int, dropout: float, num_groups: int = 1) -> None:
|
| 595 |
+
super().__init__()
|
| 596 |
+
|
| 597 |
+
resnets, attentions, temp_attentions = [], [], []
|
| 598 |
+
|
| 599 |
+
resnets.append(CosmosResnetBlock3d(in_channels, in_channels, dropout, num_groups))
|
| 600 |
+
for _ in range(num_layers):
|
| 601 |
+
attentions.append(
|
| 602 |
+
CosmosCausalAttention(
|
| 603 |
+
num_attention_heads=1,
|
| 604 |
+
attention_head_dim=in_channels,
|
| 605 |
+
num_groups=num_groups,
|
| 606 |
+
dropout=dropout,
|
| 607 |
+
processor=CosmosSpatialAttentionProcessor2_0(),
|
| 608 |
+
)
|
| 609 |
+
)
|
| 610 |
+
temp_attentions.append(
|
| 611 |
+
CosmosCausalAttention(
|
| 612 |
+
num_attention_heads=1,
|
| 613 |
+
attention_head_dim=in_channels,
|
| 614 |
+
num_groups=num_groups,
|
| 615 |
+
dropout=dropout,
|
| 616 |
+
processor=CosmosTemporalAttentionProcessor2_0(),
|
| 617 |
+
)
|
| 618 |
+
)
|
| 619 |
+
resnets.append(CosmosResnetBlock3d(in_channels, in_channels, dropout, num_groups))
|
| 620 |
+
|
| 621 |
+
self.resnets = nn.ModuleList(resnets)
|
| 622 |
+
self.attentions = nn.ModuleList(attentions)
|
| 623 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
| 624 |
+
|
| 625 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 626 |
+
hidden_states = self.resnets[0](hidden_states)
|
| 627 |
+
|
| 628 |
+
for attention, temp_attention, resnet in zip(self.attentions, self.temp_attentions, self.resnets[1:]):
|
| 629 |
+
num_frames = hidden_states.size(2)
|
| 630 |
+
attention_mask = torch.tril(hidden_states.new_ones(num_frames, num_frames)).bool()
|
| 631 |
+
|
| 632 |
+
hidden_states = attention(hidden_states)
|
| 633 |
+
hidden_states = temp_attention(hidden_states, attention_mask)
|
| 634 |
+
hidden_states = resnet(hidden_states)
|
| 635 |
+
|
| 636 |
+
return hidden_states
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
class CosmosUpBlock3d(nn.Module):
|
| 640 |
+
def __init__(
|
| 641 |
+
self,
|
| 642 |
+
in_channels: int,
|
| 643 |
+
out_channels: int,
|
| 644 |
+
num_layers: int,
|
| 645 |
+
dropout: float,
|
| 646 |
+
use_attention: bool,
|
| 647 |
+
use_upsample: bool,
|
| 648 |
+
spatial_upsample: bool,
|
| 649 |
+
temporal_upsample: bool,
|
| 650 |
+
) -> None:
|
| 651 |
+
super().__init__()
|
| 652 |
+
|
| 653 |
+
resnets, attention, temp_attentions = [], [], []
|
| 654 |
+
in_channel, out_channel = in_channels, out_channels
|
| 655 |
+
|
| 656 |
+
for _ in range(num_layers):
|
| 657 |
+
resnets.append(CosmosResnetBlock3d(in_channel, out_channel, dropout, num_groups=1))
|
| 658 |
+
in_channel = out_channel
|
| 659 |
+
|
| 660 |
+
if use_attention:
|
| 661 |
+
attention.append(
|
| 662 |
+
CosmosCausalAttention(
|
| 663 |
+
num_attention_heads=1,
|
| 664 |
+
attention_head_dim=out_channel,
|
| 665 |
+
num_groups=1,
|
| 666 |
+
dropout=dropout,
|
| 667 |
+
processor=CosmosSpatialAttentionProcessor2_0(),
|
| 668 |
+
)
|
| 669 |
+
)
|
| 670 |
+
temp_attentions.append(
|
| 671 |
+
CosmosCausalAttention(
|
| 672 |
+
num_attention_heads=1,
|
| 673 |
+
attention_head_dim=out_channel,
|
| 674 |
+
num_groups=1,
|
| 675 |
+
dropout=dropout,
|
| 676 |
+
processor=CosmosTemporalAttentionProcessor2_0(),
|
| 677 |
+
)
|
| 678 |
+
)
|
| 679 |
+
else:
|
| 680 |
+
attention.append(None)
|
| 681 |
+
temp_attentions.append(None)
|
| 682 |
+
|
| 683 |
+
self.resnets = nn.ModuleList(resnets)
|
| 684 |
+
self.attentions = nn.ModuleList(attention)
|
| 685 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
| 686 |
+
|
| 687 |
+
self.upsamplers = None
|
| 688 |
+
if use_upsample:
|
| 689 |
+
self.upsamplers = nn.ModuleList([])
|
| 690 |
+
self.upsamplers.append(CosmosUpsample3d(out_channel, spatial_upsample, temporal_upsample))
|
| 691 |
+
|
| 692 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 693 |
+
for resnet, attention, temp_attention in zip(self.resnets, self.attentions, self.temp_attentions):
|
| 694 |
+
hidden_states = resnet(hidden_states)
|
| 695 |
+
if attention is not None:
|
| 696 |
+
hidden_states = attention(hidden_states)
|
| 697 |
+
if temp_attention is not None:
|
| 698 |
+
num_frames = hidden_states.size(2)
|
| 699 |
+
attention_mask = torch.tril(hidden_states.new_ones(num_frames, num_frames)).bool()
|
| 700 |
+
hidden_states = temp_attention(hidden_states, attention_mask)
|
| 701 |
+
|
| 702 |
+
if self.upsamplers is not None:
|
| 703 |
+
for upsampler in self.upsamplers:
|
| 704 |
+
hidden_states = upsampler(hidden_states)
|
| 705 |
+
|
| 706 |
+
return hidden_states
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
class CosmosEncoder3d(nn.Module):
|
| 710 |
+
def __init__(
|
| 711 |
+
self,
|
| 712 |
+
in_channels: int = 3,
|
| 713 |
+
out_channels: int = 16,
|
| 714 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 715 |
+
num_resnet_blocks: int = 2,
|
| 716 |
+
attention_resolutions: Tuple[int, ...] = (32,),
|
| 717 |
+
resolution: int = 1024,
|
| 718 |
+
patch_size: int = 4,
|
| 719 |
+
patch_type: str = "haar",
|
| 720 |
+
dropout: float = 0.0,
|
| 721 |
+
spatial_compression_ratio: int = 8,
|
| 722 |
+
temporal_compression_ratio: int = 8,
|
| 723 |
+
) -> None:
|
| 724 |
+
super().__init__()
|
| 725 |
+
inner_dim = in_channels * patch_size**3
|
| 726 |
+
num_spatial_layers = int(math.log2(spatial_compression_ratio)) - int(math.log2(patch_size))
|
| 727 |
+
num_temporal_layers = int(math.log2(temporal_compression_ratio)) - int(math.log2(patch_size))
|
| 728 |
+
|
| 729 |
+
# 1. Input patching & projection
|
| 730 |
+
self.patch_embed = CosmosPatchEmbed3d(patch_size, patch_type)
|
| 731 |
+
|
| 732 |
+
self.conv_in = CosmosConvProjection3d(inner_dim, block_out_channels[0])
|
| 733 |
+
|
| 734 |
+
# 2. Down blocks
|
| 735 |
+
current_resolution = resolution // patch_size
|
| 736 |
+
down_blocks = []
|
| 737 |
+
for i in range(len(block_out_channels) - 1):
|
| 738 |
+
in_channel = block_out_channels[i]
|
| 739 |
+
out_channel = block_out_channels[i + 1]
|
| 740 |
+
|
| 741 |
+
use_attention = current_resolution in attention_resolutions
|
| 742 |
+
spatial_downsample = temporal_downsample = False
|
| 743 |
+
if i < len(block_out_channels) - 2:
|
| 744 |
+
use_downsample = True
|
| 745 |
+
spatial_downsample = i < num_spatial_layers
|
| 746 |
+
temporal_downsample = i < num_temporal_layers
|
| 747 |
+
current_resolution = current_resolution // 2
|
| 748 |
+
else:
|
| 749 |
+
use_downsample = False
|
| 750 |
+
|
| 751 |
+
down_blocks.append(
|
| 752 |
+
CosmosDownBlock3d(
|
| 753 |
+
in_channel,
|
| 754 |
+
out_channel,
|
| 755 |
+
num_resnet_blocks,
|
| 756 |
+
dropout,
|
| 757 |
+
use_attention,
|
| 758 |
+
use_downsample,
|
| 759 |
+
spatial_downsample,
|
| 760 |
+
temporal_downsample,
|
| 761 |
+
)
|
| 762 |
+
)
|
| 763 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
| 764 |
+
|
| 765 |
+
# 3. Mid block
|
| 766 |
+
self.mid_block = CosmosMidBlock3d(block_out_channels[-1], num_layers=1, dropout=dropout, num_groups=1)
|
| 767 |
+
|
| 768 |
+
# 4. Output norm & projection
|
| 769 |
+
self.norm_out = CosmosCausalGroupNorm(block_out_channels[-1], num_groups=1)
|
| 770 |
+
self.conv_out = CosmosConvProjection3d(block_out_channels[-1], out_channels)
|
| 771 |
+
|
| 772 |
+
self.gradient_checkpointing = False
|
| 773 |
+
|
| 774 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 775 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 776 |
+
hidden_states = self.conv_in(hidden_states)
|
| 777 |
+
|
| 778 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 779 |
+
for block in self.down_blocks:
|
| 780 |
+
hidden_states = self._gradient_checkpointing_func(block, hidden_states)
|
| 781 |
+
hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
|
| 782 |
+
else:
|
| 783 |
+
for block in self.down_blocks:
|
| 784 |
+
hidden_states = block(hidden_states)
|
| 785 |
+
hidden_states = self.mid_block(hidden_states)
|
| 786 |
+
|
| 787 |
+
hidden_states = self.norm_out(hidden_states)
|
| 788 |
+
hidden_states = F.silu(hidden_states)
|
| 789 |
+
hidden_states = self.conv_out(hidden_states)
|
| 790 |
+
return hidden_states
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
class CosmosDecoder3d(nn.Module):
|
| 794 |
+
def __init__(
|
| 795 |
+
self,
|
| 796 |
+
in_channels: int = 16,
|
| 797 |
+
out_channels: int = 3,
|
| 798 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 799 |
+
num_resnet_blocks: int = 2,
|
| 800 |
+
attention_resolutions: Tuple[int, ...] = (32,),
|
| 801 |
+
resolution: int = 1024,
|
| 802 |
+
patch_size: int = 4,
|
| 803 |
+
patch_type: str = "haar",
|
| 804 |
+
dropout: float = 0.0,
|
| 805 |
+
spatial_compression_ratio: int = 8,
|
| 806 |
+
temporal_compression_ratio: int = 8,
|
| 807 |
+
) -> None:
|
| 808 |
+
super().__init__()
|
| 809 |
+
inner_dim = out_channels * patch_size**3
|
| 810 |
+
num_spatial_layers = int(math.log2(spatial_compression_ratio)) - int(math.log2(patch_size))
|
| 811 |
+
num_temporal_layers = int(math.log2(temporal_compression_ratio)) - int(math.log2(patch_size))
|
| 812 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 813 |
+
|
| 814 |
+
# 1. Input projection
|
| 815 |
+
self.conv_in = CosmosConvProjection3d(in_channels, reversed_block_out_channels[0])
|
| 816 |
+
|
| 817 |
+
# 2. Mid block
|
| 818 |
+
self.mid_block = CosmosMidBlock3d(reversed_block_out_channels[0], num_layers=1, dropout=dropout, num_groups=1)
|
| 819 |
+
|
| 820 |
+
# 3. Up blocks
|
| 821 |
+
current_resolution = (resolution // patch_size) // 2 ** (len(block_out_channels) - 2)
|
| 822 |
+
up_blocks = []
|
| 823 |
+
for i in range(len(block_out_channels) - 1):
|
| 824 |
+
in_channel = reversed_block_out_channels[i]
|
| 825 |
+
out_channel = reversed_block_out_channels[i + 1]
|
| 826 |
+
|
| 827 |
+
use_attention = current_resolution in attention_resolutions
|
| 828 |
+
spatial_upsample = temporal_upsample = False
|
| 829 |
+
if i < len(block_out_channels) - 2:
|
| 830 |
+
use_upsample = True
|
| 831 |
+
temporal_upsample = 0 < i < num_temporal_layers + 1
|
| 832 |
+
spatial_upsample = temporal_upsample or (
|
| 833 |
+
i < num_spatial_layers and num_spatial_layers > num_temporal_layers
|
| 834 |
+
)
|
| 835 |
+
current_resolution = current_resolution * 2
|
| 836 |
+
else:
|
| 837 |
+
use_upsample = False
|
| 838 |
+
|
| 839 |
+
up_blocks.append(
|
| 840 |
+
CosmosUpBlock3d(
|
| 841 |
+
in_channel,
|
| 842 |
+
out_channel,
|
| 843 |
+
num_resnet_blocks + 1,
|
| 844 |
+
dropout,
|
| 845 |
+
use_attention,
|
| 846 |
+
use_upsample,
|
| 847 |
+
spatial_upsample,
|
| 848 |
+
temporal_upsample,
|
| 849 |
+
)
|
| 850 |
+
)
|
| 851 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
| 852 |
+
|
| 853 |
+
# 4. Output norm & projection & unpatching
|
| 854 |
+
self.norm_out = CosmosCausalGroupNorm(reversed_block_out_channels[-1], num_groups=1)
|
| 855 |
+
self.conv_out = CosmosConvProjection3d(reversed_block_out_channels[-1], inner_dim)
|
| 856 |
+
|
| 857 |
+
self.unpatch_embed = CosmosUnpatcher3d(patch_size, patch_type)
|
| 858 |
+
|
| 859 |
+
self.gradient_checkpointing = False
|
| 860 |
+
|
| 861 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 862 |
+
hidden_states = self.conv_in(hidden_states)
|
| 863 |
+
hidden_states = self.mid_block(hidden_states)
|
| 864 |
+
|
| 865 |
+
for block in self.up_blocks:
|
| 866 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 867 |
+
hidden_states = self._gradient_checkpointing_func(block, hidden_states)
|
| 868 |
+
else:
|
| 869 |
+
hidden_states = block(hidden_states)
|
| 870 |
+
|
| 871 |
+
hidden_states = self.norm_out(hidden_states)
|
| 872 |
+
hidden_states = F.silu(hidden_states)
|
| 873 |
+
hidden_states = self.conv_out(hidden_states)
|
| 874 |
+
hidden_states = self.unpatch_embed(hidden_states)
|
| 875 |
+
return hidden_states
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
class AutoencoderKLCosmos(ModelMixin, ConfigMixin):
|
| 879 |
+
r"""
|
| 880 |
+
Autoencoder used in [Cosmos](https://huggingface.co/papers/2501.03575).
|
| 881 |
+
|
| 882 |
+
Args:
|
| 883 |
+
in_channels (`int`, defaults to `3`):
|
| 884 |
+
Number of input channels.
|
| 885 |
+
out_channels (`int`, defaults to `3`):
|
| 886 |
+
Number of output channels.
|
| 887 |
+
latent_channels (`int`, defaults to `16`):
|
| 888 |
+
Number of latent channels.
|
| 889 |
+
encoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
| 890 |
+
Number of output channels for each encoder down block.
|
| 891 |
+
decode_block_out_channels (`Tuple[int, ...]`, defaults to `(256, 512, 512, 512)`):
|
| 892 |
+
Number of output channels for each decoder up block.
|
| 893 |
+
attention_resolutions (`Tuple[int, ...]`, defaults to `(32,)`):
|
| 894 |
+
List of image/video resolutions at which to apply attention.
|
| 895 |
+
resolution (`int`, defaults to `1024`):
|
| 896 |
+
Base image/video resolution used for computing whether a block should have attention layers.
|
| 897 |
+
num_layers (`int`, defaults to `2`):
|
| 898 |
+
Number of resnet blocks in each encoder/decoder block.
|
| 899 |
+
patch_size (`int`, defaults to `4`):
|
| 900 |
+
Patch size used for patching the input image/video.
|
| 901 |
+
patch_type (`str`, defaults to `haar`):
|
| 902 |
+
Patch type used for patching the input image/video. Can be either `haar` or `rearrange`.
|
| 903 |
+
scaling_factor (`float`, defaults to `1.0`):
|
| 904 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
| 905 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
| 906 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
| 907 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
| 908 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
| 909 |
+
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper. Not applicable in
|
| 910 |
+
Cosmos, but we default to 1.0 for consistency.
|
| 911 |
+
spatial_compression_ratio (`int`, defaults to `8`):
|
| 912 |
+
The spatial compression ratio to apply in the VAE. The number of downsample blocks is determined using
|
| 913 |
+
this.
|
| 914 |
+
temporal_compression_ratio (`int`, defaults to `8`):
|
| 915 |
+
The temporal compression ratio to apply in the VAE. The number of downsample blocks is determined using
|
| 916 |
+
this.
|
| 917 |
+
"""
|
| 918 |
+
|
| 919 |
+
_supports_gradient_checkpointing = True
|
| 920 |
+
|
| 921 |
+
@register_to_config
|
| 922 |
+
def __init__(
|
| 923 |
+
self,
|
| 924 |
+
in_channels: int = 3,
|
| 925 |
+
out_channels: int = 3,
|
| 926 |
+
latent_channels: int = 16,
|
| 927 |
+
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 928 |
+
decode_block_out_channels: Tuple[int, ...] = (256, 512, 512, 512),
|
| 929 |
+
attention_resolutions: Tuple[int, ...] = (32,),
|
| 930 |
+
resolution: int = 1024,
|
| 931 |
+
num_layers: int = 2,
|
| 932 |
+
patch_size: int = 4,
|
| 933 |
+
patch_type: str = "haar",
|
| 934 |
+
scaling_factor: float = 1.0,
|
| 935 |
+
spatial_compression_ratio: int = 8,
|
| 936 |
+
temporal_compression_ratio: int = 8,
|
| 937 |
+
latents_mean: Optional[List[float]] = LATENTS_MEAN,
|
| 938 |
+
latents_std: Optional[List[float]] = LATENTS_STD,
|
| 939 |
+
) -> None:
|
| 940 |
+
super().__init__()
|
| 941 |
+
|
| 942 |
+
self.encoder = CosmosEncoder3d(
|
| 943 |
+
in_channels=in_channels,
|
| 944 |
+
out_channels=latent_channels,
|
| 945 |
+
block_out_channels=encoder_block_out_channels,
|
| 946 |
+
num_resnet_blocks=num_layers,
|
| 947 |
+
attention_resolutions=attention_resolutions,
|
| 948 |
+
resolution=resolution,
|
| 949 |
+
patch_size=patch_size,
|
| 950 |
+
patch_type=patch_type,
|
| 951 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
| 952 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 953 |
+
)
|
| 954 |
+
self.decoder = CosmosDecoder3d(
|
| 955 |
+
in_channels=latent_channels,
|
| 956 |
+
out_channels=out_channels,
|
| 957 |
+
block_out_channels=decode_block_out_channels,
|
| 958 |
+
num_resnet_blocks=num_layers,
|
| 959 |
+
attention_resolutions=attention_resolutions,
|
| 960 |
+
resolution=resolution,
|
| 961 |
+
patch_size=patch_size,
|
| 962 |
+
patch_type=patch_type,
|
| 963 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
| 964 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 965 |
+
)
|
| 966 |
+
|
| 967 |
+
self.quant_conv = CosmosCausalConv3d(latent_channels, latent_channels, kernel_size=1, padding=0)
|
| 968 |
+
self.post_quant_conv = CosmosCausalConv3d(latent_channels, latent_channels, kernel_size=1, padding=0)
|
| 969 |
+
|
| 970 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 971 |
+
# to perform decoding of a single video latent at a time.
|
| 972 |
+
self.use_slicing = False
|
| 973 |
+
|
| 974 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 975 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 976 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 977 |
+
self.use_tiling = False
|
| 978 |
+
|
| 979 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
| 980 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
| 981 |
+
self.use_framewise_encoding = False
|
| 982 |
+
self.use_framewise_decoding = False
|
| 983 |
+
|
| 984 |
+
# This can be configured based on the amount of GPU memory available.
|
| 985 |
+
# `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
|
| 986 |
+
# Setting it to higher values results in higher memory usage.
|
| 987 |
+
self.num_sample_frames_batch_size = 16
|
| 988 |
+
self.num_latent_frames_batch_size = 2
|
| 989 |
+
|
| 990 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 991 |
+
self.tile_sample_min_height = 512
|
| 992 |
+
self.tile_sample_min_width = 512
|
| 993 |
+
self.tile_sample_min_num_frames = 16
|
| 994 |
+
|
| 995 |
+
# The minimal distance between two spatial tiles
|
| 996 |
+
self.tile_sample_stride_height = 448
|
| 997 |
+
self.tile_sample_stride_width = 448
|
| 998 |
+
self.tile_sample_stride_num_frames = 8
|
| 999 |
+
|
| 1000 |
+
def enable_tiling(
|
| 1001 |
+
self,
|
| 1002 |
+
tile_sample_min_height: Optional[int] = None,
|
| 1003 |
+
tile_sample_min_width: Optional[int] = None,
|
| 1004 |
+
tile_sample_min_num_frames: Optional[int] = None,
|
| 1005 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 1006 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 1007 |
+
tile_sample_stride_num_frames: Optional[float] = None,
|
| 1008 |
+
) -> None:
|
| 1009 |
+
r"""
|
| 1010 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 1011 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 1012 |
+
processing larger images.
|
| 1013 |
+
|
| 1014 |
+
Args:
|
| 1015 |
+
tile_sample_min_height (`int`, *optional*):
|
| 1016 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 1017 |
+
tile_sample_min_width (`int`, *optional*):
|
| 1018 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 1019 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 1020 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 1021 |
+
no tiling artifacts produced across the height dimension.
|
| 1022 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 1023 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 1024 |
+
artifacts produced across the width dimension.
|
| 1025 |
+
"""
|
| 1026 |
+
self.use_tiling = True
|
| 1027 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 1028 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 1029 |
+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
|
| 1030 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 1031 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 1032 |
+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
|
| 1033 |
+
|
| 1034 |
+
def disable_tiling(self) -> None:
|
| 1035 |
+
r"""
|
| 1036 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 1037 |
+
decoding in one step.
|
| 1038 |
+
"""
|
| 1039 |
+
self.use_tiling = False
|
| 1040 |
+
|
| 1041 |
+
def enable_slicing(self) -> None:
|
| 1042 |
+
r"""
|
| 1043 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 1044 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 1045 |
+
"""
|
| 1046 |
+
self.use_slicing = True
|
| 1047 |
+
|
| 1048 |
+
def disable_slicing(self) -> None:
|
| 1049 |
+
r"""
|
| 1050 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 1051 |
+
decoding in one step.
|
| 1052 |
+
"""
|
| 1053 |
+
self.use_slicing = False
|
| 1054 |
+
|
| 1055 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 1056 |
+
x = self.encoder(x)
|
| 1057 |
+
enc = self.quant_conv(x)
|
| 1058 |
+
return enc
|
| 1059 |
+
|
| 1060 |
+
@apply_forward_hook
|
| 1061 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
|
| 1062 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 1063 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 1064 |
+
h = torch.cat(encoded_slices)
|
| 1065 |
+
else:
|
| 1066 |
+
h = self._encode(x)
|
| 1067 |
+
|
| 1068 |
+
posterior = IdentityDistribution(h)
|
| 1069 |
+
|
| 1070 |
+
if not return_dict:
|
| 1071 |
+
return (posterior,)
|
| 1072 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 1073 |
+
|
| 1074 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
| 1075 |
+
z = self.post_quant_conv(z)
|
| 1076 |
+
dec = self.decoder(z)
|
| 1077 |
+
|
| 1078 |
+
if not return_dict:
|
| 1079 |
+
return (dec,)
|
| 1080 |
+
return DecoderOutput(sample=dec)
|
| 1081 |
+
|
| 1082 |
+
@apply_forward_hook
|
| 1083 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
| 1084 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 1085 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 1086 |
+
decoded = torch.cat(decoded_slices)
|
| 1087 |
+
else:
|
| 1088 |
+
decoded = self._decode(z).sample
|
| 1089 |
+
|
| 1090 |
+
if not return_dict:
|
| 1091 |
+
return (decoded,)
|
| 1092 |
+
return DecoderOutput(sample=decoded)
|
| 1093 |
+
|
| 1094 |
+
def forward(
|
| 1095 |
+
self,
|
| 1096 |
+
sample: torch.Tensor,
|
| 1097 |
+
sample_posterior: bool = False,
|
| 1098 |
+
return_dict: bool = True,
|
| 1099 |
+
generator: Optional[torch.Generator] = None,
|
| 1100 |
+
) -> Union[Tuple[torch.Tensor], DecoderOutput]:
|
| 1101 |
+
x = sample
|
| 1102 |
+
posterior = self.encode(x).latent_dist
|
| 1103 |
+
if sample_posterior:
|
| 1104 |
+
z = posterior.sample(generator=generator)
|
| 1105 |
+
else:
|
| 1106 |
+
z = posterior.mode()
|
| 1107 |
+
dec = self.decode(z).sample
|
| 1108 |
+
if not return_dict:
|
| 1109 |
+
return (dec,)
|
| 1110 |
+
return DecoderOutput(sample=dec)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py
ADDED
|
@@ -0,0 +1,1096 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The Hunyuan Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
import torch.utils.checkpoint
|
| 22 |
+
|
| 23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from ...utils import logging
|
| 25 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 26 |
+
from ..activations import get_activation
|
| 27 |
+
from ..attention_processor import Attention
|
| 28 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 29 |
+
from ..modeling_utils import ModelMixin
|
| 30 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def prepare_causal_attention_mask(
|
| 37 |
+
num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None
|
| 38 |
+
) -> torch.Tensor:
|
| 39 |
+
indices = torch.arange(1, num_frames + 1, dtype=torch.int32, device=device)
|
| 40 |
+
indices_blocks = indices.repeat_interleave(height_width)
|
| 41 |
+
x, y = torch.meshgrid(indices_blocks, indices_blocks, indexing="xy")
|
| 42 |
+
mask = torch.where(x <= y, 0, -float("inf")).to(dtype=dtype)
|
| 43 |
+
|
| 44 |
+
if batch_size is not None:
|
| 45 |
+
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
|
| 46 |
+
return mask
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class HunyuanVideoCausalConv3d(nn.Module):
|
| 50 |
+
def __init__(
|
| 51 |
+
self,
|
| 52 |
+
in_channels: int,
|
| 53 |
+
out_channels: int,
|
| 54 |
+
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
| 55 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 56 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
| 57 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
| 58 |
+
bias: bool = True,
|
| 59 |
+
pad_mode: str = "replicate",
|
| 60 |
+
) -> None:
|
| 61 |
+
super().__init__()
|
| 62 |
+
|
| 63 |
+
kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
| 64 |
+
|
| 65 |
+
self.pad_mode = pad_mode
|
| 66 |
+
self.time_causal_padding = (
|
| 67 |
+
kernel_size[0] // 2,
|
| 68 |
+
kernel_size[0] // 2,
|
| 69 |
+
kernel_size[1] // 2,
|
| 70 |
+
kernel_size[1] // 2,
|
| 71 |
+
kernel_size[2] - 1,
|
| 72 |
+
0,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
| 76 |
+
|
| 77 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 78 |
+
hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode)
|
| 79 |
+
return self.conv(hidden_states)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
class HunyuanVideoUpsampleCausal3D(nn.Module):
|
| 83 |
+
def __init__(
|
| 84 |
+
self,
|
| 85 |
+
in_channels: int,
|
| 86 |
+
out_channels: Optional[int] = None,
|
| 87 |
+
kernel_size: int = 3,
|
| 88 |
+
stride: int = 1,
|
| 89 |
+
bias: bool = True,
|
| 90 |
+
upsample_factor: Tuple[float, float, float] = (2, 2, 2),
|
| 91 |
+
) -> None:
|
| 92 |
+
super().__init__()
|
| 93 |
+
|
| 94 |
+
out_channels = out_channels or in_channels
|
| 95 |
+
self.upsample_factor = upsample_factor
|
| 96 |
+
|
| 97 |
+
self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias)
|
| 98 |
+
|
| 99 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 100 |
+
num_frames = hidden_states.size(2)
|
| 101 |
+
|
| 102 |
+
first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2)
|
| 103 |
+
first_frame = F.interpolate(
|
| 104 |
+
first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest"
|
| 105 |
+
).unsqueeze(2)
|
| 106 |
+
|
| 107 |
+
if num_frames > 1:
|
| 108 |
+
# See: https://github.com/pytorch/pytorch/issues/81665
|
| 109 |
+
# Unless you have a version of pytorch where non-contiguous implementation of F.interpolate
|
| 110 |
+
# is fixed, this will raise either a runtime error, or fail silently with bad outputs.
|
| 111 |
+
# If you are encountering an error here, make sure to try running encoding/decoding with
|
| 112 |
+
# `vae.enable_tiling()` first. If that doesn't work, open an issue at:
|
| 113 |
+
# https://github.com/huggingface/diffusers/issues
|
| 114 |
+
other_frames = other_frames.contiguous()
|
| 115 |
+
other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest")
|
| 116 |
+
hidden_states = torch.cat((first_frame, other_frames), dim=2)
|
| 117 |
+
else:
|
| 118 |
+
hidden_states = first_frame
|
| 119 |
+
|
| 120 |
+
hidden_states = self.conv(hidden_states)
|
| 121 |
+
return hidden_states
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class HunyuanVideoDownsampleCausal3D(nn.Module):
|
| 125 |
+
def __init__(
|
| 126 |
+
self,
|
| 127 |
+
channels: int,
|
| 128 |
+
out_channels: Optional[int] = None,
|
| 129 |
+
padding: int = 1,
|
| 130 |
+
kernel_size: int = 3,
|
| 131 |
+
bias: bool = True,
|
| 132 |
+
stride=2,
|
| 133 |
+
) -> None:
|
| 134 |
+
super().__init__()
|
| 135 |
+
out_channels = out_channels or channels
|
| 136 |
+
|
| 137 |
+
self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias)
|
| 138 |
+
|
| 139 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 140 |
+
hidden_states = self.conv(hidden_states)
|
| 141 |
+
return hidden_states
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
class HunyuanVideoResnetBlockCausal3D(nn.Module):
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
in_channels: int,
|
| 148 |
+
out_channels: Optional[int] = None,
|
| 149 |
+
dropout: float = 0.0,
|
| 150 |
+
groups: int = 32,
|
| 151 |
+
eps: float = 1e-6,
|
| 152 |
+
non_linearity: str = "swish",
|
| 153 |
+
) -> None:
|
| 154 |
+
super().__init__()
|
| 155 |
+
out_channels = out_channels or in_channels
|
| 156 |
+
|
| 157 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 158 |
+
|
| 159 |
+
self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True)
|
| 160 |
+
self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0)
|
| 161 |
+
|
| 162 |
+
self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True)
|
| 163 |
+
self.dropout = nn.Dropout(dropout)
|
| 164 |
+
self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0)
|
| 165 |
+
|
| 166 |
+
self.conv_shortcut = None
|
| 167 |
+
if in_channels != out_channels:
|
| 168 |
+
self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0)
|
| 169 |
+
|
| 170 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 171 |
+
hidden_states = hidden_states.contiguous()
|
| 172 |
+
residual = hidden_states
|
| 173 |
+
|
| 174 |
+
hidden_states = self.norm1(hidden_states)
|
| 175 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 176 |
+
hidden_states = self.conv1(hidden_states)
|
| 177 |
+
|
| 178 |
+
hidden_states = self.norm2(hidden_states)
|
| 179 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 180 |
+
hidden_states = self.dropout(hidden_states)
|
| 181 |
+
hidden_states = self.conv2(hidden_states)
|
| 182 |
+
|
| 183 |
+
if self.conv_shortcut is not None:
|
| 184 |
+
residual = self.conv_shortcut(residual)
|
| 185 |
+
|
| 186 |
+
hidden_states = hidden_states + residual
|
| 187 |
+
return hidden_states
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class HunyuanVideoMidBlock3D(nn.Module):
|
| 191 |
+
def __init__(
|
| 192 |
+
self,
|
| 193 |
+
in_channels: int,
|
| 194 |
+
dropout: float = 0.0,
|
| 195 |
+
num_layers: int = 1,
|
| 196 |
+
resnet_eps: float = 1e-6,
|
| 197 |
+
resnet_act_fn: str = "swish",
|
| 198 |
+
resnet_groups: int = 32,
|
| 199 |
+
add_attention: bool = True,
|
| 200 |
+
attention_head_dim: int = 1,
|
| 201 |
+
) -> None:
|
| 202 |
+
super().__init__()
|
| 203 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
| 204 |
+
self.add_attention = add_attention
|
| 205 |
+
|
| 206 |
+
# There is always at least one resnet
|
| 207 |
+
resnets = [
|
| 208 |
+
HunyuanVideoResnetBlockCausal3D(
|
| 209 |
+
in_channels=in_channels,
|
| 210 |
+
out_channels=in_channels,
|
| 211 |
+
eps=resnet_eps,
|
| 212 |
+
groups=resnet_groups,
|
| 213 |
+
dropout=dropout,
|
| 214 |
+
non_linearity=resnet_act_fn,
|
| 215 |
+
)
|
| 216 |
+
]
|
| 217 |
+
attentions = []
|
| 218 |
+
|
| 219 |
+
for _ in range(num_layers):
|
| 220 |
+
if self.add_attention:
|
| 221 |
+
attentions.append(
|
| 222 |
+
Attention(
|
| 223 |
+
in_channels,
|
| 224 |
+
heads=in_channels // attention_head_dim,
|
| 225 |
+
dim_head=attention_head_dim,
|
| 226 |
+
eps=resnet_eps,
|
| 227 |
+
norm_num_groups=resnet_groups,
|
| 228 |
+
residual_connection=True,
|
| 229 |
+
bias=True,
|
| 230 |
+
upcast_softmax=True,
|
| 231 |
+
_from_deprecated_attn_block=True,
|
| 232 |
+
)
|
| 233 |
+
)
|
| 234 |
+
else:
|
| 235 |
+
attentions.append(None)
|
| 236 |
+
|
| 237 |
+
resnets.append(
|
| 238 |
+
HunyuanVideoResnetBlockCausal3D(
|
| 239 |
+
in_channels=in_channels,
|
| 240 |
+
out_channels=in_channels,
|
| 241 |
+
eps=resnet_eps,
|
| 242 |
+
groups=resnet_groups,
|
| 243 |
+
dropout=dropout,
|
| 244 |
+
non_linearity=resnet_act_fn,
|
| 245 |
+
)
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
self.attentions = nn.ModuleList(attentions)
|
| 249 |
+
self.resnets = nn.ModuleList(resnets)
|
| 250 |
+
|
| 251 |
+
self.gradient_checkpointing = False
|
| 252 |
+
|
| 253 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 254 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 255 |
+
hidden_states = self._gradient_checkpointing_func(self.resnets[0], hidden_states)
|
| 256 |
+
|
| 257 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 258 |
+
if attn is not None:
|
| 259 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 260 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
|
| 261 |
+
attention_mask = prepare_causal_attention_mask(
|
| 262 |
+
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
|
| 263 |
+
)
|
| 264 |
+
hidden_states = attn(hidden_states, attention_mask=attention_mask)
|
| 265 |
+
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
|
| 266 |
+
|
| 267 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states)
|
| 268 |
+
|
| 269 |
+
else:
|
| 270 |
+
hidden_states = self.resnets[0](hidden_states)
|
| 271 |
+
|
| 272 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 273 |
+
if attn is not None:
|
| 274 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 275 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
|
| 276 |
+
attention_mask = prepare_causal_attention_mask(
|
| 277 |
+
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
|
| 278 |
+
)
|
| 279 |
+
hidden_states = attn(hidden_states, attention_mask=attention_mask)
|
| 280 |
+
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
|
| 281 |
+
|
| 282 |
+
hidden_states = resnet(hidden_states)
|
| 283 |
+
|
| 284 |
+
return hidden_states
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
class HunyuanVideoDownBlock3D(nn.Module):
|
| 288 |
+
def __init__(
|
| 289 |
+
self,
|
| 290 |
+
in_channels: int,
|
| 291 |
+
out_channels: int,
|
| 292 |
+
dropout: float = 0.0,
|
| 293 |
+
num_layers: int = 1,
|
| 294 |
+
resnet_eps: float = 1e-6,
|
| 295 |
+
resnet_act_fn: str = "swish",
|
| 296 |
+
resnet_groups: int = 32,
|
| 297 |
+
add_downsample: bool = True,
|
| 298 |
+
downsample_stride: int = 2,
|
| 299 |
+
downsample_padding: int = 1,
|
| 300 |
+
) -> None:
|
| 301 |
+
super().__init__()
|
| 302 |
+
resnets = []
|
| 303 |
+
|
| 304 |
+
for i in range(num_layers):
|
| 305 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 306 |
+
resnets.append(
|
| 307 |
+
HunyuanVideoResnetBlockCausal3D(
|
| 308 |
+
in_channels=in_channels,
|
| 309 |
+
out_channels=out_channels,
|
| 310 |
+
eps=resnet_eps,
|
| 311 |
+
groups=resnet_groups,
|
| 312 |
+
dropout=dropout,
|
| 313 |
+
non_linearity=resnet_act_fn,
|
| 314 |
+
)
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
self.resnets = nn.ModuleList(resnets)
|
| 318 |
+
|
| 319 |
+
if add_downsample:
|
| 320 |
+
self.downsamplers = nn.ModuleList(
|
| 321 |
+
[
|
| 322 |
+
HunyuanVideoDownsampleCausal3D(
|
| 323 |
+
out_channels,
|
| 324 |
+
out_channels=out_channels,
|
| 325 |
+
padding=downsample_padding,
|
| 326 |
+
stride=downsample_stride,
|
| 327 |
+
)
|
| 328 |
+
]
|
| 329 |
+
)
|
| 330 |
+
else:
|
| 331 |
+
self.downsamplers = None
|
| 332 |
+
|
| 333 |
+
self.gradient_checkpointing = False
|
| 334 |
+
|
| 335 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 336 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 337 |
+
for resnet in self.resnets:
|
| 338 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states)
|
| 339 |
+
else:
|
| 340 |
+
for resnet in self.resnets:
|
| 341 |
+
hidden_states = resnet(hidden_states)
|
| 342 |
+
|
| 343 |
+
if self.downsamplers is not None:
|
| 344 |
+
for downsampler in self.downsamplers:
|
| 345 |
+
hidden_states = downsampler(hidden_states)
|
| 346 |
+
|
| 347 |
+
return hidden_states
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
class HunyuanVideoUpBlock3D(nn.Module):
|
| 351 |
+
def __init__(
|
| 352 |
+
self,
|
| 353 |
+
in_channels: int,
|
| 354 |
+
out_channels: int,
|
| 355 |
+
dropout: float = 0.0,
|
| 356 |
+
num_layers: int = 1,
|
| 357 |
+
resnet_eps: float = 1e-6,
|
| 358 |
+
resnet_act_fn: str = "swish",
|
| 359 |
+
resnet_groups: int = 32,
|
| 360 |
+
add_upsample: bool = True,
|
| 361 |
+
upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2),
|
| 362 |
+
) -> None:
|
| 363 |
+
super().__init__()
|
| 364 |
+
resnets = []
|
| 365 |
+
|
| 366 |
+
for i in range(num_layers):
|
| 367 |
+
input_channels = in_channels if i == 0 else out_channels
|
| 368 |
+
|
| 369 |
+
resnets.append(
|
| 370 |
+
HunyuanVideoResnetBlockCausal3D(
|
| 371 |
+
in_channels=input_channels,
|
| 372 |
+
out_channels=out_channels,
|
| 373 |
+
eps=resnet_eps,
|
| 374 |
+
groups=resnet_groups,
|
| 375 |
+
dropout=dropout,
|
| 376 |
+
non_linearity=resnet_act_fn,
|
| 377 |
+
)
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
self.resnets = nn.ModuleList(resnets)
|
| 381 |
+
|
| 382 |
+
if add_upsample:
|
| 383 |
+
self.upsamplers = nn.ModuleList(
|
| 384 |
+
[
|
| 385 |
+
HunyuanVideoUpsampleCausal3D(
|
| 386 |
+
out_channels,
|
| 387 |
+
out_channels=out_channels,
|
| 388 |
+
upsample_factor=upsample_scale_factor,
|
| 389 |
+
)
|
| 390 |
+
]
|
| 391 |
+
)
|
| 392 |
+
else:
|
| 393 |
+
self.upsamplers = None
|
| 394 |
+
|
| 395 |
+
self.gradient_checkpointing = False
|
| 396 |
+
|
| 397 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 398 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 399 |
+
for resnet in self.resnets:
|
| 400 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states)
|
| 401 |
+
|
| 402 |
+
else:
|
| 403 |
+
for resnet in self.resnets:
|
| 404 |
+
hidden_states = resnet(hidden_states)
|
| 405 |
+
|
| 406 |
+
if self.upsamplers is not None:
|
| 407 |
+
for upsampler in self.upsamplers:
|
| 408 |
+
hidden_states = upsampler(hidden_states)
|
| 409 |
+
|
| 410 |
+
return hidden_states
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
class HunyuanVideoEncoder3D(nn.Module):
|
| 414 |
+
r"""
|
| 415 |
+
Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
|
| 416 |
+
"""
|
| 417 |
+
|
| 418 |
+
def __init__(
|
| 419 |
+
self,
|
| 420 |
+
in_channels: int = 3,
|
| 421 |
+
out_channels: int = 3,
|
| 422 |
+
down_block_types: Tuple[str, ...] = (
|
| 423 |
+
"HunyuanVideoDownBlock3D",
|
| 424 |
+
"HunyuanVideoDownBlock3D",
|
| 425 |
+
"HunyuanVideoDownBlock3D",
|
| 426 |
+
"HunyuanVideoDownBlock3D",
|
| 427 |
+
),
|
| 428 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 429 |
+
layers_per_block: int = 2,
|
| 430 |
+
norm_num_groups: int = 32,
|
| 431 |
+
act_fn: str = "silu",
|
| 432 |
+
double_z: bool = True,
|
| 433 |
+
mid_block_add_attention=True,
|
| 434 |
+
temporal_compression_ratio: int = 4,
|
| 435 |
+
spatial_compression_ratio: int = 8,
|
| 436 |
+
) -> None:
|
| 437 |
+
super().__init__()
|
| 438 |
+
|
| 439 |
+
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
|
| 440 |
+
self.mid_block = None
|
| 441 |
+
self.down_blocks = nn.ModuleList([])
|
| 442 |
+
|
| 443 |
+
output_channel = block_out_channels[0]
|
| 444 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 445 |
+
if down_block_type != "HunyuanVideoDownBlock3D":
|
| 446 |
+
raise ValueError(f"Unsupported down_block_type: {down_block_type}")
|
| 447 |
+
|
| 448 |
+
input_channel = output_channel
|
| 449 |
+
output_channel = block_out_channels[i]
|
| 450 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 451 |
+
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
|
| 452 |
+
num_time_downsample_layers = int(np.log2(temporal_compression_ratio))
|
| 453 |
+
|
| 454 |
+
if temporal_compression_ratio == 4:
|
| 455 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
| 456 |
+
add_time_downsample = bool(
|
| 457 |
+
i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block
|
| 458 |
+
)
|
| 459 |
+
elif temporal_compression_ratio == 8:
|
| 460 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
| 461 |
+
add_time_downsample = bool(i < num_time_downsample_layers)
|
| 462 |
+
else:
|
| 463 |
+
raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}")
|
| 464 |
+
|
| 465 |
+
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
|
| 466 |
+
downsample_stride_T = (2,) if add_time_downsample else (1,)
|
| 467 |
+
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
|
| 468 |
+
|
| 469 |
+
down_block = HunyuanVideoDownBlock3D(
|
| 470 |
+
num_layers=layers_per_block,
|
| 471 |
+
in_channels=input_channel,
|
| 472 |
+
out_channels=output_channel,
|
| 473 |
+
add_downsample=bool(add_spatial_downsample or add_time_downsample),
|
| 474 |
+
resnet_eps=1e-6,
|
| 475 |
+
resnet_act_fn=act_fn,
|
| 476 |
+
resnet_groups=norm_num_groups,
|
| 477 |
+
downsample_stride=downsample_stride,
|
| 478 |
+
downsample_padding=0,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
self.down_blocks.append(down_block)
|
| 482 |
+
|
| 483 |
+
self.mid_block = HunyuanVideoMidBlock3D(
|
| 484 |
+
in_channels=block_out_channels[-1],
|
| 485 |
+
resnet_eps=1e-6,
|
| 486 |
+
resnet_act_fn=act_fn,
|
| 487 |
+
attention_head_dim=block_out_channels[-1],
|
| 488 |
+
resnet_groups=norm_num_groups,
|
| 489 |
+
add_attention=mid_block_add_attention,
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
| 493 |
+
self.conv_act = nn.SiLU()
|
| 494 |
+
|
| 495 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
| 496 |
+
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
| 497 |
+
|
| 498 |
+
self.gradient_checkpointing = False
|
| 499 |
+
|
| 500 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 501 |
+
hidden_states = self.conv_in(hidden_states)
|
| 502 |
+
|
| 503 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 504 |
+
for down_block in self.down_blocks:
|
| 505 |
+
hidden_states = self._gradient_checkpointing_func(down_block, hidden_states)
|
| 506 |
+
|
| 507 |
+
hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
|
| 508 |
+
else:
|
| 509 |
+
for down_block in self.down_blocks:
|
| 510 |
+
hidden_states = down_block(hidden_states)
|
| 511 |
+
|
| 512 |
+
hidden_states = self.mid_block(hidden_states)
|
| 513 |
+
|
| 514 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
| 515 |
+
hidden_states = self.conv_act(hidden_states)
|
| 516 |
+
hidden_states = self.conv_out(hidden_states)
|
| 517 |
+
|
| 518 |
+
return hidden_states
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
class HunyuanVideoDecoder3D(nn.Module):
|
| 522 |
+
r"""
|
| 523 |
+
Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
|
| 524 |
+
"""
|
| 525 |
+
|
| 526 |
+
def __init__(
|
| 527 |
+
self,
|
| 528 |
+
in_channels: int = 3,
|
| 529 |
+
out_channels: int = 3,
|
| 530 |
+
up_block_types: Tuple[str, ...] = (
|
| 531 |
+
"HunyuanVideoUpBlock3D",
|
| 532 |
+
"HunyuanVideoUpBlock3D",
|
| 533 |
+
"HunyuanVideoUpBlock3D",
|
| 534 |
+
"HunyuanVideoUpBlock3D",
|
| 535 |
+
),
|
| 536 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 537 |
+
layers_per_block: int = 2,
|
| 538 |
+
norm_num_groups: int = 32,
|
| 539 |
+
act_fn: str = "silu",
|
| 540 |
+
mid_block_add_attention=True,
|
| 541 |
+
time_compression_ratio: int = 4,
|
| 542 |
+
spatial_compression_ratio: int = 8,
|
| 543 |
+
):
|
| 544 |
+
super().__init__()
|
| 545 |
+
self.layers_per_block = layers_per_block
|
| 546 |
+
|
| 547 |
+
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
|
| 548 |
+
self.up_blocks = nn.ModuleList([])
|
| 549 |
+
|
| 550 |
+
# mid
|
| 551 |
+
self.mid_block = HunyuanVideoMidBlock3D(
|
| 552 |
+
in_channels=block_out_channels[-1],
|
| 553 |
+
resnet_eps=1e-6,
|
| 554 |
+
resnet_act_fn=act_fn,
|
| 555 |
+
attention_head_dim=block_out_channels[-1],
|
| 556 |
+
resnet_groups=norm_num_groups,
|
| 557 |
+
add_attention=mid_block_add_attention,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# up
|
| 561 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 562 |
+
output_channel = reversed_block_out_channels[0]
|
| 563 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 564 |
+
if up_block_type != "HunyuanVideoUpBlock3D":
|
| 565 |
+
raise ValueError(f"Unsupported up_block_type: {up_block_type}")
|
| 566 |
+
|
| 567 |
+
prev_output_channel = output_channel
|
| 568 |
+
output_channel = reversed_block_out_channels[i]
|
| 569 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 570 |
+
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
|
| 571 |
+
num_time_upsample_layers = int(np.log2(time_compression_ratio))
|
| 572 |
+
|
| 573 |
+
if time_compression_ratio == 4:
|
| 574 |
+
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
|
| 575 |
+
add_time_upsample = bool(
|
| 576 |
+
i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block
|
| 577 |
+
)
|
| 578 |
+
else:
|
| 579 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}")
|
| 580 |
+
|
| 581 |
+
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
|
| 582 |
+
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
|
| 583 |
+
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
|
| 584 |
+
|
| 585 |
+
up_block = HunyuanVideoUpBlock3D(
|
| 586 |
+
num_layers=self.layers_per_block + 1,
|
| 587 |
+
in_channels=prev_output_channel,
|
| 588 |
+
out_channels=output_channel,
|
| 589 |
+
add_upsample=bool(add_spatial_upsample or add_time_upsample),
|
| 590 |
+
upsample_scale_factor=upsample_scale_factor,
|
| 591 |
+
resnet_eps=1e-6,
|
| 592 |
+
resnet_act_fn=act_fn,
|
| 593 |
+
resnet_groups=norm_num_groups,
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
self.up_blocks.append(up_block)
|
| 597 |
+
prev_output_channel = output_channel
|
| 598 |
+
|
| 599 |
+
# out
|
| 600 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
| 601 |
+
self.conv_act = nn.SiLU()
|
| 602 |
+
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
| 603 |
+
|
| 604 |
+
self.gradient_checkpointing = False
|
| 605 |
+
|
| 606 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 607 |
+
hidden_states = self.conv_in(hidden_states)
|
| 608 |
+
|
| 609 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 610 |
+
hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
|
| 611 |
+
|
| 612 |
+
for up_block in self.up_blocks:
|
| 613 |
+
hidden_states = self._gradient_checkpointing_func(up_block, hidden_states)
|
| 614 |
+
else:
|
| 615 |
+
hidden_states = self.mid_block(hidden_states)
|
| 616 |
+
|
| 617 |
+
for up_block in self.up_blocks:
|
| 618 |
+
hidden_states = up_block(hidden_states)
|
| 619 |
+
|
| 620 |
+
# post-process
|
| 621 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
| 622 |
+
hidden_states = self.conv_act(hidden_states)
|
| 623 |
+
hidden_states = self.conv_out(hidden_states)
|
| 624 |
+
|
| 625 |
+
return hidden_states
|
| 626 |
+
|
| 627 |
+
|
| 628 |
+
class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin):
|
| 629 |
+
r"""
|
| 630 |
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
| 631 |
+
Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603).
|
| 632 |
+
|
| 633 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 634 |
+
for all models (such as downloading or saving).
|
| 635 |
+
"""
|
| 636 |
+
|
| 637 |
+
_supports_gradient_checkpointing = True
|
| 638 |
+
|
| 639 |
+
@register_to_config
|
| 640 |
+
def __init__(
|
| 641 |
+
self,
|
| 642 |
+
in_channels: int = 3,
|
| 643 |
+
out_channels: int = 3,
|
| 644 |
+
latent_channels: int = 16,
|
| 645 |
+
down_block_types: Tuple[str, ...] = (
|
| 646 |
+
"HunyuanVideoDownBlock3D",
|
| 647 |
+
"HunyuanVideoDownBlock3D",
|
| 648 |
+
"HunyuanVideoDownBlock3D",
|
| 649 |
+
"HunyuanVideoDownBlock3D",
|
| 650 |
+
),
|
| 651 |
+
up_block_types: Tuple[str, ...] = (
|
| 652 |
+
"HunyuanVideoUpBlock3D",
|
| 653 |
+
"HunyuanVideoUpBlock3D",
|
| 654 |
+
"HunyuanVideoUpBlock3D",
|
| 655 |
+
"HunyuanVideoUpBlock3D",
|
| 656 |
+
),
|
| 657 |
+
block_out_channels: Tuple[int] = (128, 256, 512, 512),
|
| 658 |
+
layers_per_block: int = 2,
|
| 659 |
+
act_fn: str = "silu",
|
| 660 |
+
norm_num_groups: int = 32,
|
| 661 |
+
scaling_factor: float = 0.476986,
|
| 662 |
+
spatial_compression_ratio: int = 8,
|
| 663 |
+
temporal_compression_ratio: int = 4,
|
| 664 |
+
mid_block_add_attention: bool = True,
|
| 665 |
+
) -> None:
|
| 666 |
+
super().__init__()
|
| 667 |
+
|
| 668 |
+
self.time_compression_ratio = temporal_compression_ratio
|
| 669 |
+
|
| 670 |
+
self.encoder = HunyuanVideoEncoder3D(
|
| 671 |
+
in_channels=in_channels,
|
| 672 |
+
out_channels=latent_channels,
|
| 673 |
+
down_block_types=down_block_types,
|
| 674 |
+
block_out_channels=block_out_channels,
|
| 675 |
+
layers_per_block=layers_per_block,
|
| 676 |
+
norm_num_groups=norm_num_groups,
|
| 677 |
+
act_fn=act_fn,
|
| 678 |
+
double_z=True,
|
| 679 |
+
mid_block_add_attention=mid_block_add_attention,
|
| 680 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 681 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
self.decoder = HunyuanVideoDecoder3D(
|
| 685 |
+
in_channels=latent_channels,
|
| 686 |
+
out_channels=out_channels,
|
| 687 |
+
up_block_types=up_block_types,
|
| 688 |
+
block_out_channels=block_out_channels,
|
| 689 |
+
layers_per_block=layers_per_block,
|
| 690 |
+
norm_num_groups=norm_num_groups,
|
| 691 |
+
act_fn=act_fn,
|
| 692 |
+
time_compression_ratio=temporal_compression_ratio,
|
| 693 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
| 694 |
+
mid_block_add_attention=mid_block_add_attention,
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
| 698 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
| 699 |
+
|
| 700 |
+
self.spatial_compression_ratio = spatial_compression_ratio
|
| 701 |
+
self.temporal_compression_ratio = temporal_compression_ratio
|
| 702 |
+
|
| 703 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 704 |
+
# to perform decoding of a single video latent at a time.
|
| 705 |
+
self.use_slicing = False
|
| 706 |
+
|
| 707 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 708 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 709 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 710 |
+
self.use_tiling = False
|
| 711 |
+
|
| 712 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
| 713 |
+
# at a fixed frame batch size (based on `self.tile_sample_min_num_frames`), the memory requirement can be lowered.
|
| 714 |
+
self.use_framewise_encoding = True
|
| 715 |
+
self.use_framewise_decoding = True
|
| 716 |
+
|
| 717 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 718 |
+
self.tile_sample_min_height = 256
|
| 719 |
+
self.tile_sample_min_width = 256
|
| 720 |
+
self.tile_sample_min_num_frames = 16
|
| 721 |
+
|
| 722 |
+
# The minimal distance between two spatial tiles
|
| 723 |
+
self.tile_sample_stride_height = 192
|
| 724 |
+
self.tile_sample_stride_width = 192
|
| 725 |
+
self.tile_sample_stride_num_frames = 12
|
| 726 |
+
|
| 727 |
+
def enable_tiling(
|
| 728 |
+
self,
|
| 729 |
+
tile_sample_min_height: Optional[int] = None,
|
| 730 |
+
tile_sample_min_width: Optional[int] = None,
|
| 731 |
+
tile_sample_min_num_frames: Optional[int] = None,
|
| 732 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 733 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 734 |
+
tile_sample_stride_num_frames: Optional[float] = None,
|
| 735 |
+
) -> None:
|
| 736 |
+
r"""
|
| 737 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 738 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 739 |
+
processing larger images.
|
| 740 |
+
|
| 741 |
+
Args:
|
| 742 |
+
tile_sample_min_height (`int`, *optional*):
|
| 743 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 744 |
+
tile_sample_min_width (`int`, *optional*):
|
| 745 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 746 |
+
tile_sample_min_num_frames (`int`, *optional*):
|
| 747 |
+
The minimum number of frames required for a sample to be separated into tiles across the frame
|
| 748 |
+
dimension.
|
| 749 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 750 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 751 |
+
no tiling artifacts produced across the height dimension.
|
| 752 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 753 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 754 |
+
artifacts produced across the width dimension.
|
| 755 |
+
tile_sample_stride_num_frames (`int`, *optional*):
|
| 756 |
+
The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts
|
| 757 |
+
produced across the frame dimension.
|
| 758 |
+
"""
|
| 759 |
+
self.use_tiling = True
|
| 760 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 761 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 762 |
+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
|
| 763 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 764 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 765 |
+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
|
| 766 |
+
|
| 767 |
+
def disable_tiling(self) -> None:
|
| 768 |
+
r"""
|
| 769 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 770 |
+
decoding in one step.
|
| 771 |
+
"""
|
| 772 |
+
self.use_tiling = False
|
| 773 |
+
|
| 774 |
+
def enable_slicing(self) -> None:
|
| 775 |
+
r"""
|
| 776 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 777 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 778 |
+
"""
|
| 779 |
+
self.use_slicing = True
|
| 780 |
+
|
| 781 |
+
def disable_slicing(self) -> None:
|
| 782 |
+
r"""
|
| 783 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 784 |
+
decoding in one step.
|
| 785 |
+
"""
|
| 786 |
+
self.use_slicing = False
|
| 787 |
+
|
| 788 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 789 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 790 |
+
|
| 791 |
+
if self.use_framewise_encoding and num_frames > self.tile_sample_min_num_frames:
|
| 792 |
+
return self._temporal_tiled_encode(x)
|
| 793 |
+
|
| 794 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
| 795 |
+
return self.tiled_encode(x)
|
| 796 |
+
|
| 797 |
+
x = self.encoder(x)
|
| 798 |
+
enc = self.quant_conv(x)
|
| 799 |
+
return enc
|
| 800 |
+
|
| 801 |
+
@apply_forward_hook
|
| 802 |
+
def encode(
|
| 803 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 804 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 805 |
+
r"""
|
| 806 |
+
Encode a batch of images into latents.
|
| 807 |
+
|
| 808 |
+
Args:
|
| 809 |
+
x (`torch.Tensor`): Input batch of images.
|
| 810 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 811 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 812 |
+
|
| 813 |
+
Returns:
|
| 814 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
| 815 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 816 |
+
"""
|
| 817 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 818 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 819 |
+
h = torch.cat(encoded_slices)
|
| 820 |
+
else:
|
| 821 |
+
h = self._encode(x)
|
| 822 |
+
|
| 823 |
+
posterior = DiagonalGaussianDistribution(h)
|
| 824 |
+
|
| 825 |
+
if not return_dict:
|
| 826 |
+
return (posterior,)
|
| 827 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 828 |
+
|
| 829 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 830 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 831 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 832 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 833 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
| 834 |
+
|
| 835 |
+
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
|
| 836 |
+
return self._temporal_tiled_decode(z, return_dict=return_dict)
|
| 837 |
+
|
| 838 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
| 839 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
| 840 |
+
|
| 841 |
+
z = self.post_quant_conv(z)
|
| 842 |
+
dec = self.decoder(z)
|
| 843 |
+
|
| 844 |
+
if not return_dict:
|
| 845 |
+
return (dec,)
|
| 846 |
+
|
| 847 |
+
return DecoderOutput(sample=dec)
|
| 848 |
+
|
| 849 |
+
@apply_forward_hook
|
| 850 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 851 |
+
r"""
|
| 852 |
+
Decode a batch of images.
|
| 853 |
+
|
| 854 |
+
Args:
|
| 855 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 856 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 857 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 858 |
+
|
| 859 |
+
Returns:
|
| 860 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 861 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 862 |
+
returned.
|
| 863 |
+
"""
|
| 864 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 865 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 866 |
+
decoded = torch.cat(decoded_slices)
|
| 867 |
+
else:
|
| 868 |
+
decoded = self._decode(z).sample
|
| 869 |
+
|
| 870 |
+
if not return_dict:
|
| 871 |
+
return (decoded,)
|
| 872 |
+
|
| 873 |
+
return DecoderOutput(sample=decoded)
|
| 874 |
+
|
| 875 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 876 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
| 877 |
+
for y in range(blend_extent):
|
| 878 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
| 879 |
+
y / blend_extent
|
| 880 |
+
)
|
| 881 |
+
return b
|
| 882 |
+
|
| 883 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 884 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
| 885 |
+
for x in range(blend_extent):
|
| 886 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
| 887 |
+
x / blend_extent
|
| 888 |
+
)
|
| 889 |
+
return b
|
| 890 |
+
|
| 891 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 892 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
| 893 |
+
for x in range(blend_extent):
|
| 894 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
|
| 895 |
+
x / blend_extent
|
| 896 |
+
)
|
| 897 |
+
return b
|
| 898 |
+
|
| 899 |
+
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
| 900 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 901 |
+
|
| 902 |
+
Args:
|
| 903 |
+
x (`torch.Tensor`): Input batch of videos.
|
| 904 |
+
|
| 905 |
+
Returns:
|
| 906 |
+
`torch.Tensor`:
|
| 907 |
+
The latent representation of the encoded videos.
|
| 908 |
+
"""
|
| 909 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 910 |
+
latent_height = height // self.spatial_compression_ratio
|
| 911 |
+
latent_width = width // self.spatial_compression_ratio
|
| 912 |
+
|
| 913 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 914 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 915 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 916 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 917 |
+
|
| 918 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
| 919 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
| 920 |
+
|
| 921 |
+
# Split x into overlapping tiles and encode them separately.
|
| 922 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 923 |
+
rows = []
|
| 924 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
| 925 |
+
row = []
|
| 926 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
| 927 |
+
tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
| 928 |
+
tile = self.encoder(tile)
|
| 929 |
+
tile = self.quant_conv(tile)
|
| 930 |
+
row.append(tile)
|
| 931 |
+
rows.append(row)
|
| 932 |
+
|
| 933 |
+
result_rows = []
|
| 934 |
+
for i, row in enumerate(rows):
|
| 935 |
+
result_row = []
|
| 936 |
+
for j, tile in enumerate(row):
|
| 937 |
+
# blend the above tile and the left tile
|
| 938 |
+
# to the current tile and add the current tile to the result row
|
| 939 |
+
if i > 0:
|
| 940 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 941 |
+
if j > 0:
|
| 942 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 943 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
| 944 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 945 |
+
|
| 946 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
| 947 |
+
return enc
|
| 948 |
+
|
| 949 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 950 |
+
r"""
|
| 951 |
+
Decode a batch of images using a tiled decoder.
|
| 952 |
+
|
| 953 |
+
Args:
|
| 954 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 955 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 956 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 957 |
+
|
| 958 |
+
Returns:
|
| 959 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 960 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 961 |
+
returned.
|
| 962 |
+
"""
|
| 963 |
+
|
| 964 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 965 |
+
sample_height = height * self.spatial_compression_ratio
|
| 966 |
+
sample_width = width * self.spatial_compression_ratio
|
| 967 |
+
|
| 968 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 969 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 970 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 971 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 972 |
+
|
| 973 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
| 974 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
| 975 |
+
|
| 976 |
+
# Split z into overlapping tiles and decode them separately.
|
| 977 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 978 |
+
rows = []
|
| 979 |
+
for i in range(0, height, tile_latent_stride_height):
|
| 980 |
+
row = []
|
| 981 |
+
for j in range(0, width, tile_latent_stride_width):
|
| 982 |
+
tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
|
| 983 |
+
tile = self.post_quant_conv(tile)
|
| 984 |
+
decoded = self.decoder(tile)
|
| 985 |
+
row.append(decoded)
|
| 986 |
+
rows.append(row)
|
| 987 |
+
|
| 988 |
+
result_rows = []
|
| 989 |
+
for i, row in enumerate(rows):
|
| 990 |
+
result_row = []
|
| 991 |
+
for j, tile in enumerate(row):
|
| 992 |
+
# blend the above tile and the left tile
|
| 993 |
+
# to the current tile and add the current tile to the result row
|
| 994 |
+
if i > 0:
|
| 995 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 996 |
+
if j > 0:
|
| 997 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 998 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
| 999 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 1000 |
+
|
| 1001 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
| 1002 |
+
|
| 1003 |
+
if not return_dict:
|
| 1004 |
+
return (dec,)
|
| 1005 |
+
return DecoderOutput(sample=dec)
|
| 1006 |
+
|
| 1007 |
+
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
| 1008 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 1009 |
+
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
|
| 1010 |
+
|
| 1011 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
| 1012 |
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
| 1013 |
+
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
|
| 1014 |
+
|
| 1015 |
+
row = []
|
| 1016 |
+
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
|
| 1017 |
+
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
|
| 1018 |
+
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
|
| 1019 |
+
tile = self.tiled_encode(tile)
|
| 1020 |
+
else:
|
| 1021 |
+
tile = self.encoder(tile)
|
| 1022 |
+
tile = self.quant_conv(tile)
|
| 1023 |
+
if i > 0:
|
| 1024 |
+
tile = tile[:, :, 1:, :, :]
|
| 1025 |
+
row.append(tile)
|
| 1026 |
+
|
| 1027 |
+
result_row = []
|
| 1028 |
+
for i, tile in enumerate(row):
|
| 1029 |
+
if i > 0:
|
| 1030 |
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
| 1031 |
+
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
|
| 1032 |
+
else:
|
| 1033 |
+
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
|
| 1034 |
+
|
| 1035 |
+
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
|
| 1036 |
+
return enc
|
| 1037 |
+
|
| 1038 |
+
def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 1039 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 1040 |
+
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
|
| 1041 |
+
|
| 1042 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1043 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1044 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
| 1045 |
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
| 1046 |
+
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
|
| 1047 |
+
|
| 1048 |
+
row = []
|
| 1049 |
+
for i in range(0, num_frames, tile_latent_stride_num_frames):
|
| 1050 |
+
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
|
| 1051 |
+
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
|
| 1052 |
+
decoded = self.tiled_decode(tile, return_dict=True).sample
|
| 1053 |
+
else:
|
| 1054 |
+
tile = self.post_quant_conv(tile)
|
| 1055 |
+
decoded = self.decoder(tile)
|
| 1056 |
+
if i > 0:
|
| 1057 |
+
decoded = decoded[:, :, 1:, :, :]
|
| 1058 |
+
row.append(decoded)
|
| 1059 |
+
|
| 1060 |
+
result_row = []
|
| 1061 |
+
for i, tile in enumerate(row):
|
| 1062 |
+
if i > 0:
|
| 1063 |
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
| 1064 |
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :])
|
| 1065 |
+
else:
|
| 1066 |
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
|
| 1067 |
+
|
| 1068 |
+
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
|
| 1069 |
+
|
| 1070 |
+
if not return_dict:
|
| 1071 |
+
return (dec,)
|
| 1072 |
+
return DecoderOutput(sample=dec)
|
| 1073 |
+
|
| 1074 |
+
def forward(
|
| 1075 |
+
self,
|
| 1076 |
+
sample: torch.Tensor,
|
| 1077 |
+
sample_posterior: bool = False,
|
| 1078 |
+
return_dict: bool = True,
|
| 1079 |
+
generator: Optional[torch.Generator] = None,
|
| 1080 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1081 |
+
r"""
|
| 1082 |
+
Args:
|
| 1083 |
+
sample (`torch.Tensor`): Input sample.
|
| 1084 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 1085 |
+
Whether to sample from the posterior.
|
| 1086 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1087 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 1088 |
+
"""
|
| 1089 |
+
x = sample
|
| 1090 |
+
posterior = self.encode(x).latent_dist
|
| 1091 |
+
if sample_posterior:
|
| 1092 |
+
z = posterior.sample(generator=generator)
|
| 1093 |
+
else:
|
| 1094 |
+
z = posterior.mode()
|
| 1095 |
+
dec = self.decode(z, return_dict=return_dict)
|
| 1096 |
+
return dec
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py
ADDED
|
@@ -0,0 +1,1557 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The Lightricks team and The HuggingFace Team.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from typing import Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import FromOriginalModelMixin
|
| 23 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 24 |
+
from ..activations import get_activation
|
| 25 |
+
from ..embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
|
| 26 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 27 |
+
from ..modeling_utils import ModelMixin
|
| 28 |
+
from ..normalization import RMSNorm
|
| 29 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class LTXVideoCausalConv3d(nn.Module):
|
| 33 |
+
def __init__(
|
| 34 |
+
self,
|
| 35 |
+
in_channels: int,
|
| 36 |
+
out_channels: int,
|
| 37 |
+
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
| 38 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 39 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
| 40 |
+
groups: int = 1,
|
| 41 |
+
padding_mode: str = "zeros",
|
| 42 |
+
is_causal: bool = True,
|
| 43 |
+
):
|
| 44 |
+
super().__init__()
|
| 45 |
+
|
| 46 |
+
self.in_channels = in_channels
|
| 47 |
+
self.out_channels = out_channels
|
| 48 |
+
self.is_causal = is_causal
|
| 49 |
+
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
|
| 50 |
+
|
| 51 |
+
dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
|
| 52 |
+
stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
|
| 53 |
+
height_pad = self.kernel_size[1] // 2
|
| 54 |
+
width_pad = self.kernel_size[2] // 2
|
| 55 |
+
padding = (0, height_pad, width_pad)
|
| 56 |
+
|
| 57 |
+
self.conv = nn.Conv3d(
|
| 58 |
+
in_channels,
|
| 59 |
+
out_channels,
|
| 60 |
+
self.kernel_size,
|
| 61 |
+
stride=stride,
|
| 62 |
+
dilation=dilation,
|
| 63 |
+
groups=groups,
|
| 64 |
+
padding=padding,
|
| 65 |
+
padding_mode=padding_mode,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 69 |
+
time_kernel_size = self.kernel_size[0]
|
| 70 |
+
|
| 71 |
+
if self.is_causal:
|
| 72 |
+
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
|
| 73 |
+
hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
|
| 74 |
+
else:
|
| 75 |
+
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
|
| 76 |
+
pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
|
| 77 |
+
hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)
|
| 78 |
+
|
| 79 |
+
hidden_states = self.conv(hidden_states)
|
| 80 |
+
return hidden_states
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class LTXVideoResnetBlock3d(nn.Module):
|
| 84 |
+
r"""
|
| 85 |
+
A 3D ResNet block used in the LTXVideo model.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
in_channels (`int`):
|
| 89 |
+
Number of input channels.
|
| 90 |
+
out_channels (`int`, *optional*):
|
| 91 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 92 |
+
dropout (`float`, defaults to `0.0`):
|
| 93 |
+
Dropout rate.
|
| 94 |
+
eps (`float`, defaults to `1e-6`):
|
| 95 |
+
Epsilon value for normalization layers.
|
| 96 |
+
elementwise_affine (`bool`, defaults to `False`):
|
| 97 |
+
Whether to enable elementwise affinity in the normalization layers.
|
| 98 |
+
non_linearity (`str`, defaults to `"swish"`):
|
| 99 |
+
Activation function to use.
|
| 100 |
+
conv_shortcut (bool, defaults to `False`):
|
| 101 |
+
Whether or not to use a convolution shortcut.
|
| 102 |
+
"""
|
| 103 |
+
|
| 104 |
+
def __init__(
|
| 105 |
+
self,
|
| 106 |
+
in_channels: int,
|
| 107 |
+
out_channels: Optional[int] = None,
|
| 108 |
+
dropout: float = 0.0,
|
| 109 |
+
eps: float = 1e-6,
|
| 110 |
+
elementwise_affine: bool = False,
|
| 111 |
+
non_linearity: str = "swish",
|
| 112 |
+
is_causal: bool = True,
|
| 113 |
+
inject_noise: bool = False,
|
| 114 |
+
timestep_conditioning: bool = False,
|
| 115 |
+
) -> None:
|
| 116 |
+
super().__init__()
|
| 117 |
+
|
| 118 |
+
out_channels = out_channels or in_channels
|
| 119 |
+
|
| 120 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 121 |
+
|
| 122 |
+
self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
|
| 123 |
+
self.conv1 = LTXVideoCausalConv3d(
|
| 124 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
|
| 128 |
+
self.dropout = nn.Dropout(dropout)
|
| 129 |
+
self.conv2 = LTXVideoCausalConv3d(
|
| 130 |
+
in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
self.norm3 = None
|
| 134 |
+
self.conv_shortcut = None
|
| 135 |
+
if in_channels != out_channels:
|
| 136 |
+
self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
|
| 137 |
+
self.conv_shortcut = LTXVideoCausalConv3d(
|
| 138 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
self.per_channel_scale1 = None
|
| 142 |
+
self.per_channel_scale2 = None
|
| 143 |
+
if inject_noise:
|
| 144 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
|
| 145 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1))
|
| 146 |
+
|
| 147 |
+
self.scale_shift_table = None
|
| 148 |
+
if timestep_conditioning:
|
| 149 |
+
self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)
|
| 150 |
+
|
| 151 |
+
def forward(
|
| 152 |
+
self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
|
| 153 |
+
) -> torch.Tensor:
|
| 154 |
+
hidden_states = inputs
|
| 155 |
+
|
| 156 |
+
hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
| 157 |
+
|
| 158 |
+
if self.scale_shift_table is not None:
|
| 159 |
+
temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
|
| 160 |
+
shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
|
| 161 |
+
hidden_states = hidden_states * (1 + scale_1) + shift_1
|
| 162 |
+
|
| 163 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 164 |
+
hidden_states = self.conv1(hidden_states)
|
| 165 |
+
|
| 166 |
+
if self.per_channel_scale1 is not None:
|
| 167 |
+
spatial_shape = hidden_states.shape[-2:]
|
| 168 |
+
spatial_noise = torch.randn(
|
| 169 |
+
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
|
| 170 |
+
)[None]
|
| 171 |
+
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]
|
| 172 |
+
|
| 173 |
+
hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
| 174 |
+
|
| 175 |
+
if self.scale_shift_table is not None:
|
| 176 |
+
hidden_states = hidden_states * (1 + scale_2) + shift_2
|
| 177 |
+
|
| 178 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 179 |
+
hidden_states = self.dropout(hidden_states)
|
| 180 |
+
hidden_states = self.conv2(hidden_states)
|
| 181 |
+
|
| 182 |
+
if self.per_channel_scale2 is not None:
|
| 183 |
+
spatial_shape = hidden_states.shape[-2:]
|
| 184 |
+
spatial_noise = torch.randn(
|
| 185 |
+
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
|
| 186 |
+
)[None]
|
| 187 |
+
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]
|
| 188 |
+
|
| 189 |
+
if self.norm3 is not None:
|
| 190 |
+
inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)
|
| 191 |
+
|
| 192 |
+
if self.conv_shortcut is not None:
|
| 193 |
+
inputs = self.conv_shortcut(inputs)
|
| 194 |
+
|
| 195 |
+
hidden_states = hidden_states + inputs
|
| 196 |
+
return hidden_states
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
class LTXVideoDownsampler3d(nn.Module):
|
| 200 |
+
def __init__(
|
| 201 |
+
self,
|
| 202 |
+
in_channels: int,
|
| 203 |
+
out_channels: int,
|
| 204 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 205 |
+
is_causal: bool = True,
|
| 206 |
+
padding_mode: str = "zeros",
|
| 207 |
+
) -> None:
|
| 208 |
+
super().__init__()
|
| 209 |
+
|
| 210 |
+
self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
|
| 211 |
+
self.group_size = (in_channels * stride[0] * stride[1] * stride[2]) // out_channels
|
| 212 |
+
|
| 213 |
+
out_channels = out_channels // (self.stride[0] * self.stride[1] * self.stride[2])
|
| 214 |
+
|
| 215 |
+
self.conv = LTXVideoCausalConv3d(
|
| 216 |
+
in_channels=in_channels,
|
| 217 |
+
out_channels=out_channels,
|
| 218 |
+
kernel_size=3,
|
| 219 |
+
stride=1,
|
| 220 |
+
is_causal=is_causal,
|
| 221 |
+
padding_mode=padding_mode,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 225 |
+
hidden_states = torch.cat([hidden_states[:, :, : self.stride[0] - 1], hidden_states], dim=2)
|
| 226 |
+
|
| 227 |
+
residual = (
|
| 228 |
+
hidden_states.unflatten(4, (-1, self.stride[2]))
|
| 229 |
+
.unflatten(3, (-1, self.stride[1]))
|
| 230 |
+
.unflatten(2, (-1, self.stride[0]))
|
| 231 |
+
)
|
| 232 |
+
residual = residual.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(1, 4)
|
| 233 |
+
residual = residual.unflatten(1, (-1, self.group_size))
|
| 234 |
+
residual = residual.mean(dim=2)
|
| 235 |
+
|
| 236 |
+
hidden_states = self.conv(hidden_states)
|
| 237 |
+
hidden_states = (
|
| 238 |
+
hidden_states.unflatten(4, (-1, self.stride[2]))
|
| 239 |
+
.unflatten(3, (-1, self.stride[1]))
|
| 240 |
+
.unflatten(2, (-1, self.stride[0]))
|
| 241 |
+
)
|
| 242 |
+
hidden_states = hidden_states.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(1, 4)
|
| 243 |
+
hidden_states = hidden_states + residual
|
| 244 |
+
|
| 245 |
+
return hidden_states
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class LTXVideoUpsampler3d(nn.Module):
|
| 249 |
+
def __init__(
|
| 250 |
+
self,
|
| 251 |
+
in_channels: int,
|
| 252 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 253 |
+
is_causal: bool = True,
|
| 254 |
+
residual: bool = False,
|
| 255 |
+
upscale_factor: int = 1,
|
| 256 |
+
padding_mode: str = "zeros",
|
| 257 |
+
) -> None:
|
| 258 |
+
super().__init__()
|
| 259 |
+
|
| 260 |
+
self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
|
| 261 |
+
self.residual = residual
|
| 262 |
+
self.upscale_factor = upscale_factor
|
| 263 |
+
|
| 264 |
+
out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
|
| 265 |
+
|
| 266 |
+
self.conv = LTXVideoCausalConv3d(
|
| 267 |
+
in_channels=in_channels,
|
| 268 |
+
out_channels=out_channels,
|
| 269 |
+
kernel_size=3,
|
| 270 |
+
stride=1,
|
| 271 |
+
is_causal=is_causal,
|
| 272 |
+
padding_mode=padding_mode,
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 276 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 277 |
+
|
| 278 |
+
if self.residual:
|
| 279 |
+
residual = hidden_states.reshape(
|
| 280 |
+
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
|
| 281 |
+
)
|
| 282 |
+
residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
| 283 |
+
repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
|
| 284 |
+
residual = residual.repeat(1, repeats, 1, 1, 1)
|
| 285 |
+
residual = residual[:, :, self.stride[0] - 1 :]
|
| 286 |
+
|
| 287 |
+
hidden_states = self.conv(hidden_states)
|
| 288 |
+
hidden_states = hidden_states.reshape(
|
| 289 |
+
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
|
| 290 |
+
)
|
| 291 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
| 292 |
+
hidden_states = hidden_states[:, :, self.stride[0] - 1 :]
|
| 293 |
+
|
| 294 |
+
if self.residual:
|
| 295 |
+
hidden_states = hidden_states + residual
|
| 296 |
+
|
| 297 |
+
return hidden_states
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
class LTXVideoDownBlock3D(nn.Module):
|
| 301 |
+
r"""
|
| 302 |
+
Down block used in the LTXVideo model.
|
| 303 |
+
|
| 304 |
+
Args:
|
| 305 |
+
in_channels (`int`):
|
| 306 |
+
Number of input channels.
|
| 307 |
+
out_channels (`int`, *optional*):
|
| 308 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 309 |
+
num_layers (`int`, defaults to `1`):
|
| 310 |
+
Number of resnet layers.
|
| 311 |
+
dropout (`float`, defaults to `0.0`):
|
| 312 |
+
Dropout rate.
|
| 313 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
| 314 |
+
Epsilon value for normalization layers.
|
| 315 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
| 316 |
+
Activation function to use.
|
| 317 |
+
spatio_temporal_scale (`bool`, defaults to `True`):
|
| 318 |
+
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
| 319 |
+
Whether or not to downsample across temporal dimension.
|
| 320 |
+
is_causal (`bool`, defaults to `True`):
|
| 321 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
| 322 |
+
"""
|
| 323 |
+
|
| 324 |
+
_supports_gradient_checkpointing = True
|
| 325 |
+
|
| 326 |
+
def __init__(
|
| 327 |
+
self,
|
| 328 |
+
in_channels: int,
|
| 329 |
+
out_channels: Optional[int] = None,
|
| 330 |
+
num_layers: int = 1,
|
| 331 |
+
dropout: float = 0.0,
|
| 332 |
+
resnet_eps: float = 1e-6,
|
| 333 |
+
resnet_act_fn: str = "swish",
|
| 334 |
+
spatio_temporal_scale: bool = True,
|
| 335 |
+
is_causal: bool = True,
|
| 336 |
+
):
|
| 337 |
+
super().__init__()
|
| 338 |
+
|
| 339 |
+
out_channels = out_channels or in_channels
|
| 340 |
+
|
| 341 |
+
resnets = []
|
| 342 |
+
for _ in range(num_layers):
|
| 343 |
+
resnets.append(
|
| 344 |
+
LTXVideoResnetBlock3d(
|
| 345 |
+
in_channels=in_channels,
|
| 346 |
+
out_channels=in_channels,
|
| 347 |
+
dropout=dropout,
|
| 348 |
+
eps=resnet_eps,
|
| 349 |
+
non_linearity=resnet_act_fn,
|
| 350 |
+
is_causal=is_causal,
|
| 351 |
+
)
|
| 352 |
+
)
|
| 353 |
+
self.resnets = nn.ModuleList(resnets)
|
| 354 |
+
|
| 355 |
+
self.downsamplers = None
|
| 356 |
+
if spatio_temporal_scale:
|
| 357 |
+
self.downsamplers = nn.ModuleList(
|
| 358 |
+
[
|
| 359 |
+
LTXVideoCausalConv3d(
|
| 360 |
+
in_channels=in_channels,
|
| 361 |
+
out_channels=in_channels,
|
| 362 |
+
kernel_size=3,
|
| 363 |
+
stride=(2, 2, 2),
|
| 364 |
+
is_causal=is_causal,
|
| 365 |
+
)
|
| 366 |
+
]
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
self.conv_out = None
|
| 370 |
+
if in_channels != out_channels:
|
| 371 |
+
self.conv_out = LTXVideoResnetBlock3d(
|
| 372 |
+
in_channels=in_channels,
|
| 373 |
+
out_channels=out_channels,
|
| 374 |
+
dropout=dropout,
|
| 375 |
+
eps=resnet_eps,
|
| 376 |
+
non_linearity=resnet_act_fn,
|
| 377 |
+
is_causal=is_causal,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
self.gradient_checkpointing = False
|
| 381 |
+
|
| 382 |
+
def forward(
|
| 383 |
+
self,
|
| 384 |
+
hidden_states: torch.Tensor,
|
| 385 |
+
temb: Optional[torch.Tensor] = None,
|
| 386 |
+
generator: Optional[torch.Generator] = None,
|
| 387 |
+
) -> torch.Tensor:
|
| 388 |
+
r"""Forward method of the `LTXDownBlock3D` class."""
|
| 389 |
+
|
| 390 |
+
for i, resnet in enumerate(self.resnets):
|
| 391 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 392 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
|
| 393 |
+
else:
|
| 394 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
| 395 |
+
|
| 396 |
+
if self.downsamplers is not None:
|
| 397 |
+
for downsampler in self.downsamplers:
|
| 398 |
+
hidden_states = downsampler(hidden_states)
|
| 399 |
+
|
| 400 |
+
if self.conv_out is not None:
|
| 401 |
+
hidden_states = self.conv_out(hidden_states, temb, generator)
|
| 402 |
+
|
| 403 |
+
return hidden_states
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
class LTXVideo095DownBlock3D(nn.Module):
|
| 407 |
+
r"""
|
| 408 |
+
Down block used in the LTXVideo model.
|
| 409 |
+
|
| 410 |
+
Args:
|
| 411 |
+
in_channels (`int`):
|
| 412 |
+
Number of input channels.
|
| 413 |
+
out_channels (`int`, *optional*):
|
| 414 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 415 |
+
num_layers (`int`, defaults to `1`):
|
| 416 |
+
Number of resnet layers.
|
| 417 |
+
dropout (`float`, defaults to `0.0`):
|
| 418 |
+
Dropout rate.
|
| 419 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
| 420 |
+
Epsilon value for normalization layers.
|
| 421 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
| 422 |
+
Activation function to use.
|
| 423 |
+
spatio_temporal_scale (`bool`, defaults to `True`):
|
| 424 |
+
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
| 425 |
+
Whether or not to downsample across temporal dimension.
|
| 426 |
+
is_causal (`bool`, defaults to `True`):
|
| 427 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
| 428 |
+
"""
|
| 429 |
+
|
| 430 |
+
_supports_gradient_checkpointing = True
|
| 431 |
+
|
| 432 |
+
def __init__(
|
| 433 |
+
self,
|
| 434 |
+
in_channels: int,
|
| 435 |
+
out_channels: Optional[int] = None,
|
| 436 |
+
num_layers: int = 1,
|
| 437 |
+
dropout: float = 0.0,
|
| 438 |
+
resnet_eps: float = 1e-6,
|
| 439 |
+
resnet_act_fn: str = "swish",
|
| 440 |
+
spatio_temporal_scale: bool = True,
|
| 441 |
+
is_causal: bool = True,
|
| 442 |
+
downsample_type: str = "conv",
|
| 443 |
+
):
|
| 444 |
+
super().__init__()
|
| 445 |
+
|
| 446 |
+
out_channels = out_channels or in_channels
|
| 447 |
+
|
| 448 |
+
resnets = []
|
| 449 |
+
for _ in range(num_layers):
|
| 450 |
+
resnets.append(
|
| 451 |
+
LTXVideoResnetBlock3d(
|
| 452 |
+
in_channels=in_channels,
|
| 453 |
+
out_channels=in_channels,
|
| 454 |
+
dropout=dropout,
|
| 455 |
+
eps=resnet_eps,
|
| 456 |
+
non_linearity=resnet_act_fn,
|
| 457 |
+
is_causal=is_causal,
|
| 458 |
+
)
|
| 459 |
+
)
|
| 460 |
+
self.resnets = nn.ModuleList(resnets)
|
| 461 |
+
|
| 462 |
+
self.downsamplers = None
|
| 463 |
+
if spatio_temporal_scale:
|
| 464 |
+
self.downsamplers = nn.ModuleList()
|
| 465 |
+
|
| 466 |
+
if downsample_type == "conv":
|
| 467 |
+
self.downsamplers.append(
|
| 468 |
+
LTXVideoCausalConv3d(
|
| 469 |
+
in_channels=in_channels,
|
| 470 |
+
out_channels=in_channels,
|
| 471 |
+
kernel_size=3,
|
| 472 |
+
stride=(2, 2, 2),
|
| 473 |
+
is_causal=is_causal,
|
| 474 |
+
)
|
| 475 |
+
)
|
| 476 |
+
elif downsample_type == "spatial":
|
| 477 |
+
self.downsamplers.append(
|
| 478 |
+
LTXVideoDownsampler3d(
|
| 479 |
+
in_channels=in_channels, out_channels=out_channels, stride=(1, 2, 2), is_causal=is_causal
|
| 480 |
+
)
|
| 481 |
+
)
|
| 482 |
+
elif downsample_type == "temporal":
|
| 483 |
+
self.downsamplers.append(
|
| 484 |
+
LTXVideoDownsampler3d(
|
| 485 |
+
in_channels=in_channels, out_channels=out_channels, stride=(2, 1, 1), is_causal=is_causal
|
| 486 |
+
)
|
| 487 |
+
)
|
| 488 |
+
elif downsample_type == "spatiotemporal":
|
| 489 |
+
self.downsamplers.append(
|
| 490 |
+
LTXVideoDownsampler3d(
|
| 491 |
+
in_channels=in_channels, out_channels=out_channels, stride=(2, 2, 2), is_causal=is_causal
|
| 492 |
+
)
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
self.gradient_checkpointing = False
|
| 496 |
+
|
| 497 |
+
def forward(
|
| 498 |
+
self,
|
| 499 |
+
hidden_states: torch.Tensor,
|
| 500 |
+
temb: Optional[torch.Tensor] = None,
|
| 501 |
+
generator: Optional[torch.Generator] = None,
|
| 502 |
+
) -> torch.Tensor:
|
| 503 |
+
r"""Forward method of the `LTXDownBlock3D` class."""
|
| 504 |
+
|
| 505 |
+
for i, resnet in enumerate(self.resnets):
|
| 506 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 507 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
|
| 508 |
+
else:
|
| 509 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
| 510 |
+
|
| 511 |
+
if self.downsamplers is not None:
|
| 512 |
+
for downsampler in self.downsamplers:
|
| 513 |
+
hidden_states = downsampler(hidden_states)
|
| 514 |
+
|
| 515 |
+
return hidden_states
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
# Adapted from diffusers.models.autoencoders.autoencoder_kl_cogvideox.CogVideoMidBlock3d
|
| 519 |
+
class LTXVideoMidBlock3d(nn.Module):
|
| 520 |
+
r"""
|
| 521 |
+
A middle block used in the LTXVideo model.
|
| 522 |
+
|
| 523 |
+
Args:
|
| 524 |
+
in_channels (`int`):
|
| 525 |
+
Number of input channels.
|
| 526 |
+
num_layers (`int`, defaults to `1`):
|
| 527 |
+
Number of resnet layers.
|
| 528 |
+
dropout (`float`, defaults to `0.0`):
|
| 529 |
+
Dropout rate.
|
| 530 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
| 531 |
+
Epsilon value for normalization layers.
|
| 532 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
| 533 |
+
Activation function to use.
|
| 534 |
+
is_causal (`bool`, defaults to `True`):
|
| 535 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
| 536 |
+
"""
|
| 537 |
+
|
| 538 |
+
_supports_gradient_checkpointing = True
|
| 539 |
+
|
| 540 |
+
def __init__(
|
| 541 |
+
self,
|
| 542 |
+
in_channels: int,
|
| 543 |
+
num_layers: int = 1,
|
| 544 |
+
dropout: float = 0.0,
|
| 545 |
+
resnet_eps: float = 1e-6,
|
| 546 |
+
resnet_act_fn: str = "swish",
|
| 547 |
+
is_causal: bool = True,
|
| 548 |
+
inject_noise: bool = False,
|
| 549 |
+
timestep_conditioning: bool = False,
|
| 550 |
+
) -> None:
|
| 551 |
+
super().__init__()
|
| 552 |
+
|
| 553 |
+
self.time_embedder = None
|
| 554 |
+
if timestep_conditioning:
|
| 555 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
|
| 556 |
+
|
| 557 |
+
resnets = []
|
| 558 |
+
for _ in range(num_layers):
|
| 559 |
+
resnets.append(
|
| 560 |
+
LTXVideoResnetBlock3d(
|
| 561 |
+
in_channels=in_channels,
|
| 562 |
+
out_channels=in_channels,
|
| 563 |
+
dropout=dropout,
|
| 564 |
+
eps=resnet_eps,
|
| 565 |
+
non_linearity=resnet_act_fn,
|
| 566 |
+
is_causal=is_causal,
|
| 567 |
+
inject_noise=inject_noise,
|
| 568 |
+
timestep_conditioning=timestep_conditioning,
|
| 569 |
+
)
|
| 570 |
+
)
|
| 571 |
+
self.resnets = nn.ModuleList(resnets)
|
| 572 |
+
|
| 573 |
+
self.gradient_checkpointing = False
|
| 574 |
+
|
| 575 |
+
def forward(
|
| 576 |
+
self,
|
| 577 |
+
hidden_states: torch.Tensor,
|
| 578 |
+
temb: Optional[torch.Tensor] = None,
|
| 579 |
+
generator: Optional[torch.Generator] = None,
|
| 580 |
+
) -> torch.Tensor:
|
| 581 |
+
r"""Forward method of the `LTXMidBlock3D` class."""
|
| 582 |
+
|
| 583 |
+
if self.time_embedder is not None:
|
| 584 |
+
temb = self.time_embedder(
|
| 585 |
+
timestep=temb.flatten(),
|
| 586 |
+
resolution=None,
|
| 587 |
+
aspect_ratio=None,
|
| 588 |
+
batch_size=hidden_states.size(0),
|
| 589 |
+
hidden_dtype=hidden_states.dtype,
|
| 590 |
+
)
|
| 591 |
+
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
|
| 592 |
+
|
| 593 |
+
for i, resnet in enumerate(self.resnets):
|
| 594 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 595 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
|
| 596 |
+
else:
|
| 597 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
| 598 |
+
|
| 599 |
+
return hidden_states
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
class LTXVideoUpBlock3d(nn.Module):
|
| 603 |
+
r"""
|
| 604 |
+
Up block used in the LTXVideo model.
|
| 605 |
+
|
| 606 |
+
Args:
|
| 607 |
+
in_channels (`int`):
|
| 608 |
+
Number of input channels.
|
| 609 |
+
out_channels (`int`, *optional*):
|
| 610 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 611 |
+
num_layers (`int`, defaults to `1`):
|
| 612 |
+
Number of resnet layers.
|
| 613 |
+
dropout (`float`, defaults to `0.0`):
|
| 614 |
+
Dropout rate.
|
| 615 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
| 616 |
+
Epsilon value for normalization layers.
|
| 617 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
| 618 |
+
Activation function to use.
|
| 619 |
+
spatio_temporal_scale (`bool`, defaults to `True`):
|
| 620 |
+
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
| 621 |
+
Whether or not to downsample across temporal dimension.
|
| 622 |
+
is_causal (`bool`, defaults to `True`):
|
| 623 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
| 624 |
+
"""
|
| 625 |
+
|
| 626 |
+
_supports_gradient_checkpointing = True
|
| 627 |
+
|
| 628 |
+
def __init__(
|
| 629 |
+
self,
|
| 630 |
+
in_channels: int,
|
| 631 |
+
out_channels: Optional[int] = None,
|
| 632 |
+
num_layers: int = 1,
|
| 633 |
+
dropout: float = 0.0,
|
| 634 |
+
resnet_eps: float = 1e-6,
|
| 635 |
+
resnet_act_fn: str = "swish",
|
| 636 |
+
spatio_temporal_scale: bool = True,
|
| 637 |
+
is_causal: bool = True,
|
| 638 |
+
inject_noise: bool = False,
|
| 639 |
+
timestep_conditioning: bool = False,
|
| 640 |
+
upsample_residual: bool = False,
|
| 641 |
+
upscale_factor: int = 1,
|
| 642 |
+
):
|
| 643 |
+
super().__init__()
|
| 644 |
+
|
| 645 |
+
out_channels = out_channels or in_channels
|
| 646 |
+
|
| 647 |
+
self.time_embedder = None
|
| 648 |
+
if timestep_conditioning:
|
| 649 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
|
| 650 |
+
|
| 651 |
+
self.conv_in = None
|
| 652 |
+
if in_channels != out_channels:
|
| 653 |
+
self.conv_in = LTXVideoResnetBlock3d(
|
| 654 |
+
in_channels=in_channels,
|
| 655 |
+
out_channels=out_channels,
|
| 656 |
+
dropout=dropout,
|
| 657 |
+
eps=resnet_eps,
|
| 658 |
+
non_linearity=resnet_act_fn,
|
| 659 |
+
is_causal=is_causal,
|
| 660 |
+
inject_noise=inject_noise,
|
| 661 |
+
timestep_conditioning=timestep_conditioning,
|
| 662 |
+
)
|
| 663 |
+
|
| 664 |
+
self.upsamplers = None
|
| 665 |
+
if spatio_temporal_scale:
|
| 666 |
+
self.upsamplers = nn.ModuleList(
|
| 667 |
+
[
|
| 668 |
+
LTXVideoUpsampler3d(
|
| 669 |
+
out_channels * upscale_factor,
|
| 670 |
+
stride=(2, 2, 2),
|
| 671 |
+
is_causal=is_causal,
|
| 672 |
+
residual=upsample_residual,
|
| 673 |
+
upscale_factor=upscale_factor,
|
| 674 |
+
)
|
| 675 |
+
]
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
resnets = []
|
| 679 |
+
for _ in range(num_layers):
|
| 680 |
+
resnets.append(
|
| 681 |
+
LTXVideoResnetBlock3d(
|
| 682 |
+
in_channels=out_channels,
|
| 683 |
+
out_channels=out_channels,
|
| 684 |
+
dropout=dropout,
|
| 685 |
+
eps=resnet_eps,
|
| 686 |
+
non_linearity=resnet_act_fn,
|
| 687 |
+
is_causal=is_causal,
|
| 688 |
+
inject_noise=inject_noise,
|
| 689 |
+
timestep_conditioning=timestep_conditioning,
|
| 690 |
+
)
|
| 691 |
+
)
|
| 692 |
+
self.resnets = nn.ModuleList(resnets)
|
| 693 |
+
|
| 694 |
+
self.gradient_checkpointing = False
|
| 695 |
+
|
| 696 |
+
def forward(
|
| 697 |
+
self,
|
| 698 |
+
hidden_states: torch.Tensor,
|
| 699 |
+
temb: Optional[torch.Tensor] = None,
|
| 700 |
+
generator: Optional[torch.Generator] = None,
|
| 701 |
+
) -> torch.Tensor:
|
| 702 |
+
if self.conv_in is not None:
|
| 703 |
+
hidden_states = self.conv_in(hidden_states, temb, generator)
|
| 704 |
+
|
| 705 |
+
if self.time_embedder is not None:
|
| 706 |
+
temb = self.time_embedder(
|
| 707 |
+
timestep=temb.flatten(),
|
| 708 |
+
resolution=None,
|
| 709 |
+
aspect_ratio=None,
|
| 710 |
+
batch_size=hidden_states.size(0),
|
| 711 |
+
hidden_dtype=hidden_states.dtype,
|
| 712 |
+
)
|
| 713 |
+
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
|
| 714 |
+
|
| 715 |
+
if self.upsamplers is not None:
|
| 716 |
+
for upsampler in self.upsamplers:
|
| 717 |
+
hidden_states = upsampler(hidden_states)
|
| 718 |
+
|
| 719 |
+
for i, resnet in enumerate(self.resnets):
|
| 720 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 721 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb, generator)
|
| 722 |
+
else:
|
| 723 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
| 724 |
+
|
| 725 |
+
return hidden_states
|
| 726 |
+
|
| 727 |
+
|
| 728 |
+
class LTXVideoEncoder3d(nn.Module):
|
| 729 |
+
r"""
|
| 730 |
+
The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
|
| 731 |
+
representation.
|
| 732 |
+
|
| 733 |
+
Args:
|
| 734 |
+
in_channels (`int`, defaults to 3):
|
| 735 |
+
Number of input channels.
|
| 736 |
+
out_channels (`int`, defaults to 128):
|
| 737 |
+
Number of latent channels.
|
| 738 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
| 739 |
+
The number of output channels for each block.
|
| 740 |
+
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
|
| 741 |
+
Whether a block should contain spatio-temporal downscaling layers or not.
|
| 742 |
+
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
|
| 743 |
+
The number of layers per block.
|
| 744 |
+
patch_size (`int`, defaults to `4`):
|
| 745 |
+
The size of spatial patches.
|
| 746 |
+
patch_size_t (`int`, defaults to `1`):
|
| 747 |
+
The size of temporal patches.
|
| 748 |
+
resnet_norm_eps (`float`, defaults to `1e-6`):
|
| 749 |
+
Epsilon value for ResNet normalization layers.
|
| 750 |
+
is_causal (`bool`, defaults to `True`):
|
| 751 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
| 752 |
+
"""
|
| 753 |
+
|
| 754 |
+
def __init__(
|
| 755 |
+
self,
|
| 756 |
+
in_channels: int = 3,
|
| 757 |
+
out_channels: int = 128,
|
| 758 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 759 |
+
down_block_types: Tuple[str, ...] = (
|
| 760 |
+
"LTXVideoDownBlock3D",
|
| 761 |
+
"LTXVideoDownBlock3D",
|
| 762 |
+
"LTXVideoDownBlock3D",
|
| 763 |
+
"LTXVideoDownBlock3D",
|
| 764 |
+
),
|
| 765 |
+
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
| 766 |
+
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
| 767 |
+
downsample_type: Tuple[str, ...] = ("conv", "conv", "conv", "conv"),
|
| 768 |
+
patch_size: int = 4,
|
| 769 |
+
patch_size_t: int = 1,
|
| 770 |
+
resnet_norm_eps: float = 1e-6,
|
| 771 |
+
is_causal: bool = True,
|
| 772 |
+
):
|
| 773 |
+
super().__init__()
|
| 774 |
+
|
| 775 |
+
self.patch_size = patch_size
|
| 776 |
+
self.patch_size_t = patch_size_t
|
| 777 |
+
self.in_channels = in_channels * patch_size**2
|
| 778 |
+
|
| 779 |
+
output_channel = block_out_channels[0]
|
| 780 |
+
|
| 781 |
+
self.conv_in = LTXVideoCausalConv3d(
|
| 782 |
+
in_channels=self.in_channels,
|
| 783 |
+
out_channels=output_channel,
|
| 784 |
+
kernel_size=3,
|
| 785 |
+
stride=1,
|
| 786 |
+
is_causal=is_causal,
|
| 787 |
+
)
|
| 788 |
+
|
| 789 |
+
# down blocks
|
| 790 |
+
is_ltx_095 = down_block_types[-1] == "LTXVideo095DownBlock3D"
|
| 791 |
+
num_block_out_channels = len(block_out_channels) - (1 if is_ltx_095 else 0)
|
| 792 |
+
self.down_blocks = nn.ModuleList([])
|
| 793 |
+
for i in range(num_block_out_channels):
|
| 794 |
+
input_channel = output_channel
|
| 795 |
+
if not is_ltx_095:
|
| 796 |
+
output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]
|
| 797 |
+
else:
|
| 798 |
+
output_channel = block_out_channels[i + 1]
|
| 799 |
+
|
| 800 |
+
if down_block_types[i] == "LTXVideoDownBlock3D":
|
| 801 |
+
down_block = LTXVideoDownBlock3D(
|
| 802 |
+
in_channels=input_channel,
|
| 803 |
+
out_channels=output_channel,
|
| 804 |
+
num_layers=layers_per_block[i],
|
| 805 |
+
resnet_eps=resnet_norm_eps,
|
| 806 |
+
spatio_temporal_scale=spatio_temporal_scaling[i],
|
| 807 |
+
is_causal=is_causal,
|
| 808 |
+
)
|
| 809 |
+
elif down_block_types[i] == "LTXVideo095DownBlock3D":
|
| 810 |
+
down_block = LTXVideo095DownBlock3D(
|
| 811 |
+
in_channels=input_channel,
|
| 812 |
+
out_channels=output_channel,
|
| 813 |
+
num_layers=layers_per_block[i],
|
| 814 |
+
resnet_eps=resnet_norm_eps,
|
| 815 |
+
spatio_temporal_scale=spatio_temporal_scaling[i],
|
| 816 |
+
is_causal=is_causal,
|
| 817 |
+
downsample_type=downsample_type[i],
|
| 818 |
+
)
|
| 819 |
+
else:
|
| 820 |
+
raise ValueError(f"Unknown down block type: {down_block_types[i]}")
|
| 821 |
+
|
| 822 |
+
self.down_blocks.append(down_block)
|
| 823 |
+
|
| 824 |
+
# mid block
|
| 825 |
+
self.mid_block = LTXVideoMidBlock3d(
|
| 826 |
+
in_channels=output_channel,
|
| 827 |
+
num_layers=layers_per_block[-1],
|
| 828 |
+
resnet_eps=resnet_norm_eps,
|
| 829 |
+
is_causal=is_causal,
|
| 830 |
+
)
|
| 831 |
+
|
| 832 |
+
# out
|
| 833 |
+
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
|
| 834 |
+
self.conv_act = nn.SiLU()
|
| 835 |
+
self.conv_out = LTXVideoCausalConv3d(
|
| 836 |
+
in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
|
| 837 |
+
)
|
| 838 |
+
|
| 839 |
+
self.gradient_checkpointing = False
|
| 840 |
+
|
| 841 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 842 |
+
r"""The forward method of the `LTXVideoEncoder3d` class."""
|
| 843 |
+
|
| 844 |
+
p = self.patch_size
|
| 845 |
+
p_t = self.patch_size_t
|
| 846 |
+
|
| 847 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 848 |
+
post_patch_num_frames = num_frames // p_t
|
| 849 |
+
post_patch_height = height // p
|
| 850 |
+
post_patch_width = width // p
|
| 851 |
+
|
| 852 |
+
hidden_states = hidden_states.reshape(
|
| 853 |
+
batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
|
| 854 |
+
)
|
| 855 |
+
# Thanks for driving me insane with the weird patching order :(
|
| 856 |
+
hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
|
| 857 |
+
hidden_states = self.conv_in(hidden_states)
|
| 858 |
+
|
| 859 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 860 |
+
for down_block in self.down_blocks:
|
| 861 |
+
hidden_states = self._gradient_checkpointing_func(down_block, hidden_states)
|
| 862 |
+
|
| 863 |
+
hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
|
| 864 |
+
else:
|
| 865 |
+
for down_block in self.down_blocks:
|
| 866 |
+
hidden_states = down_block(hidden_states)
|
| 867 |
+
|
| 868 |
+
hidden_states = self.mid_block(hidden_states)
|
| 869 |
+
|
| 870 |
+
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
| 871 |
+
hidden_states = self.conv_act(hidden_states)
|
| 872 |
+
hidden_states = self.conv_out(hidden_states)
|
| 873 |
+
|
| 874 |
+
last_channel = hidden_states[:, -1:]
|
| 875 |
+
last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
|
| 876 |
+
hidden_states = torch.cat([hidden_states, last_channel], dim=1)
|
| 877 |
+
|
| 878 |
+
return hidden_states
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
class LTXVideoDecoder3d(nn.Module):
|
| 882 |
+
r"""
|
| 883 |
+
The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
|
| 884 |
+
sample.
|
| 885 |
+
|
| 886 |
+
Args:
|
| 887 |
+
in_channels (`int`, defaults to 128):
|
| 888 |
+
Number of latent channels.
|
| 889 |
+
out_channels (`int`, defaults to 3):
|
| 890 |
+
Number of output channels.
|
| 891 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
| 892 |
+
The number of output channels for each block.
|
| 893 |
+
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
|
| 894 |
+
Whether a block should contain spatio-temporal upscaling layers or not.
|
| 895 |
+
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
|
| 896 |
+
The number of layers per block.
|
| 897 |
+
patch_size (`int`, defaults to `4`):
|
| 898 |
+
The size of spatial patches.
|
| 899 |
+
patch_size_t (`int`, defaults to `1`):
|
| 900 |
+
The size of temporal patches.
|
| 901 |
+
resnet_norm_eps (`float`, defaults to `1e-6`):
|
| 902 |
+
Epsilon value for ResNet normalization layers.
|
| 903 |
+
is_causal (`bool`, defaults to `False`):
|
| 904 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
| 905 |
+
timestep_conditioning (`bool`, defaults to `False`):
|
| 906 |
+
Whether to condition the model on timesteps.
|
| 907 |
+
"""
|
| 908 |
+
|
| 909 |
+
def __init__(
|
| 910 |
+
self,
|
| 911 |
+
in_channels: int = 128,
|
| 912 |
+
out_channels: int = 3,
|
| 913 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 914 |
+
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
| 915 |
+
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
| 916 |
+
patch_size: int = 4,
|
| 917 |
+
patch_size_t: int = 1,
|
| 918 |
+
resnet_norm_eps: float = 1e-6,
|
| 919 |
+
is_causal: bool = False,
|
| 920 |
+
inject_noise: Tuple[bool, ...] = (False, False, False, False),
|
| 921 |
+
timestep_conditioning: bool = False,
|
| 922 |
+
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
|
| 923 |
+
upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
|
| 924 |
+
) -> None:
|
| 925 |
+
super().__init__()
|
| 926 |
+
|
| 927 |
+
self.patch_size = patch_size
|
| 928 |
+
self.patch_size_t = patch_size_t
|
| 929 |
+
self.out_channels = out_channels * patch_size**2
|
| 930 |
+
|
| 931 |
+
block_out_channels = tuple(reversed(block_out_channels))
|
| 932 |
+
spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
|
| 933 |
+
layers_per_block = tuple(reversed(layers_per_block))
|
| 934 |
+
inject_noise = tuple(reversed(inject_noise))
|
| 935 |
+
upsample_residual = tuple(reversed(upsample_residual))
|
| 936 |
+
upsample_factor = tuple(reversed(upsample_factor))
|
| 937 |
+
output_channel = block_out_channels[0]
|
| 938 |
+
|
| 939 |
+
self.conv_in = LTXVideoCausalConv3d(
|
| 940 |
+
in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
|
| 941 |
+
)
|
| 942 |
+
|
| 943 |
+
self.mid_block = LTXVideoMidBlock3d(
|
| 944 |
+
in_channels=output_channel,
|
| 945 |
+
num_layers=layers_per_block[0],
|
| 946 |
+
resnet_eps=resnet_norm_eps,
|
| 947 |
+
is_causal=is_causal,
|
| 948 |
+
inject_noise=inject_noise[0],
|
| 949 |
+
timestep_conditioning=timestep_conditioning,
|
| 950 |
+
)
|
| 951 |
+
|
| 952 |
+
# up blocks
|
| 953 |
+
num_block_out_channels = len(block_out_channels)
|
| 954 |
+
self.up_blocks = nn.ModuleList([])
|
| 955 |
+
for i in range(num_block_out_channels):
|
| 956 |
+
input_channel = output_channel // upsample_factor[i]
|
| 957 |
+
output_channel = block_out_channels[i] // upsample_factor[i]
|
| 958 |
+
|
| 959 |
+
up_block = LTXVideoUpBlock3d(
|
| 960 |
+
in_channels=input_channel,
|
| 961 |
+
out_channels=output_channel,
|
| 962 |
+
num_layers=layers_per_block[i + 1],
|
| 963 |
+
resnet_eps=resnet_norm_eps,
|
| 964 |
+
spatio_temporal_scale=spatio_temporal_scaling[i],
|
| 965 |
+
is_causal=is_causal,
|
| 966 |
+
inject_noise=inject_noise[i + 1],
|
| 967 |
+
timestep_conditioning=timestep_conditioning,
|
| 968 |
+
upsample_residual=upsample_residual[i],
|
| 969 |
+
upscale_factor=upsample_factor[i],
|
| 970 |
+
)
|
| 971 |
+
|
| 972 |
+
self.up_blocks.append(up_block)
|
| 973 |
+
|
| 974 |
+
# out
|
| 975 |
+
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
|
| 976 |
+
self.conv_act = nn.SiLU()
|
| 977 |
+
self.conv_out = LTXVideoCausalConv3d(
|
| 978 |
+
in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
|
| 979 |
+
)
|
| 980 |
+
|
| 981 |
+
# timestep embedding
|
| 982 |
+
self.time_embedder = None
|
| 983 |
+
self.scale_shift_table = None
|
| 984 |
+
self.timestep_scale_multiplier = None
|
| 985 |
+
if timestep_conditioning:
|
| 986 |
+
self.timestep_scale_multiplier = nn.Parameter(torch.tensor(1000.0, dtype=torch.float32))
|
| 987 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
|
| 988 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)
|
| 989 |
+
|
| 990 |
+
self.gradient_checkpointing = False
|
| 991 |
+
|
| 992 |
+
def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 993 |
+
hidden_states = self.conv_in(hidden_states)
|
| 994 |
+
|
| 995 |
+
if self.timestep_scale_multiplier is not None:
|
| 996 |
+
temb = temb * self.timestep_scale_multiplier
|
| 997 |
+
|
| 998 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 999 |
+
hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states, temb)
|
| 1000 |
+
|
| 1001 |
+
for up_block in self.up_blocks:
|
| 1002 |
+
hidden_states = self._gradient_checkpointing_func(up_block, hidden_states, temb)
|
| 1003 |
+
else:
|
| 1004 |
+
hidden_states = self.mid_block(hidden_states, temb)
|
| 1005 |
+
|
| 1006 |
+
for up_block in self.up_blocks:
|
| 1007 |
+
hidden_states = up_block(hidden_states, temb)
|
| 1008 |
+
|
| 1009 |
+
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
| 1010 |
+
|
| 1011 |
+
if self.time_embedder is not None:
|
| 1012 |
+
temb = self.time_embedder(
|
| 1013 |
+
timestep=temb.flatten(),
|
| 1014 |
+
resolution=None,
|
| 1015 |
+
aspect_ratio=None,
|
| 1016 |
+
batch_size=hidden_states.size(0),
|
| 1017 |
+
hidden_dtype=hidden_states.dtype,
|
| 1018 |
+
)
|
| 1019 |
+
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
|
| 1020 |
+
temb = temb + self.scale_shift_table[None, ..., None, None, None]
|
| 1021 |
+
shift, scale = temb.unbind(dim=1)
|
| 1022 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 1023 |
+
|
| 1024 |
+
hidden_states = self.conv_act(hidden_states)
|
| 1025 |
+
hidden_states = self.conv_out(hidden_states)
|
| 1026 |
+
|
| 1027 |
+
p = self.patch_size
|
| 1028 |
+
p_t = self.patch_size_t
|
| 1029 |
+
|
| 1030 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 1031 |
+
hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
|
| 1032 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
| 1033 |
+
|
| 1034 |
+
return hidden_states
|
| 1035 |
+
|
| 1036 |
+
|
| 1037 |
+
class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 1038 |
+
r"""
|
| 1039 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
|
| 1040 |
+
[LTX](https://huggingface.co/Lightricks/LTX-Video).
|
| 1041 |
+
|
| 1042 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 1043 |
+
for all models (such as downloading or saving).
|
| 1044 |
+
|
| 1045 |
+
Args:
|
| 1046 |
+
in_channels (`int`, defaults to `3`):
|
| 1047 |
+
Number of input channels.
|
| 1048 |
+
out_channels (`int`, defaults to `3`):
|
| 1049 |
+
Number of output channels.
|
| 1050 |
+
latent_channels (`int`, defaults to `128`):
|
| 1051 |
+
Number of latent channels.
|
| 1052 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
| 1053 |
+
The number of output channels for each block.
|
| 1054 |
+
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
|
| 1055 |
+
Whether a block should contain spatio-temporal downscaling or not.
|
| 1056 |
+
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
|
| 1057 |
+
The number of layers per block.
|
| 1058 |
+
patch_size (`int`, defaults to `4`):
|
| 1059 |
+
The size of spatial patches.
|
| 1060 |
+
patch_size_t (`int`, defaults to `1`):
|
| 1061 |
+
The size of temporal patches.
|
| 1062 |
+
resnet_norm_eps (`float`, defaults to `1e-6`):
|
| 1063 |
+
Epsilon value for ResNet normalization layers.
|
| 1064 |
+
scaling_factor (`float`, *optional*, defaults to `1.0`):
|
| 1065 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
| 1066 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
| 1067 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
| 1068 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
| 1069 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
| 1070 |
+
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
|
| 1071 |
+
encoder_causal (`bool`, defaults to `True`):
|
| 1072 |
+
Whether the encoder should behave causally (future frames depend only on past frames) or not.
|
| 1073 |
+
decoder_causal (`bool`, defaults to `False`):
|
| 1074 |
+
Whether the decoder should behave causally (future frames depend only on past frames) or not.
|
| 1075 |
+
"""
|
| 1076 |
+
|
| 1077 |
+
_supports_gradient_checkpointing = True
|
| 1078 |
+
|
| 1079 |
+
@register_to_config
|
| 1080 |
+
def __init__(
|
| 1081 |
+
self,
|
| 1082 |
+
in_channels: int = 3,
|
| 1083 |
+
out_channels: int = 3,
|
| 1084 |
+
latent_channels: int = 128,
|
| 1085 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 1086 |
+
down_block_types: Tuple[str, ...] = (
|
| 1087 |
+
"LTXVideoDownBlock3D",
|
| 1088 |
+
"LTXVideoDownBlock3D",
|
| 1089 |
+
"LTXVideoDownBlock3D",
|
| 1090 |
+
"LTXVideoDownBlock3D",
|
| 1091 |
+
),
|
| 1092 |
+
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 1093 |
+
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
| 1094 |
+
decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
| 1095 |
+
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
| 1096 |
+
decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
| 1097 |
+
decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
|
| 1098 |
+
downsample_type: Tuple[str, ...] = ("conv", "conv", "conv", "conv"),
|
| 1099 |
+
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
|
| 1100 |
+
upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
|
| 1101 |
+
timestep_conditioning: bool = False,
|
| 1102 |
+
patch_size: int = 4,
|
| 1103 |
+
patch_size_t: int = 1,
|
| 1104 |
+
resnet_norm_eps: float = 1e-6,
|
| 1105 |
+
scaling_factor: float = 1.0,
|
| 1106 |
+
encoder_causal: bool = True,
|
| 1107 |
+
decoder_causal: bool = False,
|
| 1108 |
+
spatial_compression_ratio: int = None,
|
| 1109 |
+
temporal_compression_ratio: int = None,
|
| 1110 |
+
) -> None:
|
| 1111 |
+
super().__init__()
|
| 1112 |
+
|
| 1113 |
+
self.encoder = LTXVideoEncoder3d(
|
| 1114 |
+
in_channels=in_channels,
|
| 1115 |
+
out_channels=latent_channels,
|
| 1116 |
+
block_out_channels=block_out_channels,
|
| 1117 |
+
down_block_types=down_block_types,
|
| 1118 |
+
spatio_temporal_scaling=spatio_temporal_scaling,
|
| 1119 |
+
layers_per_block=layers_per_block,
|
| 1120 |
+
downsample_type=downsample_type,
|
| 1121 |
+
patch_size=patch_size,
|
| 1122 |
+
patch_size_t=patch_size_t,
|
| 1123 |
+
resnet_norm_eps=resnet_norm_eps,
|
| 1124 |
+
is_causal=encoder_causal,
|
| 1125 |
+
)
|
| 1126 |
+
self.decoder = LTXVideoDecoder3d(
|
| 1127 |
+
in_channels=latent_channels,
|
| 1128 |
+
out_channels=out_channels,
|
| 1129 |
+
block_out_channels=decoder_block_out_channels,
|
| 1130 |
+
spatio_temporal_scaling=decoder_spatio_temporal_scaling,
|
| 1131 |
+
layers_per_block=decoder_layers_per_block,
|
| 1132 |
+
patch_size=patch_size,
|
| 1133 |
+
patch_size_t=patch_size_t,
|
| 1134 |
+
resnet_norm_eps=resnet_norm_eps,
|
| 1135 |
+
is_causal=decoder_causal,
|
| 1136 |
+
timestep_conditioning=timestep_conditioning,
|
| 1137 |
+
inject_noise=decoder_inject_noise,
|
| 1138 |
+
upsample_residual=upsample_residual,
|
| 1139 |
+
upsample_factor=upsample_factor,
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
latents_mean = torch.zeros((latent_channels,), requires_grad=False)
|
| 1143 |
+
latents_std = torch.ones((latent_channels,), requires_grad=False)
|
| 1144 |
+
self.register_buffer("latents_mean", latents_mean, persistent=True)
|
| 1145 |
+
self.register_buffer("latents_std", latents_std, persistent=True)
|
| 1146 |
+
|
| 1147 |
+
self.spatial_compression_ratio = (
|
| 1148 |
+
patch_size * 2 ** sum(spatio_temporal_scaling)
|
| 1149 |
+
if spatial_compression_ratio is None
|
| 1150 |
+
else spatial_compression_ratio
|
| 1151 |
+
)
|
| 1152 |
+
self.temporal_compression_ratio = (
|
| 1153 |
+
patch_size_t * 2 ** sum(spatio_temporal_scaling)
|
| 1154 |
+
if temporal_compression_ratio is None
|
| 1155 |
+
else temporal_compression_ratio
|
| 1156 |
+
)
|
| 1157 |
+
|
| 1158 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 1159 |
+
# to perform decoding of a single video latent at a time.
|
| 1160 |
+
self.use_slicing = False
|
| 1161 |
+
|
| 1162 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 1163 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 1164 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 1165 |
+
self.use_tiling = False
|
| 1166 |
+
|
| 1167 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
| 1168 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
| 1169 |
+
self.use_framewise_encoding = False
|
| 1170 |
+
self.use_framewise_decoding = False
|
| 1171 |
+
|
| 1172 |
+
# This can be configured based on the amount of GPU memory available.
|
| 1173 |
+
# `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
|
| 1174 |
+
# Setting it to higher values results in higher memory usage.
|
| 1175 |
+
self.num_sample_frames_batch_size = 16
|
| 1176 |
+
self.num_latent_frames_batch_size = 2
|
| 1177 |
+
|
| 1178 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 1179 |
+
self.tile_sample_min_height = 512
|
| 1180 |
+
self.tile_sample_min_width = 512
|
| 1181 |
+
self.tile_sample_min_num_frames = 16
|
| 1182 |
+
|
| 1183 |
+
# The minimal distance between two spatial tiles
|
| 1184 |
+
self.tile_sample_stride_height = 448
|
| 1185 |
+
self.tile_sample_stride_width = 448
|
| 1186 |
+
self.tile_sample_stride_num_frames = 8
|
| 1187 |
+
|
| 1188 |
+
def enable_tiling(
|
| 1189 |
+
self,
|
| 1190 |
+
tile_sample_min_height: Optional[int] = None,
|
| 1191 |
+
tile_sample_min_width: Optional[int] = None,
|
| 1192 |
+
tile_sample_min_num_frames: Optional[int] = None,
|
| 1193 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 1194 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 1195 |
+
tile_sample_stride_num_frames: Optional[float] = None,
|
| 1196 |
+
) -> None:
|
| 1197 |
+
r"""
|
| 1198 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 1199 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 1200 |
+
processing larger images.
|
| 1201 |
+
|
| 1202 |
+
Args:
|
| 1203 |
+
tile_sample_min_height (`int`, *optional*):
|
| 1204 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 1205 |
+
tile_sample_min_width (`int`, *optional*):
|
| 1206 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 1207 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 1208 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 1209 |
+
no tiling artifacts produced across the height dimension.
|
| 1210 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 1211 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 1212 |
+
artifacts produced across the width dimension.
|
| 1213 |
+
"""
|
| 1214 |
+
self.use_tiling = True
|
| 1215 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 1216 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 1217 |
+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
|
| 1218 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 1219 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 1220 |
+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
|
| 1221 |
+
|
| 1222 |
+
def disable_tiling(self) -> None:
|
| 1223 |
+
r"""
|
| 1224 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 1225 |
+
decoding in one step.
|
| 1226 |
+
"""
|
| 1227 |
+
self.use_tiling = False
|
| 1228 |
+
|
| 1229 |
+
def enable_slicing(self) -> None:
|
| 1230 |
+
r"""
|
| 1231 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 1232 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 1233 |
+
"""
|
| 1234 |
+
self.use_slicing = True
|
| 1235 |
+
|
| 1236 |
+
def disable_slicing(self) -> None:
|
| 1237 |
+
r"""
|
| 1238 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 1239 |
+
decoding in one step.
|
| 1240 |
+
"""
|
| 1241 |
+
self.use_slicing = False
|
| 1242 |
+
|
| 1243 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 1244 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 1245 |
+
|
| 1246 |
+
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
|
| 1247 |
+
return self._temporal_tiled_encode(x)
|
| 1248 |
+
|
| 1249 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
| 1250 |
+
return self.tiled_encode(x)
|
| 1251 |
+
|
| 1252 |
+
enc = self.encoder(x)
|
| 1253 |
+
|
| 1254 |
+
return enc
|
| 1255 |
+
|
| 1256 |
+
@apply_forward_hook
|
| 1257 |
+
def encode(
|
| 1258 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 1259 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 1260 |
+
"""
|
| 1261 |
+
Encode a batch of images into latents.
|
| 1262 |
+
|
| 1263 |
+
Args:
|
| 1264 |
+
x (`torch.Tensor`): Input batch of images.
|
| 1265 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1266 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 1267 |
+
|
| 1268 |
+
Returns:
|
| 1269 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
| 1270 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 1271 |
+
"""
|
| 1272 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 1273 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 1274 |
+
h = torch.cat(encoded_slices)
|
| 1275 |
+
else:
|
| 1276 |
+
h = self._encode(x)
|
| 1277 |
+
posterior = DiagonalGaussianDistribution(h)
|
| 1278 |
+
|
| 1279 |
+
if not return_dict:
|
| 1280 |
+
return (posterior,)
|
| 1281 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 1282 |
+
|
| 1283 |
+
def _decode(
|
| 1284 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
|
| 1285 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1286 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 1287 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1288 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1289 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
| 1290 |
+
|
| 1291 |
+
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
|
| 1292 |
+
return self._temporal_tiled_decode(z, temb, return_dict=return_dict)
|
| 1293 |
+
|
| 1294 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
| 1295 |
+
return self.tiled_decode(z, temb, return_dict=return_dict)
|
| 1296 |
+
|
| 1297 |
+
dec = self.decoder(z, temb)
|
| 1298 |
+
|
| 1299 |
+
if not return_dict:
|
| 1300 |
+
return (dec,)
|
| 1301 |
+
|
| 1302 |
+
return DecoderOutput(sample=dec)
|
| 1303 |
+
|
| 1304 |
+
@apply_forward_hook
|
| 1305 |
+
def decode(
|
| 1306 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
|
| 1307 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1308 |
+
"""
|
| 1309 |
+
Decode a batch of images.
|
| 1310 |
+
|
| 1311 |
+
Args:
|
| 1312 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 1313 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1314 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 1315 |
+
|
| 1316 |
+
Returns:
|
| 1317 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 1318 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 1319 |
+
returned.
|
| 1320 |
+
"""
|
| 1321 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 1322 |
+
if temb is not None:
|
| 1323 |
+
decoded_slices = [
|
| 1324 |
+
self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
|
| 1325 |
+
]
|
| 1326 |
+
else:
|
| 1327 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 1328 |
+
decoded = torch.cat(decoded_slices)
|
| 1329 |
+
else:
|
| 1330 |
+
decoded = self._decode(z, temb).sample
|
| 1331 |
+
|
| 1332 |
+
if not return_dict:
|
| 1333 |
+
return (decoded,)
|
| 1334 |
+
|
| 1335 |
+
return DecoderOutput(sample=decoded)
|
| 1336 |
+
|
| 1337 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 1338 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
| 1339 |
+
for y in range(blend_extent):
|
| 1340 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
| 1341 |
+
y / blend_extent
|
| 1342 |
+
)
|
| 1343 |
+
return b
|
| 1344 |
+
|
| 1345 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 1346 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
| 1347 |
+
for x in range(blend_extent):
|
| 1348 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
| 1349 |
+
x / blend_extent
|
| 1350 |
+
)
|
| 1351 |
+
return b
|
| 1352 |
+
|
| 1353 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 1354 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
| 1355 |
+
for x in range(blend_extent):
|
| 1356 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
|
| 1357 |
+
x / blend_extent
|
| 1358 |
+
)
|
| 1359 |
+
return b
|
| 1360 |
+
|
| 1361 |
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 1362 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 1363 |
+
|
| 1364 |
+
Args:
|
| 1365 |
+
x (`torch.Tensor`): Input batch of videos.
|
| 1366 |
+
|
| 1367 |
+
Returns:
|
| 1368 |
+
`torch.Tensor`:
|
| 1369 |
+
The latent representation of the encoded videos.
|
| 1370 |
+
"""
|
| 1371 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 1372 |
+
latent_height = height // self.spatial_compression_ratio
|
| 1373 |
+
latent_width = width // self.spatial_compression_ratio
|
| 1374 |
+
|
| 1375 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1376 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1377 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1378 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1379 |
+
|
| 1380 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
| 1381 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
| 1382 |
+
|
| 1383 |
+
# Split x into overlapping tiles and encode them separately.
|
| 1384 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1385 |
+
rows = []
|
| 1386 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
| 1387 |
+
row = []
|
| 1388 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
| 1389 |
+
time = self.encoder(
|
| 1390 |
+
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
| 1391 |
+
)
|
| 1392 |
+
|
| 1393 |
+
row.append(time)
|
| 1394 |
+
rows.append(row)
|
| 1395 |
+
|
| 1396 |
+
result_rows = []
|
| 1397 |
+
for i, row in enumerate(rows):
|
| 1398 |
+
result_row = []
|
| 1399 |
+
for j, tile in enumerate(row):
|
| 1400 |
+
# blend the above tile and the left tile
|
| 1401 |
+
# to the current tile and add the current tile to the result row
|
| 1402 |
+
if i > 0:
|
| 1403 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1404 |
+
if j > 0:
|
| 1405 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1406 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
| 1407 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 1408 |
+
|
| 1409 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
| 1410 |
+
return enc
|
| 1411 |
+
|
| 1412 |
+
def tiled_decode(
|
| 1413 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
|
| 1414 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1415 |
+
r"""
|
| 1416 |
+
Decode a batch of images using a tiled decoder.
|
| 1417 |
+
|
| 1418 |
+
Args:
|
| 1419 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 1420 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1421 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 1422 |
+
|
| 1423 |
+
Returns:
|
| 1424 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 1425 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 1426 |
+
returned.
|
| 1427 |
+
"""
|
| 1428 |
+
|
| 1429 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 1430 |
+
sample_height = height * self.spatial_compression_ratio
|
| 1431 |
+
sample_width = width * self.spatial_compression_ratio
|
| 1432 |
+
|
| 1433 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1434 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1435 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1436 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1437 |
+
|
| 1438 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
| 1439 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
| 1440 |
+
|
| 1441 |
+
# Split z into overlapping tiles and decode them separately.
|
| 1442 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1443 |
+
rows = []
|
| 1444 |
+
for i in range(0, height, tile_latent_stride_height):
|
| 1445 |
+
row = []
|
| 1446 |
+
for j in range(0, width, tile_latent_stride_width):
|
| 1447 |
+
time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)
|
| 1448 |
+
|
| 1449 |
+
row.append(time)
|
| 1450 |
+
rows.append(row)
|
| 1451 |
+
|
| 1452 |
+
result_rows = []
|
| 1453 |
+
for i, row in enumerate(rows):
|
| 1454 |
+
result_row = []
|
| 1455 |
+
for j, tile in enumerate(row):
|
| 1456 |
+
# blend the above tile and the left tile
|
| 1457 |
+
# to the current tile and add the current tile to the result row
|
| 1458 |
+
if i > 0:
|
| 1459 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1460 |
+
if j > 0:
|
| 1461 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1462 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
| 1463 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 1464 |
+
|
| 1465 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
| 1466 |
+
|
| 1467 |
+
if not return_dict:
|
| 1468 |
+
return (dec,)
|
| 1469 |
+
|
| 1470 |
+
return DecoderOutput(sample=dec)
|
| 1471 |
+
|
| 1472 |
+
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
| 1473 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 1474 |
+
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
|
| 1475 |
+
|
| 1476 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
| 1477 |
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
| 1478 |
+
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
|
| 1479 |
+
|
| 1480 |
+
row = []
|
| 1481 |
+
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
|
| 1482 |
+
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
|
| 1483 |
+
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
|
| 1484 |
+
tile = self.tiled_encode(tile)
|
| 1485 |
+
else:
|
| 1486 |
+
tile = self.encoder(tile)
|
| 1487 |
+
if i > 0:
|
| 1488 |
+
tile = tile[:, :, 1:, :, :]
|
| 1489 |
+
row.append(tile)
|
| 1490 |
+
|
| 1491 |
+
result_row = []
|
| 1492 |
+
for i, tile in enumerate(row):
|
| 1493 |
+
if i > 0:
|
| 1494 |
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
| 1495 |
+
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
|
| 1496 |
+
else:
|
| 1497 |
+
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
|
| 1498 |
+
|
| 1499 |
+
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
|
| 1500 |
+
return enc
|
| 1501 |
+
|
| 1502 |
+
def _temporal_tiled_decode(
|
| 1503 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
|
| 1504 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1505 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 1506 |
+
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
|
| 1507 |
+
|
| 1508 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1509 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1510 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
| 1511 |
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
| 1512 |
+
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
|
| 1513 |
+
|
| 1514 |
+
row = []
|
| 1515 |
+
for i in range(0, num_frames, tile_latent_stride_num_frames):
|
| 1516 |
+
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
|
| 1517 |
+
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
|
| 1518 |
+
decoded = self.tiled_decode(tile, temb, return_dict=True).sample
|
| 1519 |
+
else:
|
| 1520 |
+
decoded = self.decoder(tile, temb)
|
| 1521 |
+
if i > 0:
|
| 1522 |
+
decoded = decoded[:, :, :-1, :, :]
|
| 1523 |
+
row.append(decoded)
|
| 1524 |
+
|
| 1525 |
+
result_row = []
|
| 1526 |
+
for i, tile in enumerate(row):
|
| 1527 |
+
if i > 0:
|
| 1528 |
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
| 1529 |
+
tile = tile[:, :, : self.tile_sample_stride_num_frames, :, :]
|
| 1530 |
+
result_row.append(tile)
|
| 1531 |
+
else:
|
| 1532 |
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
|
| 1533 |
+
|
| 1534 |
+
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
|
| 1535 |
+
|
| 1536 |
+
if not return_dict:
|
| 1537 |
+
return (dec,)
|
| 1538 |
+
return DecoderOutput(sample=dec)
|
| 1539 |
+
|
| 1540 |
+
def forward(
|
| 1541 |
+
self,
|
| 1542 |
+
sample: torch.Tensor,
|
| 1543 |
+
temb: Optional[torch.Tensor] = None,
|
| 1544 |
+
sample_posterior: bool = False,
|
| 1545 |
+
return_dict: bool = True,
|
| 1546 |
+
generator: Optional[torch.Generator] = None,
|
| 1547 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
| 1548 |
+
x = sample
|
| 1549 |
+
posterior = self.encode(x).latent_dist
|
| 1550 |
+
if sample_posterior:
|
| 1551 |
+
z = posterior.sample(generator=generator)
|
| 1552 |
+
else:
|
| 1553 |
+
z = posterior.mode()
|
| 1554 |
+
dec = self.decode(z, temb)
|
| 1555 |
+
if not return_dict:
|
| 1556 |
+
return (dec.sample,)
|
| 1557 |
+
return dec
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_magvit.py
ADDED
|
@@ -0,0 +1,1094 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The EasyAnimate team and The HuggingFace Team.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import math
|
| 17 |
+
from typing import Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
|
| 23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from ...utils import logging
|
| 25 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 26 |
+
from ..activations import get_activation
|
| 27 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class EasyAnimateCausalConv3d(nn.Conv3d):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
in_channels: int,
|
| 39 |
+
out_channels: int,
|
| 40 |
+
kernel_size: Union[int, Tuple[int, ...]] = 3,
|
| 41 |
+
stride: Union[int, Tuple[int, ...]] = 1,
|
| 42 |
+
padding: Union[int, Tuple[int, ...]] = 1,
|
| 43 |
+
dilation: Union[int, Tuple[int, ...]] = 1,
|
| 44 |
+
groups: int = 1,
|
| 45 |
+
bias: bool = True,
|
| 46 |
+
padding_mode: str = "zeros",
|
| 47 |
+
):
|
| 48 |
+
# Ensure kernel_size, stride, and dilation are tuples of length 3
|
| 49 |
+
kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size,) * 3
|
| 50 |
+
assert len(kernel_size) == 3, f"Kernel size must be a 3-tuple, got {kernel_size} instead."
|
| 51 |
+
|
| 52 |
+
stride = stride if isinstance(stride, tuple) else (stride,) * 3
|
| 53 |
+
assert len(stride) == 3, f"Stride must be a 3-tuple, got {stride} instead."
|
| 54 |
+
|
| 55 |
+
dilation = dilation if isinstance(dilation, tuple) else (dilation,) * 3
|
| 56 |
+
assert len(dilation) == 3, f"Dilation must be a 3-tuple, got {dilation} instead."
|
| 57 |
+
|
| 58 |
+
# Unpack kernel size, stride, and dilation for temporal, height, and width dimensions
|
| 59 |
+
t_ks, h_ks, w_ks = kernel_size
|
| 60 |
+
self.t_stride, h_stride, w_stride = stride
|
| 61 |
+
t_dilation, h_dilation, w_dilation = dilation
|
| 62 |
+
|
| 63 |
+
# Calculate padding for temporal dimension to maintain causality
|
| 64 |
+
t_pad = (t_ks - 1) * t_dilation
|
| 65 |
+
|
| 66 |
+
# Calculate padding for height and width dimensions based on the padding parameter
|
| 67 |
+
if padding is None:
|
| 68 |
+
h_pad = math.ceil(((h_ks - 1) * h_dilation + (1 - h_stride)) / 2)
|
| 69 |
+
w_pad = math.ceil(((w_ks - 1) * w_dilation + (1 - w_stride)) / 2)
|
| 70 |
+
elif isinstance(padding, int):
|
| 71 |
+
h_pad = w_pad = padding
|
| 72 |
+
else:
|
| 73 |
+
assert NotImplementedError
|
| 74 |
+
|
| 75 |
+
# Store temporal padding and initialize flags and previous features cache
|
| 76 |
+
self.temporal_padding = t_pad
|
| 77 |
+
self.temporal_padding_origin = math.ceil(((t_ks - 1) * w_dilation + (1 - w_stride)) / 2)
|
| 78 |
+
|
| 79 |
+
self.prev_features = None
|
| 80 |
+
|
| 81 |
+
# Initialize the parent class with modified padding
|
| 82 |
+
super().__init__(
|
| 83 |
+
in_channels=in_channels,
|
| 84 |
+
out_channels=out_channels,
|
| 85 |
+
kernel_size=kernel_size,
|
| 86 |
+
stride=stride,
|
| 87 |
+
dilation=dilation,
|
| 88 |
+
padding=(0, h_pad, w_pad),
|
| 89 |
+
groups=groups,
|
| 90 |
+
bias=bias,
|
| 91 |
+
padding_mode=padding_mode,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def _clear_conv_cache(self):
|
| 95 |
+
del self.prev_features
|
| 96 |
+
self.prev_features = None
|
| 97 |
+
|
| 98 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 99 |
+
# Ensure input tensor is of the correct type
|
| 100 |
+
dtype = hidden_states.dtype
|
| 101 |
+
if self.prev_features is None:
|
| 102 |
+
# Pad the input tensor in the temporal dimension to maintain causality
|
| 103 |
+
hidden_states = F.pad(
|
| 104 |
+
hidden_states,
|
| 105 |
+
pad=(0, 0, 0, 0, self.temporal_padding, 0),
|
| 106 |
+
mode="replicate", # TODO: check if this is necessary
|
| 107 |
+
)
|
| 108 |
+
hidden_states = hidden_states.to(dtype=dtype)
|
| 109 |
+
|
| 110 |
+
# Clear cache before processing and store previous features for causality
|
| 111 |
+
self._clear_conv_cache()
|
| 112 |
+
self.prev_features = hidden_states[:, :, -self.temporal_padding :].clone()
|
| 113 |
+
|
| 114 |
+
# Process the input tensor in chunks along the temporal dimension
|
| 115 |
+
num_frames = hidden_states.size(2)
|
| 116 |
+
outputs = []
|
| 117 |
+
i = 0
|
| 118 |
+
while i + self.temporal_padding + 1 <= num_frames:
|
| 119 |
+
out = super().forward(hidden_states[:, :, i : i + self.temporal_padding + 1])
|
| 120 |
+
i += self.t_stride
|
| 121 |
+
outputs.append(out)
|
| 122 |
+
return torch.concat(outputs, 2)
|
| 123 |
+
else:
|
| 124 |
+
# Concatenate previous features with the input tensor for continuous temporal processing
|
| 125 |
+
if self.t_stride == 2:
|
| 126 |
+
hidden_states = torch.concat(
|
| 127 |
+
[self.prev_features[:, :, -(self.temporal_padding - 1) :], hidden_states], dim=2
|
| 128 |
+
)
|
| 129 |
+
else:
|
| 130 |
+
hidden_states = torch.concat([self.prev_features, hidden_states], dim=2)
|
| 131 |
+
hidden_states = hidden_states.to(dtype=dtype)
|
| 132 |
+
|
| 133 |
+
# Clear cache and update previous features
|
| 134 |
+
self._clear_conv_cache()
|
| 135 |
+
self.prev_features = hidden_states[:, :, -self.temporal_padding :].clone()
|
| 136 |
+
|
| 137 |
+
# Process the concatenated tensor in chunks along the temporal dimension
|
| 138 |
+
num_frames = hidden_states.size(2)
|
| 139 |
+
outputs = []
|
| 140 |
+
i = 0
|
| 141 |
+
while i + self.temporal_padding + 1 <= num_frames:
|
| 142 |
+
out = super().forward(hidden_states[:, :, i : i + self.temporal_padding + 1])
|
| 143 |
+
i += self.t_stride
|
| 144 |
+
outputs.append(out)
|
| 145 |
+
return torch.concat(outputs, 2)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
class EasyAnimateResidualBlock3D(nn.Module):
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
in_channels: int,
|
| 152 |
+
out_channels: int,
|
| 153 |
+
non_linearity: str = "silu",
|
| 154 |
+
norm_num_groups: int = 32,
|
| 155 |
+
norm_eps: float = 1e-6,
|
| 156 |
+
spatial_group_norm: bool = True,
|
| 157 |
+
dropout: float = 0.0,
|
| 158 |
+
output_scale_factor: float = 1.0,
|
| 159 |
+
):
|
| 160 |
+
super().__init__()
|
| 161 |
+
|
| 162 |
+
self.output_scale_factor = output_scale_factor
|
| 163 |
+
|
| 164 |
+
# Group normalization for input tensor
|
| 165 |
+
self.norm1 = nn.GroupNorm(
|
| 166 |
+
num_groups=norm_num_groups,
|
| 167 |
+
num_channels=in_channels,
|
| 168 |
+
eps=norm_eps,
|
| 169 |
+
affine=True,
|
| 170 |
+
)
|
| 171 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 172 |
+
self.conv1 = EasyAnimateCausalConv3d(in_channels, out_channels, kernel_size=3)
|
| 173 |
+
|
| 174 |
+
self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=norm_eps, affine=True)
|
| 175 |
+
self.dropout = nn.Dropout(dropout)
|
| 176 |
+
self.conv2 = EasyAnimateCausalConv3d(out_channels, out_channels, kernel_size=3)
|
| 177 |
+
|
| 178 |
+
if in_channels != out_channels:
|
| 179 |
+
self.shortcut = nn.Conv3d(in_channels, out_channels, kernel_size=1)
|
| 180 |
+
else:
|
| 181 |
+
self.shortcut = nn.Identity()
|
| 182 |
+
|
| 183 |
+
self.spatial_group_norm = spatial_group_norm
|
| 184 |
+
|
| 185 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 186 |
+
shortcut = self.shortcut(hidden_states)
|
| 187 |
+
|
| 188 |
+
if self.spatial_group_norm:
|
| 189 |
+
batch_size = hidden_states.size(0)
|
| 190 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) # [B, C, T, H, W] -> [B * T, C, H, W]
|
| 191 |
+
hidden_states = self.norm1(hidden_states)
|
| 192 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(
|
| 193 |
+
0, 2, 1, 3, 4
|
| 194 |
+
) # [B * T, C, H, W] -> [B, C, T, H, W]
|
| 195 |
+
else:
|
| 196 |
+
hidden_states = self.norm1(hidden_states)
|
| 197 |
+
|
| 198 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 199 |
+
hidden_states = self.conv1(hidden_states)
|
| 200 |
+
|
| 201 |
+
if self.spatial_group_norm:
|
| 202 |
+
batch_size = hidden_states.size(0)
|
| 203 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) # [B, C, T, H, W] -> [B * T, C, H, W]
|
| 204 |
+
hidden_states = self.norm2(hidden_states)
|
| 205 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(
|
| 206 |
+
0, 2, 1, 3, 4
|
| 207 |
+
) # [B * T, C, H, W] -> [B, C, T, H, W]
|
| 208 |
+
else:
|
| 209 |
+
hidden_states = self.norm2(hidden_states)
|
| 210 |
+
|
| 211 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 212 |
+
hidden_states = self.dropout(hidden_states)
|
| 213 |
+
hidden_states = self.conv2(hidden_states)
|
| 214 |
+
|
| 215 |
+
return (hidden_states + shortcut) / self.output_scale_factor
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class EasyAnimateDownsampler3D(nn.Module):
|
| 219 |
+
def __init__(self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: tuple = (2, 2, 2)):
|
| 220 |
+
super().__init__()
|
| 221 |
+
|
| 222 |
+
self.conv = EasyAnimateCausalConv3d(
|
| 223 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=0
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 227 |
+
hidden_states = F.pad(hidden_states, (0, 1, 0, 1))
|
| 228 |
+
hidden_states = self.conv(hidden_states)
|
| 229 |
+
return hidden_states
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class EasyAnimateUpsampler3D(nn.Module):
|
| 233 |
+
def __init__(
|
| 234 |
+
self,
|
| 235 |
+
in_channels: int,
|
| 236 |
+
out_channels: int,
|
| 237 |
+
kernel_size: int = 3,
|
| 238 |
+
temporal_upsample: bool = False,
|
| 239 |
+
spatial_group_norm: bool = True,
|
| 240 |
+
):
|
| 241 |
+
super().__init__()
|
| 242 |
+
out_channels = out_channels or in_channels
|
| 243 |
+
|
| 244 |
+
self.temporal_upsample = temporal_upsample
|
| 245 |
+
self.spatial_group_norm = spatial_group_norm
|
| 246 |
+
|
| 247 |
+
self.conv = EasyAnimateCausalConv3d(
|
| 248 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size
|
| 249 |
+
)
|
| 250 |
+
self.prev_features = None
|
| 251 |
+
|
| 252 |
+
def _clear_conv_cache(self):
|
| 253 |
+
del self.prev_features
|
| 254 |
+
self.prev_features = None
|
| 255 |
+
|
| 256 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 257 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=(1, 2, 2), mode="nearest")
|
| 258 |
+
hidden_states = self.conv(hidden_states)
|
| 259 |
+
|
| 260 |
+
if self.temporal_upsample:
|
| 261 |
+
if self.prev_features is None:
|
| 262 |
+
self.prev_features = hidden_states
|
| 263 |
+
else:
|
| 264 |
+
hidden_states = F.interpolate(
|
| 265 |
+
hidden_states,
|
| 266 |
+
scale_factor=(2, 1, 1),
|
| 267 |
+
mode="trilinear" if not self.spatial_group_norm else "nearest",
|
| 268 |
+
)
|
| 269 |
+
return hidden_states
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class EasyAnimateDownBlock3D(nn.Module):
|
| 273 |
+
def __init__(
|
| 274 |
+
self,
|
| 275 |
+
in_channels: int,
|
| 276 |
+
out_channels: int,
|
| 277 |
+
num_layers: int = 1,
|
| 278 |
+
act_fn: str = "silu",
|
| 279 |
+
norm_num_groups: int = 32,
|
| 280 |
+
norm_eps: float = 1e-6,
|
| 281 |
+
spatial_group_norm: bool = True,
|
| 282 |
+
dropout: float = 0.0,
|
| 283 |
+
output_scale_factor: float = 1.0,
|
| 284 |
+
add_downsample: bool = True,
|
| 285 |
+
add_temporal_downsample: bool = True,
|
| 286 |
+
):
|
| 287 |
+
super().__init__()
|
| 288 |
+
|
| 289 |
+
self.convs = nn.ModuleList([])
|
| 290 |
+
for i in range(num_layers):
|
| 291 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 292 |
+
self.convs.append(
|
| 293 |
+
EasyAnimateResidualBlock3D(
|
| 294 |
+
in_channels=in_channels,
|
| 295 |
+
out_channels=out_channels,
|
| 296 |
+
non_linearity=act_fn,
|
| 297 |
+
norm_num_groups=norm_num_groups,
|
| 298 |
+
norm_eps=norm_eps,
|
| 299 |
+
spatial_group_norm=spatial_group_norm,
|
| 300 |
+
dropout=dropout,
|
| 301 |
+
output_scale_factor=output_scale_factor,
|
| 302 |
+
)
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
if add_downsample and add_temporal_downsample:
|
| 306 |
+
self.downsampler = EasyAnimateDownsampler3D(out_channels, out_channels, kernel_size=3, stride=(2, 2, 2))
|
| 307 |
+
self.spatial_downsample_factor = 2
|
| 308 |
+
self.temporal_downsample_factor = 2
|
| 309 |
+
elif add_downsample and not add_temporal_downsample:
|
| 310 |
+
self.downsampler = EasyAnimateDownsampler3D(out_channels, out_channels, kernel_size=3, stride=(1, 2, 2))
|
| 311 |
+
self.spatial_downsample_factor = 2
|
| 312 |
+
self.temporal_downsample_factor = 1
|
| 313 |
+
else:
|
| 314 |
+
self.downsampler = None
|
| 315 |
+
self.spatial_downsample_factor = 1
|
| 316 |
+
self.temporal_downsample_factor = 1
|
| 317 |
+
|
| 318 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 319 |
+
for conv in self.convs:
|
| 320 |
+
hidden_states = conv(hidden_states)
|
| 321 |
+
if self.downsampler is not None:
|
| 322 |
+
hidden_states = self.downsampler(hidden_states)
|
| 323 |
+
return hidden_states
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
class EasyAnimateUpBlock3d(nn.Module):
|
| 327 |
+
def __init__(
|
| 328 |
+
self,
|
| 329 |
+
in_channels: int,
|
| 330 |
+
out_channels: int,
|
| 331 |
+
num_layers: int = 1,
|
| 332 |
+
act_fn: str = "silu",
|
| 333 |
+
norm_num_groups: int = 32,
|
| 334 |
+
norm_eps: float = 1e-6,
|
| 335 |
+
spatial_group_norm: bool = False,
|
| 336 |
+
dropout: float = 0.0,
|
| 337 |
+
output_scale_factor: float = 1.0,
|
| 338 |
+
add_upsample: bool = True,
|
| 339 |
+
add_temporal_upsample: bool = True,
|
| 340 |
+
):
|
| 341 |
+
super().__init__()
|
| 342 |
+
|
| 343 |
+
self.convs = nn.ModuleList([])
|
| 344 |
+
for i in range(num_layers):
|
| 345 |
+
in_channels = in_channels if i == 0 else out_channels
|
| 346 |
+
self.convs.append(
|
| 347 |
+
EasyAnimateResidualBlock3D(
|
| 348 |
+
in_channels=in_channels,
|
| 349 |
+
out_channels=out_channels,
|
| 350 |
+
non_linearity=act_fn,
|
| 351 |
+
norm_num_groups=norm_num_groups,
|
| 352 |
+
norm_eps=norm_eps,
|
| 353 |
+
spatial_group_norm=spatial_group_norm,
|
| 354 |
+
dropout=dropout,
|
| 355 |
+
output_scale_factor=output_scale_factor,
|
| 356 |
+
)
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
if add_upsample:
|
| 360 |
+
self.upsampler = EasyAnimateUpsampler3D(
|
| 361 |
+
in_channels,
|
| 362 |
+
in_channels,
|
| 363 |
+
temporal_upsample=add_temporal_upsample,
|
| 364 |
+
spatial_group_norm=spatial_group_norm,
|
| 365 |
+
)
|
| 366 |
+
else:
|
| 367 |
+
self.upsampler = None
|
| 368 |
+
|
| 369 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 370 |
+
for conv in self.convs:
|
| 371 |
+
hidden_states = conv(hidden_states)
|
| 372 |
+
if self.upsampler is not None:
|
| 373 |
+
hidden_states = self.upsampler(hidden_states)
|
| 374 |
+
return hidden_states
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class EasyAnimateMidBlock3d(nn.Module):
|
| 378 |
+
def __init__(
|
| 379 |
+
self,
|
| 380 |
+
in_channels: int,
|
| 381 |
+
num_layers: int = 1,
|
| 382 |
+
act_fn: str = "silu",
|
| 383 |
+
norm_num_groups: int = 32,
|
| 384 |
+
norm_eps: float = 1e-6,
|
| 385 |
+
spatial_group_norm: bool = True,
|
| 386 |
+
dropout: float = 0.0,
|
| 387 |
+
output_scale_factor: float = 1.0,
|
| 388 |
+
):
|
| 389 |
+
super().__init__()
|
| 390 |
+
|
| 391 |
+
norm_num_groups = norm_num_groups if norm_num_groups is not None else min(in_channels // 4, 32)
|
| 392 |
+
|
| 393 |
+
self.convs = nn.ModuleList(
|
| 394 |
+
[
|
| 395 |
+
EasyAnimateResidualBlock3D(
|
| 396 |
+
in_channels=in_channels,
|
| 397 |
+
out_channels=in_channels,
|
| 398 |
+
non_linearity=act_fn,
|
| 399 |
+
norm_num_groups=norm_num_groups,
|
| 400 |
+
norm_eps=norm_eps,
|
| 401 |
+
spatial_group_norm=spatial_group_norm,
|
| 402 |
+
dropout=dropout,
|
| 403 |
+
output_scale_factor=output_scale_factor,
|
| 404 |
+
)
|
| 405 |
+
]
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
for _ in range(num_layers - 1):
|
| 409 |
+
self.convs.append(
|
| 410 |
+
EasyAnimateResidualBlock3D(
|
| 411 |
+
in_channels=in_channels,
|
| 412 |
+
out_channels=in_channels,
|
| 413 |
+
non_linearity=act_fn,
|
| 414 |
+
norm_num_groups=norm_num_groups,
|
| 415 |
+
norm_eps=norm_eps,
|
| 416 |
+
spatial_group_norm=spatial_group_norm,
|
| 417 |
+
dropout=dropout,
|
| 418 |
+
output_scale_factor=output_scale_factor,
|
| 419 |
+
)
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 423 |
+
hidden_states = self.convs[0](hidden_states)
|
| 424 |
+
for resnet in self.convs[1:]:
|
| 425 |
+
hidden_states = resnet(hidden_states)
|
| 426 |
+
return hidden_states
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class EasyAnimateEncoder(nn.Module):
|
| 430 |
+
r"""
|
| 431 |
+
Causal encoder for 3D video-like data used in [EasyAnimate](https://huggingface.co/papers/2405.18991).
|
| 432 |
+
"""
|
| 433 |
+
|
| 434 |
+
_supports_gradient_checkpointing = True
|
| 435 |
+
|
| 436 |
+
def __init__(
|
| 437 |
+
self,
|
| 438 |
+
in_channels: int = 3,
|
| 439 |
+
out_channels: int = 8,
|
| 440 |
+
down_block_types: Tuple[str, ...] = (
|
| 441 |
+
"SpatialDownBlock3D",
|
| 442 |
+
"SpatialTemporalDownBlock3D",
|
| 443 |
+
"SpatialTemporalDownBlock3D",
|
| 444 |
+
"SpatialTemporalDownBlock3D",
|
| 445 |
+
),
|
| 446 |
+
block_out_channels: Tuple[int, ...] = [128, 256, 512, 512],
|
| 447 |
+
layers_per_block: int = 2,
|
| 448 |
+
norm_num_groups: int = 32,
|
| 449 |
+
act_fn: str = "silu",
|
| 450 |
+
double_z: bool = True,
|
| 451 |
+
spatial_group_norm: bool = False,
|
| 452 |
+
):
|
| 453 |
+
super().__init__()
|
| 454 |
+
|
| 455 |
+
# 1. Input convolution
|
| 456 |
+
self.conv_in = EasyAnimateCausalConv3d(in_channels, block_out_channels[0], kernel_size=3)
|
| 457 |
+
|
| 458 |
+
# 2. Down blocks
|
| 459 |
+
self.down_blocks = nn.ModuleList([])
|
| 460 |
+
output_channels = block_out_channels[0]
|
| 461 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 462 |
+
input_channels = output_channels
|
| 463 |
+
output_channels = block_out_channels[i]
|
| 464 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 465 |
+
if down_block_type == "SpatialDownBlock3D":
|
| 466 |
+
down_block = EasyAnimateDownBlock3D(
|
| 467 |
+
in_channels=input_channels,
|
| 468 |
+
out_channels=output_channels,
|
| 469 |
+
num_layers=layers_per_block,
|
| 470 |
+
act_fn=act_fn,
|
| 471 |
+
norm_num_groups=norm_num_groups,
|
| 472 |
+
norm_eps=1e-6,
|
| 473 |
+
spatial_group_norm=spatial_group_norm,
|
| 474 |
+
add_downsample=not is_final_block,
|
| 475 |
+
add_temporal_downsample=False,
|
| 476 |
+
)
|
| 477 |
+
elif down_block_type == "SpatialTemporalDownBlock3D":
|
| 478 |
+
down_block = EasyAnimateDownBlock3D(
|
| 479 |
+
in_channels=input_channels,
|
| 480 |
+
out_channels=output_channels,
|
| 481 |
+
num_layers=layers_per_block,
|
| 482 |
+
act_fn=act_fn,
|
| 483 |
+
norm_num_groups=norm_num_groups,
|
| 484 |
+
norm_eps=1e-6,
|
| 485 |
+
spatial_group_norm=spatial_group_norm,
|
| 486 |
+
add_downsample=not is_final_block,
|
| 487 |
+
add_temporal_downsample=True,
|
| 488 |
+
)
|
| 489 |
+
else:
|
| 490 |
+
raise ValueError(f"Unknown up block type: {down_block_type}")
|
| 491 |
+
self.down_blocks.append(down_block)
|
| 492 |
+
|
| 493 |
+
# 3. Middle block
|
| 494 |
+
self.mid_block = EasyAnimateMidBlock3d(
|
| 495 |
+
in_channels=block_out_channels[-1],
|
| 496 |
+
num_layers=layers_per_block,
|
| 497 |
+
act_fn=act_fn,
|
| 498 |
+
spatial_group_norm=spatial_group_norm,
|
| 499 |
+
norm_num_groups=norm_num_groups,
|
| 500 |
+
norm_eps=1e-6,
|
| 501 |
+
dropout=0,
|
| 502 |
+
output_scale_factor=1,
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
# 4. Output normalization & convolution
|
| 506 |
+
self.spatial_group_norm = spatial_group_norm
|
| 507 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 508 |
+
num_channels=block_out_channels[-1],
|
| 509 |
+
num_groups=norm_num_groups,
|
| 510 |
+
eps=1e-6,
|
| 511 |
+
)
|
| 512 |
+
self.conv_act = get_activation(act_fn)
|
| 513 |
+
|
| 514 |
+
# Initialize the output convolution layer
|
| 515 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
| 516 |
+
self.conv_out = EasyAnimateCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
| 517 |
+
|
| 518 |
+
self.gradient_checkpointing = False
|
| 519 |
+
|
| 520 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 521 |
+
# hidden_states: (B, C, T, H, W)
|
| 522 |
+
hidden_states = self.conv_in(hidden_states)
|
| 523 |
+
|
| 524 |
+
for down_block in self.down_blocks:
|
| 525 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 526 |
+
hidden_states = self._gradient_checkpointing_func(down_block, hidden_states)
|
| 527 |
+
else:
|
| 528 |
+
hidden_states = down_block(hidden_states)
|
| 529 |
+
|
| 530 |
+
hidden_states = self.mid_block(hidden_states)
|
| 531 |
+
|
| 532 |
+
if self.spatial_group_norm:
|
| 533 |
+
batch_size = hidden_states.size(0)
|
| 534 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
| 535 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
| 536 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
| 537 |
+
else:
|
| 538 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
| 539 |
+
|
| 540 |
+
hidden_states = self.conv_act(hidden_states)
|
| 541 |
+
hidden_states = self.conv_out(hidden_states)
|
| 542 |
+
return hidden_states
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
class EasyAnimateDecoder(nn.Module):
|
| 546 |
+
r"""
|
| 547 |
+
Causal decoder for 3D video-like data used in [EasyAnimate](https://huggingface.co/papers/2405.18991).
|
| 548 |
+
"""
|
| 549 |
+
|
| 550 |
+
_supports_gradient_checkpointing = True
|
| 551 |
+
|
| 552 |
+
def __init__(
|
| 553 |
+
self,
|
| 554 |
+
in_channels: int = 8,
|
| 555 |
+
out_channels: int = 3,
|
| 556 |
+
up_block_types: Tuple[str, ...] = (
|
| 557 |
+
"SpatialUpBlock3D",
|
| 558 |
+
"SpatialTemporalUpBlock3D",
|
| 559 |
+
"SpatialTemporalUpBlock3D",
|
| 560 |
+
"SpatialTemporalUpBlock3D",
|
| 561 |
+
),
|
| 562 |
+
block_out_channels: Tuple[int, ...] = [128, 256, 512, 512],
|
| 563 |
+
layers_per_block: int = 2,
|
| 564 |
+
norm_num_groups: int = 32,
|
| 565 |
+
act_fn: str = "silu",
|
| 566 |
+
spatial_group_norm: bool = False,
|
| 567 |
+
):
|
| 568 |
+
super().__init__()
|
| 569 |
+
|
| 570 |
+
# 1. Input convolution
|
| 571 |
+
self.conv_in = EasyAnimateCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3)
|
| 572 |
+
|
| 573 |
+
# 2. Middle block
|
| 574 |
+
self.mid_block = EasyAnimateMidBlock3d(
|
| 575 |
+
in_channels=block_out_channels[-1],
|
| 576 |
+
num_layers=layers_per_block,
|
| 577 |
+
act_fn=act_fn,
|
| 578 |
+
norm_num_groups=norm_num_groups,
|
| 579 |
+
norm_eps=1e-6,
|
| 580 |
+
dropout=0,
|
| 581 |
+
output_scale_factor=1,
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
# 3. Up blocks
|
| 585 |
+
self.up_blocks = nn.ModuleList([])
|
| 586 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 587 |
+
output_channels = reversed_block_out_channels[0]
|
| 588 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 589 |
+
input_channels = output_channels
|
| 590 |
+
output_channels = reversed_block_out_channels[i]
|
| 591 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 592 |
+
|
| 593 |
+
# Create and append up block to up_blocks
|
| 594 |
+
if up_block_type == "SpatialUpBlock3D":
|
| 595 |
+
up_block = EasyAnimateUpBlock3d(
|
| 596 |
+
in_channels=input_channels,
|
| 597 |
+
out_channels=output_channels,
|
| 598 |
+
num_layers=layers_per_block + 1,
|
| 599 |
+
act_fn=act_fn,
|
| 600 |
+
norm_num_groups=norm_num_groups,
|
| 601 |
+
norm_eps=1e-6,
|
| 602 |
+
spatial_group_norm=spatial_group_norm,
|
| 603 |
+
add_upsample=not is_final_block,
|
| 604 |
+
add_temporal_upsample=False,
|
| 605 |
+
)
|
| 606 |
+
elif up_block_type == "SpatialTemporalUpBlock3D":
|
| 607 |
+
up_block = EasyAnimateUpBlock3d(
|
| 608 |
+
in_channels=input_channels,
|
| 609 |
+
out_channels=output_channels,
|
| 610 |
+
num_layers=layers_per_block + 1,
|
| 611 |
+
act_fn=act_fn,
|
| 612 |
+
norm_num_groups=norm_num_groups,
|
| 613 |
+
norm_eps=1e-6,
|
| 614 |
+
spatial_group_norm=spatial_group_norm,
|
| 615 |
+
add_upsample=not is_final_block,
|
| 616 |
+
add_temporal_upsample=True,
|
| 617 |
+
)
|
| 618 |
+
else:
|
| 619 |
+
raise ValueError(f"Unknown up block type: {up_block_type}")
|
| 620 |
+
self.up_blocks.append(up_block)
|
| 621 |
+
|
| 622 |
+
# Output normalization and activation
|
| 623 |
+
self.spatial_group_norm = spatial_group_norm
|
| 624 |
+
self.conv_norm_out = nn.GroupNorm(
|
| 625 |
+
num_channels=block_out_channels[0],
|
| 626 |
+
num_groups=norm_num_groups,
|
| 627 |
+
eps=1e-6,
|
| 628 |
+
)
|
| 629 |
+
self.conv_act = get_activation(act_fn)
|
| 630 |
+
|
| 631 |
+
# Output convolution layer
|
| 632 |
+
self.conv_out = EasyAnimateCausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
| 633 |
+
|
| 634 |
+
self.gradient_checkpointing = False
|
| 635 |
+
|
| 636 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 637 |
+
# hidden_states: (B, C, T, H, W)
|
| 638 |
+
hidden_states = self.conv_in(hidden_states)
|
| 639 |
+
|
| 640 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 641 |
+
hidden_states = self._gradient_checkpointing_func(self.mid_block, hidden_states)
|
| 642 |
+
else:
|
| 643 |
+
hidden_states = self.mid_block(hidden_states)
|
| 644 |
+
|
| 645 |
+
for up_block in self.up_blocks:
|
| 646 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 647 |
+
hidden_states = self._gradient_checkpointing_func(up_block, hidden_states)
|
| 648 |
+
else:
|
| 649 |
+
hidden_states = up_block(hidden_states)
|
| 650 |
+
|
| 651 |
+
if self.spatial_group_norm:
|
| 652 |
+
batch_size = hidden_states.size(0)
|
| 653 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) # [B, C, T, H, W] -> [B * T, C, H, W]
|
| 654 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
| 655 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(
|
| 656 |
+
0, 2, 1, 3, 4
|
| 657 |
+
) # [B * T, C, H, W] -> [B, C, T, H, W]
|
| 658 |
+
else:
|
| 659 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
| 660 |
+
|
| 661 |
+
hidden_states = self.conv_act(hidden_states)
|
| 662 |
+
hidden_states = self.conv_out(hidden_states)
|
| 663 |
+
return hidden_states
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
class AutoencoderKLMagvit(ModelMixin, ConfigMixin):
|
| 667 |
+
r"""
|
| 668 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. This
|
| 669 |
+
model is used in [EasyAnimate](https://huggingface.co/papers/2405.18991).
|
| 670 |
+
|
| 671 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 672 |
+
for all models (such as downloading or saving).
|
| 673 |
+
"""
|
| 674 |
+
|
| 675 |
+
_supports_gradient_checkpointing = True
|
| 676 |
+
|
| 677 |
+
@register_to_config
|
| 678 |
+
def __init__(
|
| 679 |
+
self,
|
| 680 |
+
in_channels: int = 3,
|
| 681 |
+
latent_channels: int = 16,
|
| 682 |
+
out_channels: int = 3,
|
| 683 |
+
block_out_channels: Tuple[int, ...] = [128, 256, 512, 512],
|
| 684 |
+
down_block_types: Tuple[str, ...] = [
|
| 685 |
+
"SpatialDownBlock3D",
|
| 686 |
+
"SpatialTemporalDownBlock3D",
|
| 687 |
+
"SpatialTemporalDownBlock3D",
|
| 688 |
+
"SpatialTemporalDownBlock3D",
|
| 689 |
+
],
|
| 690 |
+
up_block_types: Tuple[str, ...] = [
|
| 691 |
+
"SpatialUpBlock3D",
|
| 692 |
+
"SpatialTemporalUpBlock3D",
|
| 693 |
+
"SpatialTemporalUpBlock3D",
|
| 694 |
+
"SpatialTemporalUpBlock3D",
|
| 695 |
+
],
|
| 696 |
+
layers_per_block: int = 2,
|
| 697 |
+
act_fn: str = "silu",
|
| 698 |
+
norm_num_groups: int = 32,
|
| 699 |
+
scaling_factor: float = 0.7125,
|
| 700 |
+
spatial_group_norm: bool = True,
|
| 701 |
+
):
|
| 702 |
+
super().__init__()
|
| 703 |
+
|
| 704 |
+
# Initialize the encoder
|
| 705 |
+
self.encoder = EasyAnimateEncoder(
|
| 706 |
+
in_channels=in_channels,
|
| 707 |
+
out_channels=latent_channels,
|
| 708 |
+
down_block_types=down_block_types,
|
| 709 |
+
block_out_channels=block_out_channels,
|
| 710 |
+
layers_per_block=layers_per_block,
|
| 711 |
+
norm_num_groups=norm_num_groups,
|
| 712 |
+
act_fn=act_fn,
|
| 713 |
+
double_z=True,
|
| 714 |
+
spatial_group_norm=spatial_group_norm,
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
# Initialize the decoder
|
| 718 |
+
self.decoder = EasyAnimateDecoder(
|
| 719 |
+
in_channels=latent_channels,
|
| 720 |
+
out_channels=out_channels,
|
| 721 |
+
up_block_types=up_block_types,
|
| 722 |
+
block_out_channels=block_out_channels,
|
| 723 |
+
layers_per_block=layers_per_block,
|
| 724 |
+
norm_num_groups=norm_num_groups,
|
| 725 |
+
act_fn=act_fn,
|
| 726 |
+
spatial_group_norm=spatial_group_norm,
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
# Initialize convolution layers for quantization and post-quantization
|
| 730 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
| 731 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
| 732 |
+
|
| 733 |
+
self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1)
|
| 734 |
+
self.temporal_compression_ratio = 2 ** (len(block_out_channels) - 2)
|
| 735 |
+
|
| 736 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 737 |
+
# to perform decoding of a single video latent at a time.
|
| 738 |
+
self.use_slicing = False
|
| 739 |
+
|
| 740 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 741 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 742 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 743 |
+
self.use_tiling = False
|
| 744 |
+
|
| 745 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
| 746 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_size`), the memory requirement can be lowered.
|
| 747 |
+
self.use_framewise_encoding = False
|
| 748 |
+
self.use_framewise_decoding = False
|
| 749 |
+
|
| 750 |
+
# Assign mini-batch sizes for encoder and decoder
|
| 751 |
+
self.num_sample_frames_batch_size = 4
|
| 752 |
+
self.num_latent_frames_batch_size = 1
|
| 753 |
+
|
| 754 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 755 |
+
self.tile_sample_min_height = 512
|
| 756 |
+
self.tile_sample_min_width = 512
|
| 757 |
+
self.tile_sample_min_num_frames = 4
|
| 758 |
+
|
| 759 |
+
# The minimal distance between two spatial tiles
|
| 760 |
+
self.tile_sample_stride_height = 448
|
| 761 |
+
self.tile_sample_stride_width = 448
|
| 762 |
+
self.tile_sample_stride_num_frames = 8
|
| 763 |
+
|
| 764 |
+
def _clear_conv_cache(self):
|
| 765 |
+
# Clear cache for convolutional layers if needed
|
| 766 |
+
for name, module in self.named_modules():
|
| 767 |
+
if isinstance(module, EasyAnimateCausalConv3d):
|
| 768 |
+
module._clear_conv_cache()
|
| 769 |
+
if isinstance(module, EasyAnimateUpsampler3D):
|
| 770 |
+
module._clear_conv_cache()
|
| 771 |
+
|
| 772 |
+
def enable_tiling(
|
| 773 |
+
self,
|
| 774 |
+
tile_sample_min_height: Optional[int] = None,
|
| 775 |
+
tile_sample_min_width: Optional[int] = None,
|
| 776 |
+
tile_sample_min_num_frames: Optional[int] = None,
|
| 777 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 778 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 779 |
+
tile_sample_stride_num_frames: Optional[float] = None,
|
| 780 |
+
) -> None:
|
| 781 |
+
r"""
|
| 782 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 783 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 784 |
+
processing larger images.
|
| 785 |
+
|
| 786 |
+
Args:
|
| 787 |
+
tile_sample_min_height (`int`, *optional*):
|
| 788 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 789 |
+
tile_sample_min_width (`int`, *optional*):
|
| 790 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 791 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 792 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 793 |
+
no tiling artifacts produced across the height dimension.
|
| 794 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 795 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 796 |
+
artifacts produced across the width dimension.
|
| 797 |
+
"""
|
| 798 |
+
self.use_tiling = True
|
| 799 |
+
self.use_framewise_decoding = True
|
| 800 |
+
self.use_framewise_encoding = True
|
| 801 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 802 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 803 |
+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
|
| 804 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 805 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 806 |
+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
|
| 807 |
+
|
| 808 |
+
def disable_tiling(self) -> None:
|
| 809 |
+
r"""
|
| 810 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 811 |
+
decoding in one step.
|
| 812 |
+
"""
|
| 813 |
+
self.use_tiling = False
|
| 814 |
+
|
| 815 |
+
def enable_slicing(self) -> None:
|
| 816 |
+
r"""
|
| 817 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 818 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 819 |
+
"""
|
| 820 |
+
self.use_slicing = True
|
| 821 |
+
|
| 822 |
+
def disable_slicing(self) -> None:
|
| 823 |
+
r"""
|
| 824 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 825 |
+
decoding in one step.
|
| 826 |
+
"""
|
| 827 |
+
self.use_slicing = False
|
| 828 |
+
|
| 829 |
+
@apply_forward_hook
|
| 830 |
+
def _encode(
|
| 831 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 832 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 833 |
+
"""
|
| 834 |
+
Encode a batch of images into latents.
|
| 835 |
+
|
| 836 |
+
Args:
|
| 837 |
+
x (`torch.Tensor`): Input batch of images.
|
| 838 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 839 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 840 |
+
|
| 841 |
+
Returns:
|
| 842 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
| 843 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 844 |
+
"""
|
| 845 |
+
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_height or x.shape[-2] > self.tile_sample_min_width):
|
| 846 |
+
return self.tiled_encode(x, return_dict=return_dict)
|
| 847 |
+
|
| 848 |
+
first_frames = self.encoder(x[:, :, :1, :, :])
|
| 849 |
+
h = [first_frames]
|
| 850 |
+
for i in range(1, x.shape[2], self.num_sample_frames_batch_size):
|
| 851 |
+
next_frames = self.encoder(x[:, :, i : i + self.num_sample_frames_batch_size, :, :])
|
| 852 |
+
h.append(next_frames)
|
| 853 |
+
h = torch.cat(h, dim=2)
|
| 854 |
+
moments = self.quant_conv(h)
|
| 855 |
+
|
| 856 |
+
self._clear_conv_cache()
|
| 857 |
+
return moments
|
| 858 |
+
|
| 859 |
+
@apply_forward_hook
|
| 860 |
+
def encode(
|
| 861 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 862 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 863 |
+
"""
|
| 864 |
+
Encode a batch of images into latents.
|
| 865 |
+
|
| 866 |
+
Args:
|
| 867 |
+
x (`torch.Tensor`): Input batch of images.
|
| 868 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 869 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 870 |
+
|
| 871 |
+
Returns:
|
| 872 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
| 873 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 874 |
+
"""
|
| 875 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 876 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 877 |
+
h = torch.cat(encoded_slices)
|
| 878 |
+
else:
|
| 879 |
+
h = self._encode(x)
|
| 880 |
+
|
| 881 |
+
posterior = DiagonalGaussianDistribution(h)
|
| 882 |
+
|
| 883 |
+
if not return_dict:
|
| 884 |
+
return (posterior,)
|
| 885 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 886 |
+
|
| 887 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 888 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 889 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 890 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 891 |
+
|
| 892 |
+
if self.use_tiling and (z.shape[-1] > tile_latent_min_height or z.shape[-2] > tile_latent_min_width):
|
| 893 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
| 894 |
+
|
| 895 |
+
z = self.post_quant_conv(z)
|
| 896 |
+
|
| 897 |
+
# Process the first frame and save the result
|
| 898 |
+
first_frames = self.decoder(z[:, :, :1, :, :])
|
| 899 |
+
# Initialize the list to store the processed frames, starting with the first frame
|
| 900 |
+
dec = [first_frames]
|
| 901 |
+
# Process the remaining frames, with the number of frames processed at a time determined by mini_batch_decoder
|
| 902 |
+
for i in range(1, z.shape[2], self.num_latent_frames_batch_size):
|
| 903 |
+
next_frames = self.decoder(z[:, :, i : i + self.num_latent_frames_batch_size, :, :])
|
| 904 |
+
dec.append(next_frames)
|
| 905 |
+
# Concatenate all processed frames along the channel dimension
|
| 906 |
+
dec = torch.cat(dec, dim=2)
|
| 907 |
+
|
| 908 |
+
if not return_dict:
|
| 909 |
+
return (dec,)
|
| 910 |
+
|
| 911 |
+
return DecoderOutput(sample=dec)
|
| 912 |
+
|
| 913 |
+
@apply_forward_hook
|
| 914 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 915 |
+
"""
|
| 916 |
+
Decode a batch of images.
|
| 917 |
+
|
| 918 |
+
Args:
|
| 919 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 920 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 921 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 922 |
+
|
| 923 |
+
Returns:
|
| 924 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 925 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 926 |
+
returned.
|
| 927 |
+
"""
|
| 928 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 929 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 930 |
+
decoded = torch.cat(decoded_slices)
|
| 931 |
+
else:
|
| 932 |
+
decoded = self._decode(z).sample
|
| 933 |
+
|
| 934 |
+
self._clear_conv_cache()
|
| 935 |
+
if not return_dict:
|
| 936 |
+
return (decoded,)
|
| 937 |
+
return DecoderOutput(sample=decoded)
|
| 938 |
+
|
| 939 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 940 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
| 941 |
+
for y in range(blend_extent):
|
| 942 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
| 943 |
+
y / blend_extent
|
| 944 |
+
)
|
| 945 |
+
return b
|
| 946 |
+
|
| 947 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 948 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
| 949 |
+
for x in range(blend_extent):
|
| 950 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
| 951 |
+
x / blend_extent
|
| 952 |
+
)
|
| 953 |
+
return b
|
| 954 |
+
|
| 955 |
+
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
| 956 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 957 |
+
latent_height = height // self.spatial_compression_ratio
|
| 958 |
+
latent_width = width // self.spatial_compression_ratio
|
| 959 |
+
|
| 960 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 961 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 962 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 963 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 964 |
+
|
| 965 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
| 966 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
| 967 |
+
|
| 968 |
+
# Split the image into 512x512 tiles and encode them separately.
|
| 969 |
+
rows = []
|
| 970 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
| 971 |
+
row = []
|
| 972 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
| 973 |
+
tile = x[
|
| 974 |
+
:,
|
| 975 |
+
:,
|
| 976 |
+
:,
|
| 977 |
+
i : i + self.tile_sample_min_height,
|
| 978 |
+
j : j + self.tile_sample_min_width,
|
| 979 |
+
]
|
| 980 |
+
|
| 981 |
+
first_frames = self.encoder(tile[:, :, 0:1, :, :])
|
| 982 |
+
tile_h = [first_frames]
|
| 983 |
+
for k in range(1, num_frames, self.num_sample_frames_batch_size):
|
| 984 |
+
next_frames = self.encoder(tile[:, :, k : k + self.num_sample_frames_batch_size, :, :])
|
| 985 |
+
tile_h.append(next_frames)
|
| 986 |
+
tile = torch.cat(tile_h, dim=2)
|
| 987 |
+
tile = self.quant_conv(tile)
|
| 988 |
+
self._clear_conv_cache()
|
| 989 |
+
row.append(tile)
|
| 990 |
+
rows.append(row)
|
| 991 |
+
result_rows = []
|
| 992 |
+
for i, row in enumerate(rows):
|
| 993 |
+
result_row = []
|
| 994 |
+
for j, tile in enumerate(row):
|
| 995 |
+
# blend the above tile and the left tile
|
| 996 |
+
# to the current tile and add the current tile to the result row
|
| 997 |
+
if i > 0:
|
| 998 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 999 |
+
if j > 0:
|
| 1000 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1001 |
+
result_row.append(tile[:, :, :, :latent_height, :latent_width])
|
| 1002 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 1003 |
+
|
| 1004 |
+
moments = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
| 1005 |
+
return moments
|
| 1006 |
+
|
| 1007 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 1008 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 1009 |
+
sample_height = height * self.spatial_compression_ratio
|
| 1010 |
+
sample_width = width * self.spatial_compression_ratio
|
| 1011 |
+
|
| 1012 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1013 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1014 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1015 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1016 |
+
|
| 1017 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
| 1018 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
| 1019 |
+
|
| 1020 |
+
# Split z into overlapping 64x64 tiles and decode them separately.
|
| 1021 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1022 |
+
rows = []
|
| 1023 |
+
for i in range(0, height, tile_latent_stride_height):
|
| 1024 |
+
row = []
|
| 1025 |
+
for j in range(0, width, tile_latent_stride_width):
|
| 1026 |
+
tile = z[
|
| 1027 |
+
:,
|
| 1028 |
+
:,
|
| 1029 |
+
:,
|
| 1030 |
+
i : i + tile_latent_min_height,
|
| 1031 |
+
j : j + tile_latent_min_width,
|
| 1032 |
+
]
|
| 1033 |
+
tile = self.post_quant_conv(tile)
|
| 1034 |
+
|
| 1035 |
+
# Process the first frame and save the result
|
| 1036 |
+
first_frames = self.decoder(tile[:, :, :1, :, :])
|
| 1037 |
+
# Initialize the list to store the processed frames, starting with the first frame
|
| 1038 |
+
tile_dec = [first_frames]
|
| 1039 |
+
# Process the remaining frames, with the number of frames processed at a time determined by mini_batch_decoder
|
| 1040 |
+
for k in range(1, num_frames, self.num_latent_frames_batch_size):
|
| 1041 |
+
next_frames = self.decoder(tile[:, :, k : k + self.num_latent_frames_batch_size, :, :])
|
| 1042 |
+
tile_dec.append(next_frames)
|
| 1043 |
+
# Concatenate all processed frames along the channel dimension
|
| 1044 |
+
decoded = torch.cat(tile_dec, dim=2)
|
| 1045 |
+
self._clear_conv_cache()
|
| 1046 |
+
row.append(decoded)
|
| 1047 |
+
rows.append(row)
|
| 1048 |
+
result_rows = []
|
| 1049 |
+
for i, row in enumerate(rows):
|
| 1050 |
+
result_row = []
|
| 1051 |
+
for j, tile in enumerate(row):
|
| 1052 |
+
# blend the above tile and the left tile
|
| 1053 |
+
# to the current tile and add the current tile to the result row
|
| 1054 |
+
if i > 0:
|
| 1055 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1056 |
+
if j > 0:
|
| 1057 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1058 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
| 1059 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 1060 |
+
|
| 1061 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
| 1062 |
+
|
| 1063 |
+
if not return_dict:
|
| 1064 |
+
return (dec,)
|
| 1065 |
+
|
| 1066 |
+
return DecoderOutput(sample=dec)
|
| 1067 |
+
|
| 1068 |
+
def forward(
|
| 1069 |
+
self,
|
| 1070 |
+
sample: torch.Tensor,
|
| 1071 |
+
sample_posterior: bool = False,
|
| 1072 |
+
return_dict: bool = True,
|
| 1073 |
+
generator: Optional[torch.Generator] = None,
|
| 1074 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1075 |
+
r"""
|
| 1076 |
+
Args:
|
| 1077 |
+
sample (`torch.Tensor`): Input sample.
|
| 1078 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 1079 |
+
Whether to sample from the posterior.
|
| 1080 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1081 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 1082 |
+
"""
|
| 1083 |
+
x = sample
|
| 1084 |
+
posterior = self.encode(x).latent_dist
|
| 1085 |
+
if sample_posterior:
|
| 1086 |
+
z = posterior.sample(generator=generator)
|
| 1087 |
+
else:
|
| 1088 |
+
z = posterior.mode()
|
| 1089 |
+
dec = self.decode(z).sample
|
| 1090 |
+
|
| 1091 |
+
if not return_dict:
|
| 1092 |
+
return (dec,)
|
| 1093 |
+
|
| 1094 |
+
return DecoderOutput(sample=dec)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
ADDED
|
@@ -0,0 +1,1131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The Mochi team and The HuggingFace Team.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import functools
|
| 17 |
+
from typing import Dict, Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...utils import logging
|
| 24 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 25 |
+
from ..activations import get_activation
|
| 26 |
+
from ..attention_processor import Attention, MochiVaeAttnProcessor2_0
|
| 27 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from .autoencoder_kl_cogvideox import CogVideoXCausalConv3d
|
| 30 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class MochiChunkedGroupNorm3D(nn.Module):
|
| 37 |
+
r"""
|
| 38 |
+
Applies per-frame group normalization for 5D video inputs. It also supports memory-efficient chunked group
|
| 39 |
+
normalization.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
num_channels (int): Number of channels expected in input
|
| 43 |
+
num_groups (int, optional): Number of groups to separate the channels into. Default: 32
|
| 44 |
+
affine (bool, optional): If True, this module has learnable affine parameters. Default: True
|
| 45 |
+
chunk_size (int, optional): Size of each chunk for processing. Default: 8
|
| 46 |
+
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
num_channels: int,
|
| 52 |
+
num_groups: int = 32,
|
| 53 |
+
affine: bool = True,
|
| 54 |
+
chunk_size: int = 8,
|
| 55 |
+
):
|
| 56 |
+
super().__init__()
|
| 57 |
+
self.norm_layer = nn.GroupNorm(num_channels=num_channels, num_groups=num_groups, affine=affine)
|
| 58 |
+
self.chunk_size = chunk_size
|
| 59 |
+
|
| 60 |
+
def forward(self, x: torch.Tensor = None) -> torch.Tensor:
|
| 61 |
+
batch_size = x.size(0)
|
| 62 |
+
|
| 63 |
+
x = x.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
| 64 |
+
output = torch.cat([self.norm_layer(chunk) for chunk in x.split(self.chunk_size, dim=0)], dim=0)
|
| 65 |
+
output = output.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
| 66 |
+
|
| 67 |
+
return output
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class MochiResnetBlock3D(nn.Module):
|
| 71 |
+
r"""
|
| 72 |
+
A 3D ResNet block used in the Mochi model.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
in_channels (`int`):
|
| 76 |
+
Number of input channels.
|
| 77 |
+
out_channels (`int`, *optional*):
|
| 78 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 79 |
+
non_linearity (`str`, defaults to `"swish"`):
|
| 80 |
+
Activation function to use.
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
def __init__(
|
| 84 |
+
self,
|
| 85 |
+
in_channels: int,
|
| 86 |
+
out_channels: Optional[int] = None,
|
| 87 |
+
act_fn: str = "swish",
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
|
| 91 |
+
out_channels = out_channels or in_channels
|
| 92 |
+
|
| 93 |
+
self.in_channels = in_channels
|
| 94 |
+
self.out_channels = out_channels
|
| 95 |
+
self.nonlinearity = get_activation(act_fn)
|
| 96 |
+
|
| 97 |
+
self.norm1 = MochiChunkedGroupNorm3D(num_channels=in_channels)
|
| 98 |
+
self.conv1 = CogVideoXCausalConv3d(
|
| 99 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate"
|
| 100 |
+
)
|
| 101 |
+
self.norm2 = MochiChunkedGroupNorm3D(num_channels=out_channels)
|
| 102 |
+
self.conv2 = CogVideoXCausalConv3d(
|
| 103 |
+
in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate"
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
def forward(
|
| 107 |
+
self,
|
| 108 |
+
inputs: torch.Tensor,
|
| 109 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
| 110 |
+
) -> torch.Tensor:
|
| 111 |
+
new_conv_cache = {}
|
| 112 |
+
conv_cache = conv_cache or {}
|
| 113 |
+
|
| 114 |
+
hidden_states = inputs
|
| 115 |
+
|
| 116 |
+
hidden_states = self.norm1(hidden_states)
|
| 117 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 118 |
+
hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
|
| 119 |
+
|
| 120 |
+
hidden_states = self.norm2(hidden_states)
|
| 121 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 122 |
+
hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
|
| 123 |
+
|
| 124 |
+
hidden_states = hidden_states + inputs
|
| 125 |
+
return hidden_states, new_conv_cache
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class MochiDownBlock3D(nn.Module):
|
| 129 |
+
r"""
|
| 130 |
+
An downsampling block used in the Mochi model.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
in_channels (`int`):
|
| 134 |
+
Number of input channels.
|
| 135 |
+
out_channels (`int`, *optional*):
|
| 136 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 137 |
+
num_layers (`int`, defaults to `1`):
|
| 138 |
+
Number of resnet blocks in the block.
|
| 139 |
+
temporal_expansion (`int`, defaults to `2`):
|
| 140 |
+
Temporal expansion factor.
|
| 141 |
+
spatial_expansion (`int`, defaults to `2`):
|
| 142 |
+
Spatial expansion factor.
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
def __init__(
|
| 146 |
+
self,
|
| 147 |
+
in_channels: int,
|
| 148 |
+
out_channels: int,
|
| 149 |
+
num_layers: int = 1,
|
| 150 |
+
temporal_expansion: int = 2,
|
| 151 |
+
spatial_expansion: int = 2,
|
| 152 |
+
add_attention: bool = True,
|
| 153 |
+
):
|
| 154 |
+
super().__init__()
|
| 155 |
+
self.temporal_expansion = temporal_expansion
|
| 156 |
+
self.spatial_expansion = spatial_expansion
|
| 157 |
+
|
| 158 |
+
self.conv_in = CogVideoXCausalConv3d(
|
| 159 |
+
in_channels=in_channels,
|
| 160 |
+
out_channels=out_channels,
|
| 161 |
+
kernel_size=(temporal_expansion, spatial_expansion, spatial_expansion),
|
| 162 |
+
stride=(temporal_expansion, spatial_expansion, spatial_expansion),
|
| 163 |
+
pad_mode="replicate",
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
resnets = []
|
| 167 |
+
norms = []
|
| 168 |
+
attentions = []
|
| 169 |
+
for _ in range(num_layers):
|
| 170 |
+
resnets.append(MochiResnetBlock3D(in_channels=out_channels))
|
| 171 |
+
if add_attention:
|
| 172 |
+
norms.append(MochiChunkedGroupNorm3D(num_channels=out_channels))
|
| 173 |
+
attentions.append(
|
| 174 |
+
Attention(
|
| 175 |
+
query_dim=out_channels,
|
| 176 |
+
heads=out_channels // 32,
|
| 177 |
+
dim_head=32,
|
| 178 |
+
qk_norm="l2",
|
| 179 |
+
is_causal=True,
|
| 180 |
+
processor=MochiVaeAttnProcessor2_0(),
|
| 181 |
+
)
|
| 182 |
+
)
|
| 183 |
+
else:
|
| 184 |
+
norms.append(None)
|
| 185 |
+
attentions.append(None)
|
| 186 |
+
|
| 187 |
+
self.resnets = nn.ModuleList(resnets)
|
| 188 |
+
self.norms = nn.ModuleList(norms)
|
| 189 |
+
self.attentions = nn.ModuleList(attentions)
|
| 190 |
+
|
| 191 |
+
self.gradient_checkpointing = False
|
| 192 |
+
|
| 193 |
+
def forward(
|
| 194 |
+
self,
|
| 195 |
+
hidden_states: torch.Tensor,
|
| 196 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
| 197 |
+
chunk_size: int = 2**15,
|
| 198 |
+
) -> torch.Tensor:
|
| 199 |
+
r"""Forward method of the `MochiUpBlock3D` class."""
|
| 200 |
+
|
| 201 |
+
new_conv_cache = {}
|
| 202 |
+
conv_cache = conv_cache or {}
|
| 203 |
+
|
| 204 |
+
hidden_states, new_conv_cache["conv_in"] = self.conv_in(hidden_states)
|
| 205 |
+
|
| 206 |
+
for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)):
|
| 207 |
+
conv_cache_key = f"resnet_{i}"
|
| 208 |
+
|
| 209 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 210 |
+
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
| 211 |
+
resnet,
|
| 212 |
+
hidden_states,
|
| 213 |
+
conv_cache.get(conv_cache_key),
|
| 214 |
+
)
|
| 215 |
+
else:
|
| 216 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
| 217 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if attn is not None:
|
| 221 |
+
residual = hidden_states
|
| 222 |
+
hidden_states = norm(hidden_states)
|
| 223 |
+
|
| 224 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 225 |
+
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous()
|
| 226 |
+
|
| 227 |
+
# Perform attention in chunks to avoid following error:
|
| 228 |
+
# RuntimeError: CUDA error: invalid configuration argument
|
| 229 |
+
if hidden_states.size(0) <= chunk_size:
|
| 230 |
+
hidden_states = attn(hidden_states)
|
| 231 |
+
else:
|
| 232 |
+
hidden_states_chunks = []
|
| 233 |
+
for i in range(0, hidden_states.size(0), chunk_size):
|
| 234 |
+
hidden_states_chunk = hidden_states[i : i + chunk_size]
|
| 235 |
+
hidden_states_chunk = attn(hidden_states_chunk)
|
| 236 |
+
hidden_states_chunks.append(hidden_states_chunk)
|
| 237 |
+
hidden_states = torch.cat(hidden_states_chunks)
|
| 238 |
+
|
| 239 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2)
|
| 240 |
+
|
| 241 |
+
hidden_states = residual + hidden_states
|
| 242 |
+
|
| 243 |
+
return hidden_states, new_conv_cache
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
class MochiMidBlock3D(nn.Module):
|
| 247 |
+
r"""
|
| 248 |
+
A middle block used in the Mochi model.
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
in_channels (`int`):
|
| 252 |
+
Number of input channels.
|
| 253 |
+
num_layers (`int`, defaults to `3`):
|
| 254 |
+
Number of resnet blocks in the block.
|
| 255 |
+
"""
|
| 256 |
+
|
| 257 |
+
def __init__(
|
| 258 |
+
self,
|
| 259 |
+
in_channels: int, # 768
|
| 260 |
+
num_layers: int = 3,
|
| 261 |
+
add_attention: bool = True,
|
| 262 |
+
):
|
| 263 |
+
super().__init__()
|
| 264 |
+
|
| 265 |
+
resnets = []
|
| 266 |
+
norms = []
|
| 267 |
+
attentions = []
|
| 268 |
+
|
| 269 |
+
for _ in range(num_layers):
|
| 270 |
+
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
|
| 271 |
+
|
| 272 |
+
if add_attention:
|
| 273 |
+
norms.append(MochiChunkedGroupNorm3D(num_channels=in_channels))
|
| 274 |
+
attentions.append(
|
| 275 |
+
Attention(
|
| 276 |
+
query_dim=in_channels,
|
| 277 |
+
heads=in_channels // 32,
|
| 278 |
+
dim_head=32,
|
| 279 |
+
qk_norm="l2",
|
| 280 |
+
is_causal=True,
|
| 281 |
+
processor=MochiVaeAttnProcessor2_0(),
|
| 282 |
+
)
|
| 283 |
+
)
|
| 284 |
+
else:
|
| 285 |
+
norms.append(None)
|
| 286 |
+
attentions.append(None)
|
| 287 |
+
|
| 288 |
+
self.resnets = nn.ModuleList(resnets)
|
| 289 |
+
self.norms = nn.ModuleList(norms)
|
| 290 |
+
self.attentions = nn.ModuleList(attentions)
|
| 291 |
+
|
| 292 |
+
self.gradient_checkpointing = False
|
| 293 |
+
|
| 294 |
+
def forward(
|
| 295 |
+
self,
|
| 296 |
+
hidden_states: torch.Tensor,
|
| 297 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
| 298 |
+
) -> torch.Tensor:
|
| 299 |
+
r"""Forward method of the `MochiMidBlock3D` class."""
|
| 300 |
+
|
| 301 |
+
new_conv_cache = {}
|
| 302 |
+
conv_cache = conv_cache or {}
|
| 303 |
+
|
| 304 |
+
for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)):
|
| 305 |
+
conv_cache_key = f"resnet_{i}"
|
| 306 |
+
|
| 307 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 308 |
+
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
| 309 |
+
resnet, hidden_states, conv_cache.get(conv_cache_key)
|
| 310 |
+
)
|
| 311 |
+
else:
|
| 312 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
| 313 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
if attn is not None:
|
| 317 |
+
residual = hidden_states
|
| 318 |
+
hidden_states = norm(hidden_states)
|
| 319 |
+
|
| 320 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 321 |
+
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous()
|
| 322 |
+
hidden_states = attn(hidden_states)
|
| 323 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2)
|
| 324 |
+
|
| 325 |
+
hidden_states = residual + hidden_states
|
| 326 |
+
|
| 327 |
+
return hidden_states, new_conv_cache
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class MochiUpBlock3D(nn.Module):
|
| 331 |
+
r"""
|
| 332 |
+
An upsampling block used in the Mochi model.
|
| 333 |
+
|
| 334 |
+
Args:
|
| 335 |
+
in_channels (`int`):
|
| 336 |
+
Number of input channels.
|
| 337 |
+
out_channels (`int`, *optional*):
|
| 338 |
+
Number of output channels. If None, defaults to `in_channels`.
|
| 339 |
+
num_layers (`int`, defaults to `1`):
|
| 340 |
+
Number of resnet blocks in the block.
|
| 341 |
+
temporal_expansion (`int`, defaults to `2`):
|
| 342 |
+
Temporal expansion factor.
|
| 343 |
+
spatial_expansion (`int`, defaults to `2`):
|
| 344 |
+
Spatial expansion factor.
|
| 345 |
+
"""
|
| 346 |
+
|
| 347 |
+
def __init__(
|
| 348 |
+
self,
|
| 349 |
+
in_channels: int,
|
| 350 |
+
out_channels: int,
|
| 351 |
+
num_layers: int = 1,
|
| 352 |
+
temporal_expansion: int = 2,
|
| 353 |
+
spatial_expansion: int = 2,
|
| 354 |
+
):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.temporal_expansion = temporal_expansion
|
| 357 |
+
self.spatial_expansion = spatial_expansion
|
| 358 |
+
|
| 359 |
+
resnets = []
|
| 360 |
+
for _ in range(num_layers):
|
| 361 |
+
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
|
| 362 |
+
self.resnets = nn.ModuleList(resnets)
|
| 363 |
+
|
| 364 |
+
self.proj = nn.Linear(in_channels, out_channels * temporal_expansion * spatial_expansion**2)
|
| 365 |
+
|
| 366 |
+
self.gradient_checkpointing = False
|
| 367 |
+
|
| 368 |
+
def forward(
|
| 369 |
+
self,
|
| 370 |
+
hidden_states: torch.Tensor,
|
| 371 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
| 372 |
+
) -> torch.Tensor:
|
| 373 |
+
r"""Forward method of the `MochiUpBlock3D` class."""
|
| 374 |
+
|
| 375 |
+
new_conv_cache = {}
|
| 376 |
+
conv_cache = conv_cache or {}
|
| 377 |
+
|
| 378 |
+
for i, resnet in enumerate(self.resnets):
|
| 379 |
+
conv_cache_key = f"resnet_{i}"
|
| 380 |
+
|
| 381 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 382 |
+
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
| 383 |
+
resnet,
|
| 384 |
+
hidden_states,
|
| 385 |
+
conv_cache.get(conv_cache_key),
|
| 386 |
+
)
|
| 387 |
+
else:
|
| 388 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
| 389 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
| 393 |
+
hidden_states = self.proj(hidden_states)
|
| 394 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
| 395 |
+
|
| 396 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 397 |
+
st = self.temporal_expansion
|
| 398 |
+
sh = self.spatial_expansion
|
| 399 |
+
sw = self.spatial_expansion
|
| 400 |
+
|
| 401 |
+
# Reshape and unpatchify
|
| 402 |
+
hidden_states = hidden_states.view(batch_size, -1, st, sh, sw, num_frames, height, width)
|
| 403 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
| 404 |
+
hidden_states = hidden_states.view(batch_size, -1, num_frames * st, height * sh, width * sw)
|
| 405 |
+
|
| 406 |
+
return hidden_states, new_conv_cache
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
class FourierFeatures(nn.Module):
|
| 410 |
+
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
| 411 |
+
super().__init__()
|
| 412 |
+
|
| 413 |
+
self.start = start
|
| 414 |
+
self.stop = stop
|
| 415 |
+
self.step = step
|
| 416 |
+
|
| 417 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
| 418 |
+
r"""Forward method of the `FourierFeatures` class."""
|
| 419 |
+
original_dtype = inputs.dtype
|
| 420 |
+
inputs = inputs.to(torch.float32)
|
| 421 |
+
num_channels = inputs.shape[1]
|
| 422 |
+
num_freqs = (self.stop - self.start) // self.step
|
| 423 |
+
|
| 424 |
+
freqs = torch.arange(self.start, self.stop, self.step, dtype=inputs.dtype, device=inputs.device)
|
| 425 |
+
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
| 426 |
+
w = w.repeat(num_channels)[None, :, None, None, None] # [1, num_channels * num_freqs, 1, 1, 1]
|
| 427 |
+
|
| 428 |
+
# Interleaved repeat of input channels to match w
|
| 429 |
+
h = inputs.repeat_interleave(
|
| 430 |
+
num_freqs, dim=1, output_size=inputs.shape[1] * num_freqs
|
| 431 |
+
) # [B, C * num_freqs, T, H, W]
|
| 432 |
+
# Scale channels by frequency.
|
| 433 |
+
h = w * h
|
| 434 |
+
|
| 435 |
+
return torch.cat([inputs, torch.sin(h), torch.cos(h)], dim=1).to(original_dtype)
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
class MochiEncoder3D(nn.Module):
|
| 439 |
+
r"""
|
| 440 |
+
The `MochiEncoder3D` layer of a variational autoencoder that encodes input video samples to its latent
|
| 441 |
+
representation.
|
| 442 |
+
|
| 443 |
+
Args:
|
| 444 |
+
in_channels (`int`, *optional*):
|
| 445 |
+
The number of input channels.
|
| 446 |
+
out_channels (`int`, *optional*):
|
| 447 |
+
The number of output channels.
|
| 448 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
|
| 449 |
+
The number of output channels for each block.
|
| 450 |
+
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
|
| 451 |
+
The number of resnet blocks for each block.
|
| 452 |
+
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
|
| 453 |
+
The temporal expansion factor for each of the up blocks.
|
| 454 |
+
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
|
| 455 |
+
The spatial expansion factor for each of the up blocks.
|
| 456 |
+
non_linearity (`str`, *optional*, defaults to `"swish"`):
|
| 457 |
+
The non-linearity to use in the decoder.
|
| 458 |
+
"""
|
| 459 |
+
|
| 460 |
+
def __init__(
|
| 461 |
+
self,
|
| 462 |
+
in_channels: int,
|
| 463 |
+
out_channels: int,
|
| 464 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
|
| 465 |
+
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
|
| 466 |
+
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
|
| 467 |
+
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
|
| 468 |
+
add_attention_block: Tuple[bool, ...] = (False, True, True, True, True),
|
| 469 |
+
act_fn: str = "swish",
|
| 470 |
+
):
|
| 471 |
+
super().__init__()
|
| 472 |
+
|
| 473 |
+
self.nonlinearity = get_activation(act_fn)
|
| 474 |
+
|
| 475 |
+
self.fourier_features = FourierFeatures()
|
| 476 |
+
self.proj_in = nn.Linear(in_channels, block_out_channels[0])
|
| 477 |
+
self.block_in = MochiMidBlock3D(
|
| 478 |
+
in_channels=block_out_channels[0], num_layers=layers_per_block[0], add_attention=add_attention_block[0]
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
down_blocks = []
|
| 482 |
+
for i in range(len(block_out_channels) - 1):
|
| 483 |
+
down_block = MochiDownBlock3D(
|
| 484 |
+
in_channels=block_out_channels[i],
|
| 485 |
+
out_channels=block_out_channels[i + 1],
|
| 486 |
+
num_layers=layers_per_block[i + 1],
|
| 487 |
+
temporal_expansion=temporal_expansions[i],
|
| 488 |
+
spatial_expansion=spatial_expansions[i],
|
| 489 |
+
add_attention=add_attention_block[i + 1],
|
| 490 |
+
)
|
| 491 |
+
down_blocks.append(down_block)
|
| 492 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
| 493 |
+
|
| 494 |
+
self.block_out = MochiMidBlock3D(
|
| 495 |
+
in_channels=block_out_channels[-1], num_layers=layers_per_block[-1], add_attention=add_attention_block[-1]
|
| 496 |
+
)
|
| 497 |
+
self.norm_out = MochiChunkedGroupNorm3D(block_out_channels[-1])
|
| 498 |
+
self.proj_out = nn.Linear(block_out_channels[-1], 2 * out_channels, bias=False)
|
| 499 |
+
|
| 500 |
+
self.gradient_checkpointing = False
|
| 501 |
+
|
| 502 |
+
def forward(
|
| 503 |
+
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
|
| 504 |
+
) -> torch.Tensor:
|
| 505 |
+
r"""Forward method of the `MochiEncoder3D` class."""
|
| 506 |
+
|
| 507 |
+
new_conv_cache = {}
|
| 508 |
+
conv_cache = conv_cache or {}
|
| 509 |
+
|
| 510 |
+
hidden_states = self.fourier_features(hidden_states)
|
| 511 |
+
|
| 512 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
| 513 |
+
hidden_states = self.proj_in(hidden_states)
|
| 514 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
| 515 |
+
|
| 516 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 517 |
+
hidden_states, new_conv_cache["block_in"] = self._gradient_checkpointing_func(
|
| 518 |
+
self.block_in, hidden_states, conv_cache.get("block_in")
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
for i, down_block in enumerate(self.down_blocks):
|
| 522 |
+
conv_cache_key = f"down_block_{i}"
|
| 523 |
+
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
| 524 |
+
down_block, hidden_states, conv_cache.get(conv_cache_key)
|
| 525 |
+
)
|
| 526 |
+
else:
|
| 527 |
+
hidden_states, new_conv_cache["block_in"] = self.block_in(
|
| 528 |
+
hidden_states, conv_cache=conv_cache.get("block_in")
|
| 529 |
+
)
|
| 530 |
+
|
| 531 |
+
for i, down_block in enumerate(self.down_blocks):
|
| 532 |
+
conv_cache_key = f"down_block_{i}"
|
| 533 |
+
hidden_states, new_conv_cache[conv_cache_key] = down_block(
|
| 534 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
hidden_states, new_conv_cache["block_out"] = self.block_out(
|
| 538 |
+
hidden_states, conv_cache=conv_cache.get("block_out")
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
hidden_states = self.norm_out(hidden_states)
|
| 542 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 543 |
+
|
| 544 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
| 545 |
+
hidden_states = self.proj_out(hidden_states)
|
| 546 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
| 547 |
+
|
| 548 |
+
return hidden_states, new_conv_cache
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
class MochiDecoder3D(nn.Module):
|
| 552 |
+
r"""
|
| 553 |
+
The `MochiDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
|
| 554 |
+
sample.
|
| 555 |
+
|
| 556 |
+
Args:
|
| 557 |
+
in_channels (`int`, *optional*):
|
| 558 |
+
The number of input channels.
|
| 559 |
+
out_channels (`int`, *optional*):
|
| 560 |
+
The number of output channels.
|
| 561 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
|
| 562 |
+
The number of output channels for each block.
|
| 563 |
+
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
|
| 564 |
+
The number of resnet blocks for each block.
|
| 565 |
+
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
|
| 566 |
+
The temporal expansion factor for each of the up blocks.
|
| 567 |
+
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
|
| 568 |
+
The spatial expansion factor for each of the up blocks.
|
| 569 |
+
non_linearity (`str`, *optional*, defaults to `"swish"`):
|
| 570 |
+
The non-linearity to use in the decoder.
|
| 571 |
+
"""
|
| 572 |
+
|
| 573 |
+
def __init__(
|
| 574 |
+
self,
|
| 575 |
+
in_channels: int, # 12
|
| 576 |
+
out_channels: int, # 3
|
| 577 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
|
| 578 |
+
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
|
| 579 |
+
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
|
| 580 |
+
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
|
| 581 |
+
act_fn: str = "swish",
|
| 582 |
+
):
|
| 583 |
+
super().__init__()
|
| 584 |
+
|
| 585 |
+
self.nonlinearity = get_activation(act_fn)
|
| 586 |
+
|
| 587 |
+
self.conv_in = nn.Conv3d(in_channels, block_out_channels[-1], kernel_size=(1, 1, 1))
|
| 588 |
+
self.block_in = MochiMidBlock3D(
|
| 589 |
+
in_channels=block_out_channels[-1],
|
| 590 |
+
num_layers=layers_per_block[-1],
|
| 591 |
+
add_attention=False,
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
up_blocks = []
|
| 595 |
+
for i in range(len(block_out_channels) - 1):
|
| 596 |
+
up_block = MochiUpBlock3D(
|
| 597 |
+
in_channels=block_out_channels[-i - 1],
|
| 598 |
+
out_channels=block_out_channels[-i - 2],
|
| 599 |
+
num_layers=layers_per_block[-i - 2],
|
| 600 |
+
temporal_expansion=temporal_expansions[-i - 1],
|
| 601 |
+
spatial_expansion=spatial_expansions[-i - 1],
|
| 602 |
+
)
|
| 603 |
+
up_blocks.append(up_block)
|
| 604 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
| 605 |
+
|
| 606 |
+
self.block_out = MochiMidBlock3D(
|
| 607 |
+
in_channels=block_out_channels[0],
|
| 608 |
+
num_layers=layers_per_block[0],
|
| 609 |
+
add_attention=False,
|
| 610 |
+
)
|
| 611 |
+
self.proj_out = nn.Linear(block_out_channels[0], out_channels)
|
| 612 |
+
|
| 613 |
+
self.gradient_checkpointing = False
|
| 614 |
+
|
| 615 |
+
def forward(
|
| 616 |
+
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
|
| 617 |
+
) -> torch.Tensor:
|
| 618 |
+
r"""Forward method of the `MochiDecoder3D` class."""
|
| 619 |
+
|
| 620 |
+
new_conv_cache = {}
|
| 621 |
+
conv_cache = conv_cache or {}
|
| 622 |
+
|
| 623 |
+
hidden_states = self.conv_in(hidden_states)
|
| 624 |
+
|
| 625 |
+
# 1. Mid
|
| 626 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 627 |
+
hidden_states, new_conv_cache["block_in"] = self._gradient_checkpointing_func(
|
| 628 |
+
self.block_in, hidden_states, conv_cache.get("block_in")
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
for i, up_block in enumerate(self.up_blocks):
|
| 632 |
+
conv_cache_key = f"up_block_{i}"
|
| 633 |
+
hidden_states, new_conv_cache[conv_cache_key] = self._gradient_checkpointing_func(
|
| 634 |
+
up_block, hidden_states, conv_cache.get(conv_cache_key)
|
| 635 |
+
)
|
| 636 |
+
else:
|
| 637 |
+
hidden_states, new_conv_cache["block_in"] = self.block_in(
|
| 638 |
+
hidden_states, conv_cache=conv_cache.get("block_in")
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
for i, up_block in enumerate(self.up_blocks):
|
| 642 |
+
conv_cache_key = f"up_block_{i}"
|
| 643 |
+
hidden_states, new_conv_cache[conv_cache_key] = up_block(
|
| 644 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
| 645 |
+
)
|
| 646 |
+
|
| 647 |
+
hidden_states, new_conv_cache["block_out"] = self.block_out(
|
| 648 |
+
hidden_states, conv_cache=conv_cache.get("block_out")
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 652 |
+
|
| 653 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
| 654 |
+
hidden_states = self.proj_out(hidden_states)
|
| 655 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
| 656 |
+
|
| 657 |
+
return hidden_states, new_conv_cache
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
class AutoencoderKLMochi(ModelMixin, ConfigMixin):
|
| 661 |
+
r"""
|
| 662 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
|
| 663 |
+
[Mochi 1 preview](https://github.com/genmoai/models).
|
| 664 |
+
|
| 665 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 666 |
+
for all models (such as downloading or saving).
|
| 667 |
+
|
| 668 |
+
Parameters:
|
| 669 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
| 670 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
| 671 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
| 672 |
+
Tuple of block output channels.
|
| 673 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 674 |
+
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
|
| 675 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
| 676 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
| 677 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
| 678 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
| 679 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
| 680 |
+
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
|
| 681 |
+
"""
|
| 682 |
+
|
| 683 |
+
_supports_gradient_checkpointing = True
|
| 684 |
+
_no_split_modules = ["MochiResnetBlock3D"]
|
| 685 |
+
|
| 686 |
+
@register_to_config
|
| 687 |
+
def __init__(
|
| 688 |
+
self,
|
| 689 |
+
in_channels: int = 15,
|
| 690 |
+
out_channels: int = 3,
|
| 691 |
+
encoder_block_out_channels: Tuple[int] = (64, 128, 256, 384),
|
| 692 |
+
decoder_block_out_channels: Tuple[int] = (128, 256, 512, 768),
|
| 693 |
+
latent_channels: int = 12,
|
| 694 |
+
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
|
| 695 |
+
act_fn: str = "silu",
|
| 696 |
+
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
|
| 697 |
+
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
|
| 698 |
+
add_attention_block: Tuple[bool, ...] = (False, True, True, True, True),
|
| 699 |
+
latents_mean: Tuple[float, ...] = (
|
| 700 |
+
-0.06730895953510081,
|
| 701 |
+
-0.038011381506090416,
|
| 702 |
+
-0.07477820912866141,
|
| 703 |
+
-0.05565264470995561,
|
| 704 |
+
0.012767231469026969,
|
| 705 |
+
-0.04703542746246419,
|
| 706 |
+
0.043896967884726704,
|
| 707 |
+
-0.09346305707025976,
|
| 708 |
+
-0.09918314763016893,
|
| 709 |
+
-0.008729793427399178,
|
| 710 |
+
-0.011931556316503654,
|
| 711 |
+
-0.0321993391887285,
|
| 712 |
+
),
|
| 713 |
+
latents_std: Tuple[float, ...] = (
|
| 714 |
+
0.9263795028493863,
|
| 715 |
+
0.9248894543193766,
|
| 716 |
+
0.9393059390890617,
|
| 717 |
+
0.959253732819592,
|
| 718 |
+
0.8244560132752793,
|
| 719 |
+
0.917259975397747,
|
| 720 |
+
0.9294154431013696,
|
| 721 |
+
1.3720942357788521,
|
| 722 |
+
0.881393668867029,
|
| 723 |
+
0.9168315692124348,
|
| 724 |
+
0.9185249279345552,
|
| 725 |
+
0.9274757570805041,
|
| 726 |
+
),
|
| 727 |
+
scaling_factor: float = 1.0,
|
| 728 |
+
):
|
| 729 |
+
super().__init__()
|
| 730 |
+
|
| 731 |
+
self.encoder = MochiEncoder3D(
|
| 732 |
+
in_channels=in_channels,
|
| 733 |
+
out_channels=latent_channels,
|
| 734 |
+
block_out_channels=encoder_block_out_channels,
|
| 735 |
+
layers_per_block=layers_per_block,
|
| 736 |
+
temporal_expansions=temporal_expansions,
|
| 737 |
+
spatial_expansions=spatial_expansions,
|
| 738 |
+
add_attention_block=add_attention_block,
|
| 739 |
+
act_fn=act_fn,
|
| 740 |
+
)
|
| 741 |
+
self.decoder = MochiDecoder3D(
|
| 742 |
+
in_channels=latent_channels,
|
| 743 |
+
out_channels=out_channels,
|
| 744 |
+
block_out_channels=decoder_block_out_channels,
|
| 745 |
+
layers_per_block=layers_per_block,
|
| 746 |
+
temporal_expansions=temporal_expansions,
|
| 747 |
+
spatial_expansions=spatial_expansions,
|
| 748 |
+
act_fn=act_fn,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
self.spatial_compression_ratio = functools.reduce(lambda x, y: x * y, spatial_expansions, 1)
|
| 752 |
+
self.temporal_compression_ratio = functools.reduce(lambda x, y: x * y, temporal_expansions, 1)
|
| 753 |
+
|
| 754 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 755 |
+
# to perform decoding of a single video latent at a time.
|
| 756 |
+
self.use_slicing = False
|
| 757 |
+
|
| 758 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 759 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 760 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 761 |
+
self.use_tiling = False
|
| 762 |
+
|
| 763 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
| 764 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
| 765 |
+
self.use_framewise_encoding = False
|
| 766 |
+
self.use_framewise_decoding = False
|
| 767 |
+
|
| 768 |
+
# This can be used to determine how the number of output frames in the final decoded video. To maintain consistency with
|
| 769 |
+
# the original implementation, this defaults to `True`.
|
| 770 |
+
# - Original implementation (drop_last_temporal_frames=True):
|
| 771 |
+
# Output frames = (latent_frames - 1) * temporal_compression_ratio + 1
|
| 772 |
+
# - Without dropping additional temporal upscaled frames (drop_last_temporal_frames=False):
|
| 773 |
+
# Output frames = latent_frames * temporal_compression_ratio
|
| 774 |
+
# The latter case is useful for frame packing and some training/finetuning scenarios where the additional.
|
| 775 |
+
self.drop_last_temporal_frames = True
|
| 776 |
+
|
| 777 |
+
# This can be configured based on the amount of GPU memory available.
|
| 778 |
+
# `12` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
|
| 779 |
+
# Setting it to higher values results in higher memory usage.
|
| 780 |
+
self.num_sample_frames_batch_size = 12
|
| 781 |
+
self.num_latent_frames_batch_size = 2
|
| 782 |
+
|
| 783 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 784 |
+
self.tile_sample_min_height = 256
|
| 785 |
+
self.tile_sample_min_width = 256
|
| 786 |
+
|
| 787 |
+
# The minimal distance between two spatial tiles
|
| 788 |
+
self.tile_sample_stride_height = 192
|
| 789 |
+
self.tile_sample_stride_width = 192
|
| 790 |
+
|
| 791 |
+
def enable_tiling(
|
| 792 |
+
self,
|
| 793 |
+
tile_sample_min_height: Optional[int] = None,
|
| 794 |
+
tile_sample_min_width: Optional[int] = None,
|
| 795 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 796 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 797 |
+
) -> None:
|
| 798 |
+
r"""
|
| 799 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 800 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 801 |
+
processing larger images.
|
| 802 |
+
|
| 803 |
+
Args:
|
| 804 |
+
tile_sample_min_height (`int`, *optional*):
|
| 805 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 806 |
+
tile_sample_min_width (`int`, *optional*):
|
| 807 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 808 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 809 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 810 |
+
no tiling artifacts produced across the height dimension.
|
| 811 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 812 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 813 |
+
artifacts produced across the width dimension.
|
| 814 |
+
"""
|
| 815 |
+
self.use_tiling = True
|
| 816 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 817 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 818 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 819 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 820 |
+
|
| 821 |
+
def disable_tiling(self) -> None:
|
| 822 |
+
r"""
|
| 823 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 824 |
+
decoding in one step.
|
| 825 |
+
"""
|
| 826 |
+
self.use_tiling = False
|
| 827 |
+
|
| 828 |
+
def enable_slicing(self) -> None:
|
| 829 |
+
r"""
|
| 830 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 831 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 832 |
+
"""
|
| 833 |
+
self.use_slicing = True
|
| 834 |
+
|
| 835 |
+
def disable_slicing(self) -> None:
|
| 836 |
+
r"""
|
| 837 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 838 |
+
decoding in one step.
|
| 839 |
+
"""
|
| 840 |
+
self.use_slicing = False
|
| 841 |
+
|
| 842 |
+
def _enable_framewise_encoding(self):
|
| 843 |
+
r"""
|
| 844 |
+
Enables the framewise VAE encoding implementation with past latent padding. By default, Diffusers uses the
|
| 845 |
+
oneshot encoding implementation without current latent replicate padding.
|
| 846 |
+
|
| 847 |
+
Warning: Framewise encoding may not work as expected due to the causal attention layers. If you enable
|
| 848 |
+
framewise encoding, encode a video, and try to decode it, there will be noticeable jittering effect.
|
| 849 |
+
"""
|
| 850 |
+
self.use_framewise_encoding = True
|
| 851 |
+
for name, module in self.named_modules():
|
| 852 |
+
if isinstance(module, CogVideoXCausalConv3d):
|
| 853 |
+
module.pad_mode = "constant"
|
| 854 |
+
|
| 855 |
+
def _enable_framewise_decoding(self):
|
| 856 |
+
r"""
|
| 857 |
+
Enables the framewise VAE decoding implementation with past latent padding. By default, Diffusers uses the
|
| 858 |
+
oneshot decoding implementation without current latent replicate padding.
|
| 859 |
+
"""
|
| 860 |
+
self.use_framewise_decoding = True
|
| 861 |
+
for name, module in self.named_modules():
|
| 862 |
+
if isinstance(module, CogVideoXCausalConv3d):
|
| 863 |
+
module.pad_mode = "constant"
|
| 864 |
+
|
| 865 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 866 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 867 |
+
|
| 868 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
| 869 |
+
return self.tiled_encode(x)
|
| 870 |
+
|
| 871 |
+
if self.use_framewise_encoding:
|
| 872 |
+
raise NotImplementedError(
|
| 873 |
+
"Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. "
|
| 874 |
+
"As intermediate frames are not independent from each other, they cannot be encoded frame-wise."
|
| 875 |
+
)
|
| 876 |
+
else:
|
| 877 |
+
enc, _ = self.encoder(x)
|
| 878 |
+
|
| 879 |
+
return enc
|
| 880 |
+
|
| 881 |
+
@apply_forward_hook
|
| 882 |
+
def encode(
|
| 883 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 884 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 885 |
+
"""
|
| 886 |
+
Encode a batch of images into latents.
|
| 887 |
+
|
| 888 |
+
Args:
|
| 889 |
+
x (`torch.Tensor`): Input batch of images.
|
| 890 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 891 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 892 |
+
|
| 893 |
+
Returns:
|
| 894 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
| 895 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 896 |
+
"""
|
| 897 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 898 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 899 |
+
h = torch.cat(encoded_slices)
|
| 900 |
+
else:
|
| 901 |
+
h = self._encode(x)
|
| 902 |
+
|
| 903 |
+
posterior = DiagonalGaussianDistribution(h)
|
| 904 |
+
|
| 905 |
+
if not return_dict:
|
| 906 |
+
return (posterior,)
|
| 907 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 908 |
+
|
| 909 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 910 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 911 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 912 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 913 |
+
|
| 914 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
| 915 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
| 916 |
+
|
| 917 |
+
if self.use_framewise_decoding:
|
| 918 |
+
conv_cache = None
|
| 919 |
+
dec = []
|
| 920 |
+
|
| 921 |
+
for i in range(0, num_frames, self.num_latent_frames_batch_size):
|
| 922 |
+
z_intermediate = z[:, :, i : i + self.num_latent_frames_batch_size]
|
| 923 |
+
z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
|
| 924 |
+
dec.append(z_intermediate)
|
| 925 |
+
|
| 926 |
+
dec = torch.cat(dec, dim=2)
|
| 927 |
+
else:
|
| 928 |
+
dec, _ = self.decoder(z)
|
| 929 |
+
|
| 930 |
+
if self.drop_last_temporal_frames and dec.size(2) >= self.temporal_compression_ratio:
|
| 931 |
+
dec = dec[:, :, self.temporal_compression_ratio - 1 :]
|
| 932 |
+
|
| 933 |
+
if not return_dict:
|
| 934 |
+
return (dec,)
|
| 935 |
+
|
| 936 |
+
return DecoderOutput(sample=dec)
|
| 937 |
+
|
| 938 |
+
@apply_forward_hook
|
| 939 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 940 |
+
"""
|
| 941 |
+
Decode a batch of images.
|
| 942 |
+
|
| 943 |
+
Args:
|
| 944 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 945 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 946 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 947 |
+
|
| 948 |
+
Returns:
|
| 949 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 950 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 951 |
+
returned.
|
| 952 |
+
"""
|
| 953 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 954 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 955 |
+
decoded = torch.cat(decoded_slices)
|
| 956 |
+
else:
|
| 957 |
+
decoded = self._decode(z).sample
|
| 958 |
+
|
| 959 |
+
if not return_dict:
|
| 960 |
+
return (decoded,)
|
| 961 |
+
|
| 962 |
+
return DecoderOutput(sample=decoded)
|
| 963 |
+
|
| 964 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 965 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
| 966 |
+
for y in range(blend_extent):
|
| 967 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
| 968 |
+
y / blend_extent
|
| 969 |
+
)
|
| 970 |
+
return b
|
| 971 |
+
|
| 972 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 973 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
| 974 |
+
for x in range(blend_extent):
|
| 975 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
| 976 |
+
x / blend_extent
|
| 977 |
+
)
|
| 978 |
+
return b
|
| 979 |
+
|
| 980 |
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 981 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 982 |
+
|
| 983 |
+
Args:
|
| 984 |
+
x (`torch.Tensor`): Input batch of videos.
|
| 985 |
+
|
| 986 |
+
Returns:
|
| 987 |
+
`torch.Tensor`:
|
| 988 |
+
The latent representation of the encoded videos.
|
| 989 |
+
"""
|
| 990 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
| 991 |
+
latent_height = height // self.spatial_compression_ratio
|
| 992 |
+
latent_width = width // self.spatial_compression_ratio
|
| 993 |
+
|
| 994 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 995 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 996 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 997 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 998 |
+
|
| 999 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
| 1000 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
| 1001 |
+
|
| 1002 |
+
# Split x into overlapping tiles and encode them separately.
|
| 1003 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1004 |
+
rows = []
|
| 1005 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
| 1006 |
+
row = []
|
| 1007 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
| 1008 |
+
if self.use_framewise_encoding:
|
| 1009 |
+
raise NotImplementedError(
|
| 1010 |
+
"Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. "
|
| 1011 |
+
"As intermediate frames are not independent from each other, they cannot be encoded frame-wise."
|
| 1012 |
+
)
|
| 1013 |
+
else:
|
| 1014 |
+
time, _ = self.encoder(
|
| 1015 |
+
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
| 1016 |
+
)
|
| 1017 |
+
|
| 1018 |
+
row.append(time)
|
| 1019 |
+
rows.append(row)
|
| 1020 |
+
|
| 1021 |
+
result_rows = []
|
| 1022 |
+
for i, row in enumerate(rows):
|
| 1023 |
+
result_row = []
|
| 1024 |
+
for j, tile in enumerate(row):
|
| 1025 |
+
# blend the above tile and the left tile
|
| 1026 |
+
# to the current tile and add the current tile to the result row
|
| 1027 |
+
if i > 0:
|
| 1028 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1029 |
+
if j > 0:
|
| 1030 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1031 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
| 1032 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 1033 |
+
|
| 1034 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
| 1035 |
+
return enc
|
| 1036 |
+
|
| 1037 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 1038 |
+
r"""
|
| 1039 |
+
Decode a batch of images using a tiled decoder.
|
| 1040 |
+
|
| 1041 |
+
Args:
|
| 1042 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 1043 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1044 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 1045 |
+
|
| 1046 |
+
Returns:
|
| 1047 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 1048 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 1049 |
+
returned.
|
| 1050 |
+
"""
|
| 1051 |
+
|
| 1052 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
| 1053 |
+
sample_height = height * self.spatial_compression_ratio
|
| 1054 |
+
sample_width = width * self.spatial_compression_ratio
|
| 1055 |
+
|
| 1056 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1057 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1058 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1059 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1060 |
+
|
| 1061 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
| 1062 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
| 1063 |
+
|
| 1064 |
+
# Split z into overlapping tiles and decode them separately.
|
| 1065 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1066 |
+
rows = []
|
| 1067 |
+
for i in range(0, height, tile_latent_stride_height):
|
| 1068 |
+
row = []
|
| 1069 |
+
for j in range(0, width, tile_latent_stride_width):
|
| 1070 |
+
if self.use_framewise_decoding:
|
| 1071 |
+
time = []
|
| 1072 |
+
conv_cache = None
|
| 1073 |
+
|
| 1074 |
+
for k in range(0, num_frames, self.num_latent_frames_batch_size):
|
| 1075 |
+
tile = z[
|
| 1076 |
+
:,
|
| 1077 |
+
:,
|
| 1078 |
+
k : k + self.num_latent_frames_batch_size,
|
| 1079 |
+
i : i + tile_latent_min_height,
|
| 1080 |
+
j : j + tile_latent_min_width,
|
| 1081 |
+
]
|
| 1082 |
+
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
|
| 1083 |
+
time.append(tile)
|
| 1084 |
+
|
| 1085 |
+
time = torch.cat(time, dim=2)
|
| 1086 |
+
else:
|
| 1087 |
+
time, _ = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width])
|
| 1088 |
+
|
| 1089 |
+
if self.drop_last_temporal_frames and time.size(2) >= self.temporal_compression_ratio:
|
| 1090 |
+
time = time[:, :, self.temporal_compression_ratio - 1 :]
|
| 1091 |
+
|
| 1092 |
+
row.append(time)
|
| 1093 |
+
rows.append(row)
|
| 1094 |
+
|
| 1095 |
+
result_rows = []
|
| 1096 |
+
for i, row in enumerate(rows):
|
| 1097 |
+
result_row = []
|
| 1098 |
+
for j, tile in enumerate(row):
|
| 1099 |
+
# blend the above tile and the left tile
|
| 1100 |
+
# to the current tile and add the current tile to the result row
|
| 1101 |
+
if i > 0:
|
| 1102 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1103 |
+
if j > 0:
|
| 1104 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1105 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
| 1106 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
| 1107 |
+
|
| 1108 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
| 1109 |
+
|
| 1110 |
+
if not return_dict:
|
| 1111 |
+
return (dec,)
|
| 1112 |
+
|
| 1113 |
+
return DecoderOutput(sample=dec)
|
| 1114 |
+
|
| 1115 |
+
def forward(
|
| 1116 |
+
self,
|
| 1117 |
+
sample: torch.Tensor,
|
| 1118 |
+
sample_posterior: bool = False,
|
| 1119 |
+
return_dict: bool = True,
|
| 1120 |
+
generator: Optional[torch.Generator] = None,
|
| 1121 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
| 1122 |
+
x = sample
|
| 1123 |
+
posterior = self.encode(x).latent_dist
|
| 1124 |
+
if sample_posterior:
|
| 1125 |
+
z = posterior.sample(generator=generator)
|
| 1126 |
+
else:
|
| 1127 |
+
z = posterior.mode()
|
| 1128 |
+
dec = self.decode(z)
|
| 1129 |
+
if not return_dict:
|
| 1130 |
+
return (dec,)
|
| 1131 |
+
return dec
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_qwenimage.py
ADDED
|
@@ -0,0 +1,1070 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The Qwen-Image Team, Wan Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
#
|
| 15 |
+
# We gratefully acknowledge the Wan Team for their outstanding contributions.
|
| 16 |
+
# QwenImageVAE is further fine-tuned from the Wan Video VAE to achieve improved performance.
|
| 17 |
+
# For more information about the Wan VAE, please refer to:
|
| 18 |
+
# - GitHub: https://github.com/Wan-Video/Wan2.1
|
| 19 |
+
# - arXiv: https://arxiv.org/abs/2503.20314
|
| 20 |
+
|
| 21 |
+
from typing import List, Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
import torch.nn as nn
|
| 25 |
+
import torch.nn.functional as F
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
|
| 28 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 29 |
+
from ...loaders import FromOriginalModelMixin
|
| 30 |
+
from ...utils import logging
|
| 31 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 32 |
+
from ..activations import get_activation
|
| 33 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 34 |
+
from ..modeling_utils import ModelMixin
|
| 35 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 39 |
+
|
| 40 |
+
CACHE_T = 2
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class QwenImageCausalConv3d(nn.Conv3d):
|
| 44 |
+
r"""
|
| 45 |
+
A custom 3D causal convolution layer with feature caching support.
|
| 46 |
+
|
| 47 |
+
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
|
| 48 |
+
caching for efficient inference.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
in_channels (int): Number of channels in the input image
|
| 52 |
+
out_channels (int): Number of channels produced by the convolution
|
| 53 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
| 54 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
| 55 |
+
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
def __init__(
|
| 59 |
+
self,
|
| 60 |
+
in_channels: int,
|
| 61 |
+
out_channels: int,
|
| 62 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
| 63 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 64 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
| 65 |
+
) -> None:
|
| 66 |
+
super().__init__(
|
| 67 |
+
in_channels=in_channels,
|
| 68 |
+
out_channels=out_channels,
|
| 69 |
+
kernel_size=kernel_size,
|
| 70 |
+
stride=stride,
|
| 71 |
+
padding=padding,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Set up causal padding
|
| 75 |
+
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
|
| 76 |
+
self.padding = (0, 0, 0)
|
| 77 |
+
|
| 78 |
+
def forward(self, x, cache_x=None):
|
| 79 |
+
padding = list(self._padding)
|
| 80 |
+
if cache_x is not None and self._padding[4] > 0:
|
| 81 |
+
cache_x = cache_x.to(x.device)
|
| 82 |
+
x = torch.cat([cache_x, x], dim=2)
|
| 83 |
+
padding[4] -= cache_x.shape[2]
|
| 84 |
+
x = F.pad(x, padding)
|
| 85 |
+
return super().forward(x)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class QwenImageRMS_norm(nn.Module):
|
| 89 |
+
r"""
|
| 90 |
+
A custom RMS normalization layer.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
dim (int): The number of dimensions to normalize over.
|
| 94 |
+
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
|
| 95 |
+
Default is True.
|
| 96 |
+
images (bool, optional): Whether the input represents image data. Default is True.
|
| 97 |
+
bias (bool, optional): Whether to include a learnable bias term. Default is False.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
|
| 101 |
+
super().__init__()
|
| 102 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
| 103 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
| 104 |
+
|
| 105 |
+
self.channel_first = channel_first
|
| 106 |
+
self.scale = dim**0.5
|
| 107 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
| 108 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
|
| 109 |
+
|
| 110 |
+
def forward(self, x):
|
| 111 |
+
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class QwenImageUpsample(nn.Upsample):
|
| 115 |
+
r"""
|
| 116 |
+
Perform upsampling while ensuring the output tensor has the same data type as the input.
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
x (torch.Tensor): Input tensor to be upsampled.
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
torch.Tensor: Upsampled tensor with the same data type as the input.
|
| 123 |
+
"""
|
| 124 |
+
|
| 125 |
+
def forward(self, x):
|
| 126 |
+
return super().forward(x.float()).type_as(x)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
class QwenImageResample(nn.Module):
|
| 130 |
+
r"""
|
| 131 |
+
A custom resampling module for 2D and 3D data.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
dim (int): The number of input/output channels.
|
| 135 |
+
mode (str): The resampling mode. Must be one of:
|
| 136 |
+
- 'none': No resampling (identity operation).
|
| 137 |
+
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
|
| 138 |
+
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
|
| 139 |
+
- 'downsample2d': 2D downsampling with zero-padding and convolution.
|
| 140 |
+
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
|
| 141 |
+
"""
|
| 142 |
+
|
| 143 |
+
def __init__(self, dim: int, mode: str) -> None:
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.dim = dim
|
| 146 |
+
self.mode = mode
|
| 147 |
+
|
| 148 |
+
# layers
|
| 149 |
+
if mode == "upsample2d":
|
| 150 |
+
self.resample = nn.Sequential(
|
| 151 |
+
QwenImageUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
| 152 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1),
|
| 153 |
+
)
|
| 154 |
+
elif mode == "upsample3d":
|
| 155 |
+
self.resample = nn.Sequential(
|
| 156 |
+
QwenImageUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
| 157 |
+
nn.Conv2d(dim, dim // 2, 3, padding=1),
|
| 158 |
+
)
|
| 159 |
+
self.time_conv = QwenImageCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
| 160 |
+
|
| 161 |
+
elif mode == "downsample2d":
|
| 162 |
+
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
| 163 |
+
elif mode == "downsample3d":
|
| 164 |
+
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
| 165 |
+
self.time_conv = QwenImageCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
| 166 |
+
|
| 167 |
+
else:
|
| 168 |
+
self.resample = nn.Identity()
|
| 169 |
+
|
| 170 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 171 |
+
b, c, t, h, w = x.size()
|
| 172 |
+
if self.mode == "upsample3d":
|
| 173 |
+
if feat_cache is not None:
|
| 174 |
+
idx = feat_idx[0]
|
| 175 |
+
if feat_cache[idx] is None:
|
| 176 |
+
feat_cache[idx] = "Rep"
|
| 177 |
+
feat_idx[0] += 1
|
| 178 |
+
else:
|
| 179 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 180 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
|
| 181 |
+
# cache last frame of last two chunk
|
| 182 |
+
cache_x = torch.cat(
|
| 183 |
+
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
|
| 184 |
+
)
|
| 185 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
|
| 186 |
+
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
|
| 187 |
+
if feat_cache[idx] == "Rep":
|
| 188 |
+
x = self.time_conv(x)
|
| 189 |
+
else:
|
| 190 |
+
x = self.time_conv(x, feat_cache[idx])
|
| 191 |
+
feat_cache[idx] = cache_x
|
| 192 |
+
feat_idx[0] += 1
|
| 193 |
+
|
| 194 |
+
x = x.reshape(b, 2, c, t, h, w)
|
| 195 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
|
| 196 |
+
x = x.reshape(b, c, t * 2, h, w)
|
| 197 |
+
t = x.shape[2]
|
| 198 |
+
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
| 199 |
+
x = self.resample(x)
|
| 200 |
+
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
|
| 201 |
+
|
| 202 |
+
if self.mode == "downsample3d":
|
| 203 |
+
if feat_cache is not None:
|
| 204 |
+
idx = feat_idx[0]
|
| 205 |
+
if feat_cache[idx] is None:
|
| 206 |
+
feat_cache[idx] = x.clone()
|
| 207 |
+
feat_idx[0] += 1
|
| 208 |
+
else:
|
| 209 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
| 210 |
+
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
| 211 |
+
feat_cache[idx] = cache_x
|
| 212 |
+
feat_idx[0] += 1
|
| 213 |
+
return x
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
class QwenImageResidualBlock(nn.Module):
|
| 217 |
+
r"""
|
| 218 |
+
A custom residual block module.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
in_dim (int): Number of input channels.
|
| 222 |
+
out_dim (int): Number of output channels.
|
| 223 |
+
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
|
| 224 |
+
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
|
| 225 |
+
"""
|
| 226 |
+
|
| 227 |
+
def __init__(
|
| 228 |
+
self,
|
| 229 |
+
in_dim: int,
|
| 230 |
+
out_dim: int,
|
| 231 |
+
dropout: float = 0.0,
|
| 232 |
+
non_linearity: str = "silu",
|
| 233 |
+
) -> None:
|
| 234 |
+
super().__init__()
|
| 235 |
+
self.in_dim = in_dim
|
| 236 |
+
self.out_dim = out_dim
|
| 237 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 238 |
+
|
| 239 |
+
# layers
|
| 240 |
+
self.norm1 = QwenImageRMS_norm(in_dim, images=False)
|
| 241 |
+
self.conv1 = QwenImageCausalConv3d(in_dim, out_dim, 3, padding=1)
|
| 242 |
+
self.norm2 = QwenImageRMS_norm(out_dim, images=False)
|
| 243 |
+
self.dropout = nn.Dropout(dropout)
|
| 244 |
+
self.conv2 = QwenImageCausalConv3d(out_dim, out_dim, 3, padding=1)
|
| 245 |
+
self.conv_shortcut = QwenImageCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
|
| 246 |
+
|
| 247 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 248 |
+
# Apply shortcut connection
|
| 249 |
+
h = self.conv_shortcut(x)
|
| 250 |
+
|
| 251 |
+
# First normalization and activation
|
| 252 |
+
x = self.norm1(x)
|
| 253 |
+
x = self.nonlinearity(x)
|
| 254 |
+
|
| 255 |
+
if feat_cache is not None:
|
| 256 |
+
idx = feat_idx[0]
|
| 257 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 258 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 259 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 260 |
+
|
| 261 |
+
x = self.conv1(x, feat_cache[idx])
|
| 262 |
+
feat_cache[idx] = cache_x
|
| 263 |
+
feat_idx[0] += 1
|
| 264 |
+
else:
|
| 265 |
+
x = self.conv1(x)
|
| 266 |
+
|
| 267 |
+
# Second normalization and activation
|
| 268 |
+
x = self.norm2(x)
|
| 269 |
+
x = self.nonlinearity(x)
|
| 270 |
+
|
| 271 |
+
# Dropout
|
| 272 |
+
x = self.dropout(x)
|
| 273 |
+
|
| 274 |
+
if feat_cache is not None:
|
| 275 |
+
idx = feat_idx[0]
|
| 276 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 277 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 278 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 279 |
+
|
| 280 |
+
x = self.conv2(x, feat_cache[idx])
|
| 281 |
+
feat_cache[idx] = cache_x
|
| 282 |
+
feat_idx[0] += 1
|
| 283 |
+
else:
|
| 284 |
+
x = self.conv2(x)
|
| 285 |
+
|
| 286 |
+
# Add residual connection
|
| 287 |
+
return x + h
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class QwenImageAttentionBlock(nn.Module):
|
| 291 |
+
r"""
|
| 292 |
+
Causal self-attention with a single head.
|
| 293 |
+
|
| 294 |
+
Args:
|
| 295 |
+
dim (int): The number of channels in the input tensor.
|
| 296 |
+
"""
|
| 297 |
+
|
| 298 |
+
def __init__(self, dim):
|
| 299 |
+
super().__init__()
|
| 300 |
+
self.dim = dim
|
| 301 |
+
|
| 302 |
+
# layers
|
| 303 |
+
self.norm = QwenImageRMS_norm(dim)
|
| 304 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
| 305 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
| 306 |
+
|
| 307 |
+
def forward(self, x):
|
| 308 |
+
identity = x
|
| 309 |
+
batch_size, channels, time, height, width = x.size()
|
| 310 |
+
|
| 311 |
+
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
|
| 312 |
+
x = self.norm(x)
|
| 313 |
+
|
| 314 |
+
# compute query, key, value
|
| 315 |
+
qkv = self.to_qkv(x)
|
| 316 |
+
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
|
| 317 |
+
qkv = qkv.permute(0, 1, 3, 2).contiguous()
|
| 318 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
| 319 |
+
|
| 320 |
+
# apply attention
|
| 321 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
| 322 |
+
|
| 323 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
|
| 324 |
+
|
| 325 |
+
# output projection
|
| 326 |
+
x = self.proj(x)
|
| 327 |
+
|
| 328 |
+
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
|
| 329 |
+
x = x.view(batch_size, time, channels, height, width)
|
| 330 |
+
x = x.permute(0, 2, 1, 3, 4)
|
| 331 |
+
|
| 332 |
+
return x + identity
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
class QwenImageMidBlock(nn.Module):
|
| 336 |
+
"""
|
| 337 |
+
Middle block for QwenImageVAE encoder and decoder.
|
| 338 |
+
|
| 339 |
+
Args:
|
| 340 |
+
dim (int): Number of input/output channels.
|
| 341 |
+
dropout (float): Dropout rate.
|
| 342 |
+
non_linearity (str): Type of non-linearity to use.
|
| 343 |
+
"""
|
| 344 |
+
|
| 345 |
+
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
|
| 346 |
+
super().__init__()
|
| 347 |
+
self.dim = dim
|
| 348 |
+
|
| 349 |
+
# Create the components
|
| 350 |
+
resnets = [QwenImageResidualBlock(dim, dim, dropout, non_linearity)]
|
| 351 |
+
attentions = []
|
| 352 |
+
for _ in range(num_layers):
|
| 353 |
+
attentions.append(QwenImageAttentionBlock(dim))
|
| 354 |
+
resnets.append(QwenImageResidualBlock(dim, dim, dropout, non_linearity))
|
| 355 |
+
self.attentions = nn.ModuleList(attentions)
|
| 356 |
+
self.resnets = nn.ModuleList(resnets)
|
| 357 |
+
|
| 358 |
+
self.gradient_checkpointing = False
|
| 359 |
+
|
| 360 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 361 |
+
# First residual block
|
| 362 |
+
x = self.resnets[0](x, feat_cache, feat_idx)
|
| 363 |
+
|
| 364 |
+
# Process through attention and residual blocks
|
| 365 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 366 |
+
if attn is not None:
|
| 367 |
+
x = attn(x)
|
| 368 |
+
|
| 369 |
+
x = resnet(x, feat_cache, feat_idx)
|
| 370 |
+
|
| 371 |
+
return x
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
class QwenImageEncoder3d(nn.Module):
|
| 375 |
+
r"""
|
| 376 |
+
A 3D encoder module.
|
| 377 |
+
|
| 378 |
+
Args:
|
| 379 |
+
dim (int): The base number of channels in the first layer.
|
| 380 |
+
z_dim (int): The dimensionality of the latent space.
|
| 381 |
+
dim_mult (list of int): Multipliers for the number of channels in each block.
|
| 382 |
+
num_res_blocks (int): Number of residual blocks in each block.
|
| 383 |
+
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
| 384 |
+
temperal_downsample (list of bool): Whether to downsample temporally in each block.
|
| 385 |
+
dropout (float): Dropout rate for the dropout layers.
|
| 386 |
+
non_linearity (str): Type of non-linearity to use.
|
| 387 |
+
"""
|
| 388 |
+
|
| 389 |
+
def __init__(
|
| 390 |
+
self,
|
| 391 |
+
dim=128,
|
| 392 |
+
z_dim=4,
|
| 393 |
+
dim_mult=[1, 2, 4, 4],
|
| 394 |
+
num_res_blocks=2,
|
| 395 |
+
attn_scales=[],
|
| 396 |
+
temperal_downsample=[True, True, False],
|
| 397 |
+
dropout=0.0,
|
| 398 |
+
non_linearity: str = "silu",
|
| 399 |
+
):
|
| 400 |
+
super().__init__()
|
| 401 |
+
self.dim = dim
|
| 402 |
+
self.z_dim = z_dim
|
| 403 |
+
self.dim_mult = dim_mult
|
| 404 |
+
self.num_res_blocks = num_res_blocks
|
| 405 |
+
self.attn_scales = attn_scales
|
| 406 |
+
self.temperal_downsample = temperal_downsample
|
| 407 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 408 |
+
|
| 409 |
+
# dimensions
|
| 410 |
+
dims = [dim * u for u in [1] + dim_mult]
|
| 411 |
+
scale = 1.0
|
| 412 |
+
|
| 413 |
+
# init block
|
| 414 |
+
self.conv_in = QwenImageCausalConv3d(3, dims[0], 3, padding=1)
|
| 415 |
+
|
| 416 |
+
# downsample blocks
|
| 417 |
+
self.down_blocks = nn.ModuleList([])
|
| 418 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 419 |
+
# residual (+attention) blocks
|
| 420 |
+
for _ in range(num_res_blocks):
|
| 421 |
+
self.down_blocks.append(QwenImageResidualBlock(in_dim, out_dim, dropout))
|
| 422 |
+
if scale in attn_scales:
|
| 423 |
+
self.down_blocks.append(QwenImageAttentionBlock(out_dim))
|
| 424 |
+
in_dim = out_dim
|
| 425 |
+
|
| 426 |
+
# downsample block
|
| 427 |
+
if i != len(dim_mult) - 1:
|
| 428 |
+
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
|
| 429 |
+
self.down_blocks.append(QwenImageResample(out_dim, mode=mode))
|
| 430 |
+
scale /= 2.0
|
| 431 |
+
|
| 432 |
+
# middle blocks
|
| 433 |
+
self.mid_block = QwenImageMidBlock(out_dim, dropout, non_linearity, num_layers=1)
|
| 434 |
+
|
| 435 |
+
# output blocks
|
| 436 |
+
self.norm_out = QwenImageRMS_norm(out_dim, images=False)
|
| 437 |
+
self.conv_out = QwenImageCausalConv3d(out_dim, z_dim, 3, padding=1)
|
| 438 |
+
|
| 439 |
+
self.gradient_checkpointing = False
|
| 440 |
+
|
| 441 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 442 |
+
if feat_cache is not None:
|
| 443 |
+
idx = feat_idx[0]
|
| 444 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 445 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 446 |
+
# cache last frame of last two chunk
|
| 447 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 448 |
+
x = self.conv_in(x, feat_cache[idx])
|
| 449 |
+
feat_cache[idx] = cache_x
|
| 450 |
+
feat_idx[0] += 1
|
| 451 |
+
else:
|
| 452 |
+
x = self.conv_in(x)
|
| 453 |
+
|
| 454 |
+
## downsamples
|
| 455 |
+
for layer in self.down_blocks:
|
| 456 |
+
if feat_cache is not None:
|
| 457 |
+
x = layer(x, feat_cache, feat_idx)
|
| 458 |
+
else:
|
| 459 |
+
x = layer(x)
|
| 460 |
+
|
| 461 |
+
## middle
|
| 462 |
+
x = self.mid_block(x, feat_cache, feat_idx)
|
| 463 |
+
|
| 464 |
+
## head
|
| 465 |
+
x = self.norm_out(x)
|
| 466 |
+
x = self.nonlinearity(x)
|
| 467 |
+
if feat_cache is not None:
|
| 468 |
+
idx = feat_idx[0]
|
| 469 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 470 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 471 |
+
# cache last frame of last two chunk
|
| 472 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 473 |
+
x = self.conv_out(x, feat_cache[idx])
|
| 474 |
+
feat_cache[idx] = cache_x
|
| 475 |
+
feat_idx[0] += 1
|
| 476 |
+
else:
|
| 477 |
+
x = self.conv_out(x)
|
| 478 |
+
return x
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
class QwenImageUpBlock(nn.Module):
|
| 482 |
+
"""
|
| 483 |
+
A block that handles upsampling for the QwenImageVAE decoder.
|
| 484 |
+
|
| 485 |
+
Args:
|
| 486 |
+
in_dim (int): Input dimension
|
| 487 |
+
out_dim (int): Output dimension
|
| 488 |
+
num_res_blocks (int): Number of residual blocks
|
| 489 |
+
dropout (float): Dropout rate
|
| 490 |
+
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
|
| 491 |
+
non_linearity (str): Type of non-linearity to use
|
| 492 |
+
"""
|
| 493 |
+
|
| 494 |
+
def __init__(
|
| 495 |
+
self,
|
| 496 |
+
in_dim: int,
|
| 497 |
+
out_dim: int,
|
| 498 |
+
num_res_blocks: int,
|
| 499 |
+
dropout: float = 0.0,
|
| 500 |
+
upsample_mode: Optional[str] = None,
|
| 501 |
+
non_linearity: str = "silu",
|
| 502 |
+
):
|
| 503 |
+
super().__init__()
|
| 504 |
+
self.in_dim = in_dim
|
| 505 |
+
self.out_dim = out_dim
|
| 506 |
+
|
| 507 |
+
# Create layers list
|
| 508 |
+
resnets = []
|
| 509 |
+
# Add residual blocks and attention if needed
|
| 510 |
+
current_dim = in_dim
|
| 511 |
+
for _ in range(num_res_blocks + 1):
|
| 512 |
+
resnets.append(QwenImageResidualBlock(current_dim, out_dim, dropout, non_linearity))
|
| 513 |
+
current_dim = out_dim
|
| 514 |
+
|
| 515 |
+
self.resnets = nn.ModuleList(resnets)
|
| 516 |
+
|
| 517 |
+
# Add upsampling layer if needed
|
| 518 |
+
self.upsamplers = None
|
| 519 |
+
if upsample_mode is not None:
|
| 520 |
+
self.upsamplers = nn.ModuleList([QwenImageResample(out_dim, mode=upsample_mode)])
|
| 521 |
+
|
| 522 |
+
self.gradient_checkpointing = False
|
| 523 |
+
|
| 524 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 525 |
+
"""
|
| 526 |
+
Forward pass through the upsampling block.
|
| 527 |
+
|
| 528 |
+
Args:
|
| 529 |
+
x (torch.Tensor): Input tensor
|
| 530 |
+
feat_cache (list, optional): Feature cache for causal convolutions
|
| 531 |
+
feat_idx (list, optional): Feature index for cache management
|
| 532 |
+
|
| 533 |
+
Returns:
|
| 534 |
+
torch.Tensor: Output tensor
|
| 535 |
+
"""
|
| 536 |
+
for resnet in self.resnets:
|
| 537 |
+
if feat_cache is not None:
|
| 538 |
+
x = resnet(x, feat_cache, feat_idx)
|
| 539 |
+
else:
|
| 540 |
+
x = resnet(x)
|
| 541 |
+
|
| 542 |
+
if self.upsamplers is not None:
|
| 543 |
+
if feat_cache is not None:
|
| 544 |
+
x = self.upsamplers[0](x, feat_cache, feat_idx)
|
| 545 |
+
else:
|
| 546 |
+
x = self.upsamplers[0](x)
|
| 547 |
+
return x
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class QwenImageDecoder3d(nn.Module):
|
| 551 |
+
r"""
|
| 552 |
+
A 3D decoder module.
|
| 553 |
+
|
| 554 |
+
Args:
|
| 555 |
+
dim (int): The base number of channels in the first layer.
|
| 556 |
+
z_dim (int): The dimensionality of the latent space.
|
| 557 |
+
dim_mult (list of int): Multipliers for the number of channels in each block.
|
| 558 |
+
num_res_blocks (int): Number of residual blocks in each block.
|
| 559 |
+
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
| 560 |
+
temperal_upsample (list of bool): Whether to upsample temporally in each block.
|
| 561 |
+
dropout (float): Dropout rate for the dropout layers.
|
| 562 |
+
non_linearity (str): Type of non-linearity to use.
|
| 563 |
+
"""
|
| 564 |
+
|
| 565 |
+
def __init__(
|
| 566 |
+
self,
|
| 567 |
+
dim=128,
|
| 568 |
+
z_dim=4,
|
| 569 |
+
dim_mult=[1, 2, 4, 4],
|
| 570 |
+
num_res_blocks=2,
|
| 571 |
+
attn_scales=[],
|
| 572 |
+
temperal_upsample=[False, True, True],
|
| 573 |
+
dropout=0.0,
|
| 574 |
+
non_linearity: str = "silu",
|
| 575 |
+
):
|
| 576 |
+
super().__init__()
|
| 577 |
+
self.dim = dim
|
| 578 |
+
self.z_dim = z_dim
|
| 579 |
+
self.dim_mult = dim_mult
|
| 580 |
+
self.num_res_blocks = num_res_blocks
|
| 581 |
+
self.attn_scales = attn_scales
|
| 582 |
+
self.temperal_upsample = temperal_upsample
|
| 583 |
+
|
| 584 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 585 |
+
|
| 586 |
+
# dimensions
|
| 587 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
| 588 |
+
scale = 1.0 / 2 ** (len(dim_mult) - 2)
|
| 589 |
+
|
| 590 |
+
# init block
|
| 591 |
+
self.conv_in = QwenImageCausalConv3d(z_dim, dims[0], 3, padding=1)
|
| 592 |
+
|
| 593 |
+
# middle blocks
|
| 594 |
+
self.mid_block = QwenImageMidBlock(dims[0], dropout, non_linearity, num_layers=1)
|
| 595 |
+
|
| 596 |
+
# upsample blocks
|
| 597 |
+
self.up_blocks = nn.ModuleList([])
|
| 598 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 599 |
+
# residual (+attention) blocks
|
| 600 |
+
if i > 0:
|
| 601 |
+
in_dim = in_dim // 2
|
| 602 |
+
|
| 603 |
+
# Determine if we need upsampling
|
| 604 |
+
upsample_mode = None
|
| 605 |
+
if i != len(dim_mult) - 1:
|
| 606 |
+
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
|
| 607 |
+
|
| 608 |
+
# Create and add the upsampling block
|
| 609 |
+
up_block = QwenImageUpBlock(
|
| 610 |
+
in_dim=in_dim,
|
| 611 |
+
out_dim=out_dim,
|
| 612 |
+
num_res_blocks=num_res_blocks,
|
| 613 |
+
dropout=dropout,
|
| 614 |
+
upsample_mode=upsample_mode,
|
| 615 |
+
non_linearity=non_linearity,
|
| 616 |
+
)
|
| 617 |
+
self.up_blocks.append(up_block)
|
| 618 |
+
|
| 619 |
+
# Update scale for next iteration
|
| 620 |
+
if upsample_mode is not None:
|
| 621 |
+
scale *= 2.0
|
| 622 |
+
|
| 623 |
+
# output blocks
|
| 624 |
+
self.norm_out = QwenImageRMS_norm(out_dim, images=False)
|
| 625 |
+
self.conv_out = QwenImageCausalConv3d(out_dim, 3, 3, padding=1)
|
| 626 |
+
|
| 627 |
+
self.gradient_checkpointing = False
|
| 628 |
+
|
| 629 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 630 |
+
## conv1
|
| 631 |
+
if feat_cache is not None:
|
| 632 |
+
idx = feat_idx[0]
|
| 633 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 634 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 635 |
+
# cache last frame of last two chunk
|
| 636 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 637 |
+
x = self.conv_in(x, feat_cache[idx])
|
| 638 |
+
feat_cache[idx] = cache_x
|
| 639 |
+
feat_idx[0] += 1
|
| 640 |
+
else:
|
| 641 |
+
x = self.conv_in(x)
|
| 642 |
+
|
| 643 |
+
## middle
|
| 644 |
+
x = self.mid_block(x, feat_cache, feat_idx)
|
| 645 |
+
|
| 646 |
+
## upsamples
|
| 647 |
+
for up_block in self.up_blocks:
|
| 648 |
+
x = up_block(x, feat_cache, feat_idx)
|
| 649 |
+
|
| 650 |
+
## head
|
| 651 |
+
x = self.norm_out(x)
|
| 652 |
+
x = self.nonlinearity(x)
|
| 653 |
+
if feat_cache is not None:
|
| 654 |
+
idx = feat_idx[0]
|
| 655 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 656 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 657 |
+
# cache last frame of last two chunk
|
| 658 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 659 |
+
x = self.conv_out(x, feat_cache[idx])
|
| 660 |
+
feat_cache[idx] = cache_x
|
| 661 |
+
feat_idx[0] += 1
|
| 662 |
+
else:
|
| 663 |
+
x = self.conv_out(x)
|
| 664 |
+
return x
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
class AutoencoderKLQwenImage(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 668 |
+
r"""
|
| 669 |
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
| 670 |
+
|
| 671 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 672 |
+
for all models (such as downloading or saving).
|
| 673 |
+
"""
|
| 674 |
+
|
| 675 |
+
_supports_gradient_checkpointing = False
|
| 676 |
+
|
| 677 |
+
# fmt: off
|
| 678 |
+
@register_to_config
|
| 679 |
+
def __init__(
|
| 680 |
+
self,
|
| 681 |
+
base_dim: int = 96,
|
| 682 |
+
z_dim: int = 16,
|
| 683 |
+
dim_mult: Tuple[int] = [1, 2, 4, 4],
|
| 684 |
+
num_res_blocks: int = 2,
|
| 685 |
+
attn_scales: List[float] = [],
|
| 686 |
+
temperal_downsample: List[bool] = [False, True, True],
|
| 687 |
+
dropout: float = 0.0,
|
| 688 |
+
latents_mean: List[float] = [-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, 0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921],
|
| 689 |
+
latents_std: List[float] = [2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, 3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160],
|
| 690 |
+
) -> None:
|
| 691 |
+
# fmt: on
|
| 692 |
+
super().__init__()
|
| 693 |
+
|
| 694 |
+
self.z_dim = z_dim
|
| 695 |
+
self.temperal_downsample = temperal_downsample
|
| 696 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
| 697 |
+
|
| 698 |
+
self.encoder = QwenImageEncoder3d(
|
| 699 |
+
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
|
| 700 |
+
)
|
| 701 |
+
self.quant_conv = QwenImageCausalConv3d(z_dim * 2, z_dim * 2, 1)
|
| 702 |
+
self.post_quant_conv = QwenImageCausalConv3d(z_dim, z_dim, 1)
|
| 703 |
+
|
| 704 |
+
self.decoder = QwenImageDecoder3d(
|
| 705 |
+
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
|
| 709 |
+
|
| 710 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 711 |
+
# to perform decoding of a single video latent at a time.
|
| 712 |
+
self.use_slicing = False
|
| 713 |
+
|
| 714 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 715 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 716 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 717 |
+
self.use_tiling = False
|
| 718 |
+
|
| 719 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 720 |
+
self.tile_sample_min_height = 256
|
| 721 |
+
self.tile_sample_min_width = 256
|
| 722 |
+
|
| 723 |
+
# The minimal distance between two spatial tiles
|
| 724 |
+
self.tile_sample_stride_height = 192
|
| 725 |
+
self.tile_sample_stride_width = 192
|
| 726 |
+
|
| 727 |
+
# Precompute and cache conv counts for encoder and decoder for clear_cache speedup
|
| 728 |
+
self._cached_conv_counts = {
|
| 729 |
+
"decoder": sum(isinstance(m, QwenImageCausalConv3d) for m in self.decoder.modules())
|
| 730 |
+
if self.decoder is not None
|
| 731 |
+
else 0,
|
| 732 |
+
"encoder": sum(isinstance(m, QwenImageCausalConv3d) for m in self.encoder.modules())
|
| 733 |
+
if self.encoder is not None
|
| 734 |
+
else 0,
|
| 735 |
+
}
|
| 736 |
+
|
| 737 |
+
def enable_tiling(
|
| 738 |
+
self,
|
| 739 |
+
tile_sample_min_height: Optional[int] = None,
|
| 740 |
+
tile_sample_min_width: Optional[int] = None,
|
| 741 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 742 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 743 |
+
) -> None:
|
| 744 |
+
r"""
|
| 745 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 746 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 747 |
+
processing larger images.
|
| 748 |
+
|
| 749 |
+
Args:
|
| 750 |
+
tile_sample_min_height (`int`, *optional*):
|
| 751 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 752 |
+
tile_sample_min_width (`int`, *optional*):
|
| 753 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 754 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 755 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 756 |
+
no tiling artifacts produced across the height dimension.
|
| 757 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 758 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 759 |
+
artifacts produced across the width dimension.
|
| 760 |
+
"""
|
| 761 |
+
self.use_tiling = True
|
| 762 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 763 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 764 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 765 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 766 |
+
|
| 767 |
+
def disable_tiling(self) -> None:
|
| 768 |
+
r"""
|
| 769 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 770 |
+
decoding in one step.
|
| 771 |
+
"""
|
| 772 |
+
self.use_tiling = False
|
| 773 |
+
|
| 774 |
+
def enable_slicing(self) -> None:
|
| 775 |
+
r"""
|
| 776 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 777 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 778 |
+
"""
|
| 779 |
+
self.use_slicing = True
|
| 780 |
+
|
| 781 |
+
def disable_slicing(self) -> None:
|
| 782 |
+
r"""
|
| 783 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 784 |
+
decoding in one step.
|
| 785 |
+
"""
|
| 786 |
+
self.use_slicing = False
|
| 787 |
+
|
| 788 |
+
def clear_cache(self):
|
| 789 |
+
def _count_conv3d(model):
|
| 790 |
+
count = 0
|
| 791 |
+
for m in model.modules():
|
| 792 |
+
if isinstance(m, QwenImageCausalConv3d):
|
| 793 |
+
count += 1
|
| 794 |
+
return count
|
| 795 |
+
|
| 796 |
+
self._conv_num = _count_conv3d(self.decoder)
|
| 797 |
+
self._conv_idx = [0]
|
| 798 |
+
self._feat_map = [None] * self._conv_num
|
| 799 |
+
# cache encode
|
| 800 |
+
self._enc_conv_num = _count_conv3d(self.encoder)
|
| 801 |
+
self._enc_conv_idx = [0]
|
| 802 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
| 803 |
+
|
| 804 |
+
def _encode(self, x: torch.Tensor):
|
| 805 |
+
_, _, num_frame, height, width = x.shape
|
| 806 |
+
|
| 807 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
| 808 |
+
return self.tiled_encode(x)
|
| 809 |
+
|
| 810 |
+
self.clear_cache()
|
| 811 |
+
iter_ = 1 + (num_frame - 1) // 4
|
| 812 |
+
for i in range(iter_):
|
| 813 |
+
self._enc_conv_idx = [0]
|
| 814 |
+
if i == 0:
|
| 815 |
+
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
| 816 |
+
else:
|
| 817 |
+
out_ = self.encoder(
|
| 818 |
+
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
|
| 819 |
+
feat_cache=self._enc_feat_map,
|
| 820 |
+
feat_idx=self._enc_conv_idx,
|
| 821 |
+
)
|
| 822 |
+
out = torch.cat([out, out_], 2)
|
| 823 |
+
|
| 824 |
+
enc = self.quant_conv(out)
|
| 825 |
+
self.clear_cache()
|
| 826 |
+
return enc
|
| 827 |
+
|
| 828 |
+
@apply_forward_hook
|
| 829 |
+
def encode(
|
| 830 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 831 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 832 |
+
r"""
|
| 833 |
+
Encode a batch of images into latents.
|
| 834 |
+
|
| 835 |
+
Args:
|
| 836 |
+
x (`torch.Tensor`): Input batch of images.
|
| 837 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 838 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 839 |
+
|
| 840 |
+
Returns:
|
| 841 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
| 842 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 843 |
+
"""
|
| 844 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 845 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 846 |
+
h = torch.cat(encoded_slices)
|
| 847 |
+
else:
|
| 848 |
+
h = self._encode(x)
|
| 849 |
+
posterior = DiagonalGaussianDistribution(h)
|
| 850 |
+
|
| 851 |
+
if not return_dict:
|
| 852 |
+
return (posterior,)
|
| 853 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 854 |
+
|
| 855 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True):
|
| 856 |
+
_, _, num_frame, height, width = z.shape
|
| 857 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 858 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 859 |
+
|
| 860 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
| 861 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
| 862 |
+
|
| 863 |
+
self.clear_cache()
|
| 864 |
+
x = self.post_quant_conv(z)
|
| 865 |
+
for i in range(num_frame):
|
| 866 |
+
self._conv_idx = [0]
|
| 867 |
+
if i == 0:
|
| 868 |
+
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
| 869 |
+
else:
|
| 870 |
+
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
| 871 |
+
out = torch.cat([out, out_], 2)
|
| 872 |
+
|
| 873 |
+
out = torch.clamp(out, min=-1.0, max=1.0)
|
| 874 |
+
self.clear_cache()
|
| 875 |
+
if not return_dict:
|
| 876 |
+
return (out,)
|
| 877 |
+
|
| 878 |
+
return DecoderOutput(sample=out)
|
| 879 |
+
|
| 880 |
+
@apply_forward_hook
|
| 881 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 882 |
+
r"""
|
| 883 |
+
Decode a batch of images.
|
| 884 |
+
|
| 885 |
+
Args:
|
| 886 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 887 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 888 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 889 |
+
|
| 890 |
+
Returns:
|
| 891 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 892 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 893 |
+
returned.
|
| 894 |
+
"""
|
| 895 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 896 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 897 |
+
decoded = torch.cat(decoded_slices)
|
| 898 |
+
else:
|
| 899 |
+
decoded = self._decode(z).sample
|
| 900 |
+
|
| 901 |
+
if not return_dict:
|
| 902 |
+
return (decoded,)
|
| 903 |
+
return DecoderOutput(sample=decoded)
|
| 904 |
+
|
| 905 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 906 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
| 907 |
+
for y in range(blend_extent):
|
| 908 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
| 909 |
+
y / blend_extent
|
| 910 |
+
)
|
| 911 |
+
return b
|
| 912 |
+
|
| 913 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 914 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
| 915 |
+
for x in range(blend_extent):
|
| 916 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
| 917 |
+
x / blend_extent
|
| 918 |
+
)
|
| 919 |
+
return b
|
| 920 |
+
|
| 921 |
+
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
| 922 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 923 |
+
|
| 924 |
+
Args:
|
| 925 |
+
x (`torch.Tensor`): Input batch of videos.
|
| 926 |
+
|
| 927 |
+
Returns:
|
| 928 |
+
`torch.Tensor`:
|
| 929 |
+
The latent representation of the encoded videos.
|
| 930 |
+
"""
|
| 931 |
+
_, _, num_frames, height, width = x.shape
|
| 932 |
+
latent_height = height // self.spatial_compression_ratio
|
| 933 |
+
latent_width = width // self.spatial_compression_ratio
|
| 934 |
+
|
| 935 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 936 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 937 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 938 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 939 |
+
|
| 940 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
| 941 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
| 942 |
+
|
| 943 |
+
# Split x into overlapping tiles and encode them separately.
|
| 944 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 945 |
+
rows = []
|
| 946 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
| 947 |
+
row = []
|
| 948 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
| 949 |
+
self.clear_cache()
|
| 950 |
+
time = []
|
| 951 |
+
frame_range = 1 + (num_frames - 1) // 4
|
| 952 |
+
for k in range(frame_range):
|
| 953 |
+
self._enc_conv_idx = [0]
|
| 954 |
+
if k == 0:
|
| 955 |
+
tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
| 956 |
+
else:
|
| 957 |
+
tile = x[
|
| 958 |
+
:,
|
| 959 |
+
:,
|
| 960 |
+
1 + 4 * (k - 1) : 1 + 4 * k,
|
| 961 |
+
i : i + self.tile_sample_min_height,
|
| 962 |
+
j : j + self.tile_sample_min_width,
|
| 963 |
+
]
|
| 964 |
+
tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
| 965 |
+
tile = self.quant_conv(tile)
|
| 966 |
+
time.append(tile)
|
| 967 |
+
row.append(torch.cat(time, dim=2))
|
| 968 |
+
rows.append(row)
|
| 969 |
+
self.clear_cache()
|
| 970 |
+
|
| 971 |
+
result_rows = []
|
| 972 |
+
for i, row in enumerate(rows):
|
| 973 |
+
result_row = []
|
| 974 |
+
for j, tile in enumerate(row):
|
| 975 |
+
# blend the above tile and the left tile
|
| 976 |
+
# to the current tile and add the current tile to the result row
|
| 977 |
+
if i > 0:
|
| 978 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 979 |
+
if j > 0:
|
| 980 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 981 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
| 982 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 983 |
+
|
| 984 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
| 985 |
+
return enc
|
| 986 |
+
|
| 987 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 988 |
+
r"""
|
| 989 |
+
Decode a batch of images using a tiled decoder.
|
| 990 |
+
|
| 991 |
+
Args:
|
| 992 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 993 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 994 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 995 |
+
|
| 996 |
+
Returns:
|
| 997 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 998 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 999 |
+
returned.
|
| 1000 |
+
"""
|
| 1001 |
+
_, _, num_frames, height, width = z.shape
|
| 1002 |
+
sample_height = height * self.spatial_compression_ratio
|
| 1003 |
+
sample_width = width * self.spatial_compression_ratio
|
| 1004 |
+
|
| 1005 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1006 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1007 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1008 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1009 |
+
|
| 1010 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
| 1011 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
| 1012 |
+
|
| 1013 |
+
# Split z into overlapping tiles and decode them separately.
|
| 1014 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1015 |
+
rows = []
|
| 1016 |
+
for i in range(0, height, tile_latent_stride_height):
|
| 1017 |
+
row = []
|
| 1018 |
+
for j in range(0, width, tile_latent_stride_width):
|
| 1019 |
+
self.clear_cache()
|
| 1020 |
+
time = []
|
| 1021 |
+
for k in range(num_frames):
|
| 1022 |
+
self._conv_idx = [0]
|
| 1023 |
+
tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
|
| 1024 |
+
tile = self.post_quant_conv(tile)
|
| 1025 |
+
decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
| 1026 |
+
time.append(decoded)
|
| 1027 |
+
row.append(torch.cat(time, dim=2))
|
| 1028 |
+
rows.append(row)
|
| 1029 |
+
self.clear_cache()
|
| 1030 |
+
|
| 1031 |
+
result_rows = []
|
| 1032 |
+
for i, row in enumerate(rows):
|
| 1033 |
+
result_row = []
|
| 1034 |
+
for j, tile in enumerate(row):
|
| 1035 |
+
# blend the above tile and the left tile
|
| 1036 |
+
# to the current tile and add the current tile to the result row
|
| 1037 |
+
if i > 0:
|
| 1038 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1039 |
+
if j > 0:
|
| 1040 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1041 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
| 1042 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 1043 |
+
|
| 1044 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
| 1045 |
+
|
| 1046 |
+
if not return_dict:
|
| 1047 |
+
return (dec,)
|
| 1048 |
+
return DecoderOutput(sample=dec)
|
| 1049 |
+
|
| 1050 |
+
def forward(
|
| 1051 |
+
self,
|
| 1052 |
+
sample: torch.Tensor,
|
| 1053 |
+
sample_posterior: bool = False,
|
| 1054 |
+
return_dict: bool = True,
|
| 1055 |
+
generator: Optional[torch.Generator] = None,
|
| 1056 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1057 |
+
"""
|
| 1058 |
+
Args:
|
| 1059 |
+
sample (`torch.Tensor`): Input sample.
|
| 1060 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1061 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 1062 |
+
"""
|
| 1063 |
+
x = sample
|
| 1064 |
+
posterior = self.encode(x).latent_dist
|
| 1065 |
+
if sample_posterior:
|
| 1066 |
+
z = posterior.sample(generator=generator)
|
| 1067 |
+
else:
|
| 1068 |
+
z = posterior.mode()
|
| 1069 |
+
dec = self.decode(z, return_dict=return_dict)
|
| 1070 |
+
return dec
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import itertools
|
| 15 |
+
from typing import Dict, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 22 |
+
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
|
| 23 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 24 |
+
from ..modeling_utils import ModelMixin
|
| 25 |
+
from ..unets.unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
|
| 26 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class TemporalDecoder(nn.Module):
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
in_channels: int = 4,
|
| 33 |
+
out_channels: int = 3,
|
| 34 |
+
block_out_channels: Tuple[int] = (128, 256, 512, 512),
|
| 35 |
+
layers_per_block: int = 2,
|
| 36 |
+
):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.layers_per_block = layers_per_block
|
| 39 |
+
|
| 40 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
|
| 41 |
+
self.mid_block = MidBlockTemporalDecoder(
|
| 42 |
+
num_layers=self.layers_per_block,
|
| 43 |
+
in_channels=block_out_channels[-1],
|
| 44 |
+
out_channels=block_out_channels[-1],
|
| 45 |
+
attention_head_dim=block_out_channels[-1],
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# up
|
| 49 |
+
self.up_blocks = nn.ModuleList([])
|
| 50 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 51 |
+
output_channel = reversed_block_out_channels[0]
|
| 52 |
+
for i in range(len(block_out_channels)):
|
| 53 |
+
prev_output_channel = output_channel
|
| 54 |
+
output_channel = reversed_block_out_channels[i]
|
| 55 |
+
|
| 56 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 57 |
+
up_block = UpBlockTemporalDecoder(
|
| 58 |
+
num_layers=self.layers_per_block + 1,
|
| 59 |
+
in_channels=prev_output_channel,
|
| 60 |
+
out_channels=output_channel,
|
| 61 |
+
add_upsample=not is_final_block,
|
| 62 |
+
)
|
| 63 |
+
self.up_blocks.append(up_block)
|
| 64 |
+
prev_output_channel = output_channel
|
| 65 |
+
|
| 66 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6)
|
| 67 |
+
|
| 68 |
+
self.conv_act = nn.SiLU()
|
| 69 |
+
self.conv_out = torch.nn.Conv2d(
|
| 70 |
+
in_channels=block_out_channels[0],
|
| 71 |
+
out_channels=out_channels,
|
| 72 |
+
kernel_size=3,
|
| 73 |
+
padding=1,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
conv_out_kernel_size = (3, 1, 1)
|
| 77 |
+
padding = [int(k // 2) for k in conv_out_kernel_size]
|
| 78 |
+
self.time_conv_out = torch.nn.Conv3d(
|
| 79 |
+
in_channels=out_channels,
|
| 80 |
+
out_channels=out_channels,
|
| 81 |
+
kernel_size=conv_out_kernel_size,
|
| 82 |
+
padding=padding,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
self.gradient_checkpointing = False
|
| 86 |
+
|
| 87 |
+
def forward(
|
| 88 |
+
self,
|
| 89 |
+
sample: torch.Tensor,
|
| 90 |
+
image_only_indicator: torch.Tensor,
|
| 91 |
+
num_frames: int = 1,
|
| 92 |
+
) -> torch.Tensor:
|
| 93 |
+
r"""The forward method of the `Decoder` class."""
|
| 94 |
+
|
| 95 |
+
sample = self.conv_in(sample)
|
| 96 |
+
|
| 97 |
+
upscale_dtype = next(itertools.chain(self.up_blocks.parameters(), self.up_blocks.buffers())).dtype
|
| 98 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 99 |
+
# middle
|
| 100 |
+
sample = self._gradient_checkpointing_func(
|
| 101 |
+
self.mid_block,
|
| 102 |
+
sample,
|
| 103 |
+
image_only_indicator,
|
| 104 |
+
)
|
| 105 |
+
sample = sample.to(upscale_dtype)
|
| 106 |
+
|
| 107 |
+
# up
|
| 108 |
+
for up_block in self.up_blocks:
|
| 109 |
+
sample = self._gradient_checkpointing_func(
|
| 110 |
+
up_block,
|
| 111 |
+
sample,
|
| 112 |
+
image_only_indicator,
|
| 113 |
+
)
|
| 114 |
+
else:
|
| 115 |
+
# middle
|
| 116 |
+
sample = self.mid_block(sample, image_only_indicator=image_only_indicator)
|
| 117 |
+
sample = sample.to(upscale_dtype)
|
| 118 |
+
|
| 119 |
+
# up
|
| 120 |
+
for up_block in self.up_blocks:
|
| 121 |
+
sample = up_block(sample, image_only_indicator=image_only_indicator)
|
| 122 |
+
|
| 123 |
+
# post-process
|
| 124 |
+
sample = self.conv_norm_out(sample)
|
| 125 |
+
sample = self.conv_act(sample)
|
| 126 |
+
sample = self.conv_out(sample)
|
| 127 |
+
|
| 128 |
+
batch_frames, channels, height, width = sample.shape
|
| 129 |
+
batch_size = batch_frames // num_frames
|
| 130 |
+
sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
|
| 131 |
+
sample = self.time_conv_out(sample)
|
| 132 |
+
|
| 133 |
+
sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
|
| 134 |
+
|
| 135 |
+
return sample
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
| 139 |
+
r"""
|
| 140 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
| 141 |
+
|
| 142 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 143 |
+
for all models (such as downloading or saving).
|
| 144 |
+
|
| 145 |
+
Parameters:
|
| 146 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
| 147 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
| 148 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
| 149 |
+
Tuple of downsample block types.
|
| 150 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
| 151 |
+
Tuple of block output channels.
|
| 152 |
+
layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block.
|
| 153 |
+
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
| 154 |
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
| 155 |
+
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
| 156 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
| 157 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
| 158 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
| 159 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
| 160 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
| 161 |
+
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
|
| 162 |
+
force_upcast (`bool`, *optional*, default to `True`):
|
| 163 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
| 164 |
+
can be fine-tuned / trained to a lower range without losing too much precision in which case `force_upcast`
|
| 165 |
+
can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
_supports_gradient_checkpointing = True
|
| 169 |
+
|
| 170 |
+
@register_to_config
|
| 171 |
+
def __init__(
|
| 172 |
+
self,
|
| 173 |
+
in_channels: int = 3,
|
| 174 |
+
out_channels: int = 3,
|
| 175 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
| 176 |
+
block_out_channels: Tuple[int] = (64,),
|
| 177 |
+
layers_per_block: int = 1,
|
| 178 |
+
latent_channels: int = 4,
|
| 179 |
+
sample_size: int = 32,
|
| 180 |
+
scaling_factor: float = 0.18215,
|
| 181 |
+
force_upcast: float = True,
|
| 182 |
+
):
|
| 183 |
+
super().__init__()
|
| 184 |
+
|
| 185 |
+
# pass init params to Encoder
|
| 186 |
+
self.encoder = Encoder(
|
| 187 |
+
in_channels=in_channels,
|
| 188 |
+
out_channels=latent_channels,
|
| 189 |
+
down_block_types=down_block_types,
|
| 190 |
+
block_out_channels=block_out_channels,
|
| 191 |
+
layers_per_block=layers_per_block,
|
| 192 |
+
double_z=True,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# pass init params to Decoder
|
| 196 |
+
self.decoder = TemporalDecoder(
|
| 197 |
+
in_channels=latent_channels,
|
| 198 |
+
out_channels=out_channels,
|
| 199 |
+
block_out_channels=block_out_channels,
|
| 200 |
+
layers_per_block=layers_per_block,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
| 204 |
+
|
| 205 |
+
@property
|
| 206 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 207 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 208 |
+
r"""
|
| 209 |
+
Returns:
|
| 210 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 211 |
+
indexed by its weight name.
|
| 212 |
+
"""
|
| 213 |
+
# set recursively
|
| 214 |
+
processors = {}
|
| 215 |
+
|
| 216 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 217 |
+
if hasattr(module, "get_processor"):
|
| 218 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 219 |
+
|
| 220 |
+
for sub_name, child in module.named_children():
|
| 221 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 222 |
+
|
| 223 |
+
return processors
|
| 224 |
+
|
| 225 |
+
for name, module in self.named_children():
|
| 226 |
+
fn_recursive_add_processors(name, module, processors)
|
| 227 |
+
|
| 228 |
+
return processors
|
| 229 |
+
|
| 230 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 231 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 232 |
+
r"""
|
| 233 |
+
Sets the attention processor to use to compute attention.
|
| 234 |
+
|
| 235 |
+
Parameters:
|
| 236 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 237 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 238 |
+
for **all** `Attention` layers.
|
| 239 |
+
|
| 240 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 241 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 242 |
+
|
| 243 |
+
"""
|
| 244 |
+
count = len(self.attn_processors.keys())
|
| 245 |
+
|
| 246 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 247 |
+
raise ValueError(
|
| 248 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 249 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 253 |
+
if hasattr(module, "set_processor"):
|
| 254 |
+
if not isinstance(processor, dict):
|
| 255 |
+
module.set_processor(processor)
|
| 256 |
+
else:
|
| 257 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 258 |
+
|
| 259 |
+
for sub_name, child in module.named_children():
|
| 260 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 261 |
+
|
| 262 |
+
for name, module in self.named_children():
|
| 263 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 264 |
+
|
| 265 |
+
def set_default_attn_processor(self):
|
| 266 |
+
"""
|
| 267 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 268 |
+
"""
|
| 269 |
+
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 270 |
+
processor = AttnProcessor()
|
| 271 |
+
else:
|
| 272 |
+
raise ValueError(
|
| 273 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
self.set_attn_processor(processor)
|
| 277 |
+
|
| 278 |
+
@apply_forward_hook
|
| 279 |
+
def encode(
|
| 280 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 281 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 282 |
+
"""
|
| 283 |
+
Encode a batch of images into latents.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
x (`torch.Tensor`): Input batch of images.
|
| 287 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 288 |
+
Whether to return a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] instead of a plain
|
| 289 |
+
tuple.
|
| 290 |
+
|
| 291 |
+
Returns:
|
| 292 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
| 293 |
+
[`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is
|
| 294 |
+
returned.
|
| 295 |
+
"""
|
| 296 |
+
h = self.encoder(x)
|
| 297 |
+
moments = self.quant_conv(h)
|
| 298 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 299 |
+
|
| 300 |
+
if not return_dict:
|
| 301 |
+
return (posterior,)
|
| 302 |
+
|
| 303 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 304 |
+
|
| 305 |
+
@apply_forward_hook
|
| 306 |
+
def decode(
|
| 307 |
+
self,
|
| 308 |
+
z: torch.Tensor,
|
| 309 |
+
num_frames: int,
|
| 310 |
+
return_dict: bool = True,
|
| 311 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 312 |
+
"""
|
| 313 |
+
Decode a batch of images.
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 317 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 318 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 319 |
+
|
| 320 |
+
Returns:
|
| 321 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 322 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 323 |
+
returned.
|
| 324 |
+
|
| 325 |
+
"""
|
| 326 |
+
batch_size = z.shape[0] // num_frames
|
| 327 |
+
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device)
|
| 328 |
+
decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator)
|
| 329 |
+
|
| 330 |
+
if not return_dict:
|
| 331 |
+
return (decoded,)
|
| 332 |
+
|
| 333 |
+
return DecoderOutput(sample=decoded)
|
| 334 |
+
|
| 335 |
+
def forward(
|
| 336 |
+
self,
|
| 337 |
+
sample: torch.Tensor,
|
| 338 |
+
sample_posterior: bool = False,
|
| 339 |
+
return_dict: bool = True,
|
| 340 |
+
generator: Optional[torch.Generator] = None,
|
| 341 |
+
num_frames: int = 1,
|
| 342 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 343 |
+
r"""
|
| 344 |
+
Args:
|
| 345 |
+
sample (`torch.Tensor`): Input sample.
|
| 346 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 347 |
+
Whether to sample from the posterior.
|
| 348 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 349 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 350 |
+
"""
|
| 351 |
+
x = sample
|
| 352 |
+
posterior = self.encode(x).latent_dist
|
| 353 |
+
if sample_posterior:
|
| 354 |
+
z = posterior.sample(generator=generator)
|
| 355 |
+
else:
|
| 356 |
+
z = posterior.mode()
|
| 357 |
+
|
| 358 |
+
dec = self.decode(z, num_frames=num_frames).sample
|
| 359 |
+
|
| 360 |
+
if not return_dict:
|
| 361 |
+
return (dec,)
|
| 362 |
+
|
| 363 |
+
return DecoderOutput(sample=dec)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_kl_wan.py
ADDED
|
@@ -0,0 +1,1419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
import torch.utils.checkpoint
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...loaders import FromOriginalModelMixin
|
| 24 |
+
from ...utils import logging
|
| 25 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 26 |
+
from ..activations import get_activation
|
| 27 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
CACHE_T = 2
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class AvgDown3D(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
in_channels,
|
| 41 |
+
out_channels,
|
| 42 |
+
factor_t,
|
| 43 |
+
factor_s=1,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.in_channels = in_channels
|
| 47 |
+
self.out_channels = out_channels
|
| 48 |
+
self.factor_t = factor_t
|
| 49 |
+
self.factor_s = factor_s
|
| 50 |
+
self.factor = self.factor_t * self.factor_s * self.factor_s
|
| 51 |
+
|
| 52 |
+
assert in_channels * self.factor % out_channels == 0
|
| 53 |
+
self.group_size = in_channels * self.factor // out_channels
|
| 54 |
+
|
| 55 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t
|
| 57 |
+
pad = (0, 0, 0, 0, pad_t, 0)
|
| 58 |
+
x = F.pad(x, pad)
|
| 59 |
+
B, C, T, H, W = x.shape
|
| 60 |
+
x = x.view(
|
| 61 |
+
B,
|
| 62 |
+
C,
|
| 63 |
+
T // self.factor_t,
|
| 64 |
+
self.factor_t,
|
| 65 |
+
H // self.factor_s,
|
| 66 |
+
self.factor_s,
|
| 67 |
+
W // self.factor_s,
|
| 68 |
+
self.factor_s,
|
| 69 |
+
)
|
| 70 |
+
x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous()
|
| 71 |
+
x = x.view(
|
| 72 |
+
B,
|
| 73 |
+
C * self.factor,
|
| 74 |
+
T // self.factor_t,
|
| 75 |
+
H // self.factor_s,
|
| 76 |
+
W // self.factor_s,
|
| 77 |
+
)
|
| 78 |
+
x = x.view(
|
| 79 |
+
B,
|
| 80 |
+
self.out_channels,
|
| 81 |
+
self.group_size,
|
| 82 |
+
T // self.factor_t,
|
| 83 |
+
H // self.factor_s,
|
| 84 |
+
W // self.factor_s,
|
| 85 |
+
)
|
| 86 |
+
x = x.mean(dim=2)
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class DupUp3D(nn.Module):
|
| 91 |
+
def __init__(
|
| 92 |
+
self,
|
| 93 |
+
in_channels: int,
|
| 94 |
+
out_channels: int,
|
| 95 |
+
factor_t,
|
| 96 |
+
factor_s=1,
|
| 97 |
+
):
|
| 98 |
+
super().__init__()
|
| 99 |
+
self.in_channels = in_channels
|
| 100 |
+
self.out_channels = out_channels
|
| 101 |
+
|
| 102 |
+
self.factor_t = factor_t
|
| 103 |
+
self.factor_s = factor_s
|
| 104 |
+
self.factor = self.factor_t * self.factor_s * self.factor_s
|
| 105 |
+
|
| 106 |
+
assert out_channels * self.factor % in_channels == 0
|
| 107 |
+
self.repeats = out_channels * self.factor // in_channels
|
| 108 |
+
|
| 109 |
+
def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor:
|
| 110 |
+
x = x.repeat_interleave(self.repeats, dim=1)
|
| 111 |
+
x = x.view(
|
| 112 |
+
x.size(0),
|
| 113 |
+
self.out_channels,
|
| 114 |
+
self.factor_t,
|
| 115 |
+
self.factor_s,
|
| 116 |
+
self.factor_s,
|
| 117 |
+
x.size(2),
|
| 118 |
+
x.size(3),
|
| 119 |
+
x.size(4),
|
| 120 |
+
)
|
| 121 |
+
x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
| 122 |
+
x = x.view(
|
| 123 |
+
x.size(0),
|
| 124 |
+
self.out_channels,
|
| 125 |
+
x.size(2) * self.factor_t,
|
| 126 |
+
x.size(4) * self.factor_s,
|
| 127 |
+
x.size(6) * self.factor_s,
|
| 128 |
+
)
|
| 129 |
+
if first_chunk:
|
| 130 |
+
x = x[:, :, self.factor_t - 1 :, :, :]
|
| 131 |
+
return x
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class WanCausalConv3d(nn.Conv3d):
|
| 135 |
+
r"""
|
| 136 |
+
A custom 3D causal convolution layer with feature caching support.
|
| 137 |
+
|
| 138 |
+
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
|
| 139 |
+
caching for efficient inference.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
in_channels (int): Number of channels in the input image
|
| 143 |
+
out_channels (int): Number of channels produced by the convolution
|
| 144 |
+
kernel_size (int or tuple): Size of the convolving kernel
|
| 145 |
+
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
| 146 |
+
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
in_channels: int,
|
| 152 |
+
out_channels: int,
|
| 153 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
| 154 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
| 155 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
| 156 |
+
) -> None:
|
| 157 |
+
super().__init__(
|
| 158 |
+
in_channels=in_channels,
|
| 159 |
+
out_channels=out_channels,
|
| 160 |
+
kernel_size=kernel_size,
|
| 161 |
+
stride=stride,
|
| 162 |
+
padding=padding,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# Set up causal padding
|
| 166 |
+
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
|
| 167 |
+
self.padding = (0, 0, 0)
|
| 168 |
+
|
| 169 |
+
def forward(self, x, cache_x=None):
|
| 170 |
+
padding = list(self._padding)
|
| 171 |
+
if cache_x is not None and self._padding[4] > 0:
|
| 172 |
+
cache_x = cache_x.to(x.device)
|
| 173 |
+
x = torch.cat([cache_x, x], dim=2)
|
| 174 |
+
padding[4] -= cache_x.shape[2]
|
| 175 |
+
x = F.pad(x, padding)
|
| 176 |
+
return super().forward(x)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class WanRMS_norm(nn.Module):
|
| 180 |
+
r"""
|
| 181 |
+
A custom RMS normalization layer.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
dim (int): The number of dimensions to normalize over.
|
| 185 |
+
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
|
| 186 |
+
Default is True.
|
| 187 |
+
images (bool, optional): Whether the input represents image data. Default is True.
|
| 188 |
+
bias (bool, optional): Whether to include a learnable bias term. Default is False.
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
|
| 192 |
+
super().__init__()
|
| 193 |
+
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
| 194 |
+
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
| 195 |
+
|
| 196 |
+
self.channel_first = channel_first
|
| 197 |
+
self.scale = dim**0.5
|
| 198 |
+
self.gamma = nn.Parameter(torch.ones(shape))
|
| 199 |
+
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
|
| 200 |
+
|
| 201 |
+
def forward(self, x):
|
| 202 |
+
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
class WanUpsample(nn.Upsample):
|
| 206 |
+
r"""
|
| 207 |
+
Perform upsampling while ensuring the output tensor has the same data type as the input.
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
x (torch.Tensor): Input tensor to be upsampled.
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
torch.Tensor: Upsampled tensor with the same data type as the input.
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
def forward(self, x):
|
| 217 |
+
return super().forward(x.float()).type_as(x)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class WanResample(nn.Module):
|
| 221 |
+
r"""
|
| 222 |
+
A custom resampling module for 2D and 3D data.
|
| 223 |
+
|
| 224 |
+
Args:
|
| 225 |
+
dim (int): The number of input/output channels.
|
| 226 |
+
mode (str): The resampling mode. Must be one of:
|
| 227 |
+
- 'none': No resampling (identity operation).
|
| 228 |
+
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
|
| 229 |
+
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
|
| 230 |
+
- 'downsample2d': 2D downsampling with zero-padding and convolution.
|
| 231 |
+
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
|
| 232 |
+
"""
|
| 233 |
+
|
| 234 |
+
def __init__(self, dim: int, mode: str, upsample_out_dim: int = None) -> None:
|
| 235 |
+
super().__init__()
|
| 236 |
+
self.dim = dim
|
| 237 |
+
self.mode = mode
|
| 238 |
+
|
| 239 |
+
# default to dim //2
|
| 240 |
+
if upsample_out_dim is None:
|
| 241 |
+
upsample_out_dim = dim // 2
|
| 242 |
+
|
| 243 |
+
# layers
|
| 244 |
+
if mode == "upsample2d":
|
| 245 |
+
self.resample = nn.Sequential(
|
| 246 |
+
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
| 247 |
+
nn.Conv2d(dim, upsample_out_dim, 3, padding=1),
|
| 248 |
+
)
|
| 249 |
+
elif mode == "upsample3d":
|
| 250 |
+
self.resample = nn.Sequential(
|
| 251 |
+
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"),
|
| 252 |
+
nn.Conv2d(dim, upsample_out_dim, 3, padding=1),
|
| 253 |
+
)
|
| 254 |
+
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
| 255 |
+
|
| 256 |
+
elif mode == "downsample2d":
|
| 257 |
+
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
| 258 |
+
elif mode == "downsample3d":
|
| 259 |
+
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
| 260 |
+
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
| 261 |
+
|
| 262 |
+
else:
|
| 263 |
+
self.resample = nn.Identity()
|
| 264 |
+
|
| 265 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 266 |
+
b, c, t, h, w = x.size()
|
| 267 |
+
if self.mode == "upsample3d":
|
| 268 |
+
if feat_cache is not None:
|
| 269 |
+
idx = feat_idx[0]
|
| 270 |
+
if feat_cache[idx] is None:
|
| 271 |
+
feat_cache[idx] = "Rep"
|
| 272 |
+
feat_idx[0] += 1
|
| 273 |
+
else:
|
| 274 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 275 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
|
| 276 |
+
# cache last frame of last two chunk
|
| 277 |
+
cache_x = torch.cat(
|
| 278 |
+
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
|
| 279 |
+
)
|
| 280 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
|
| 281 |
+
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
|
| 282 |
+
if feat_cache[idx] == "Rep":
|
| 283 |
+
x = self.time_conv(x)
|
| 284 |
+
else:
|
| 285 |
+
x = self.time_conv(x, feat_cache[idx])
|
| 286 |
+
feat_cache[idx] = cache_x
|
| 287 |
+
feat_idx[0] += 1
|
| 288 |
+
|
| 289 |
+
x = x.reshape(b, 2, c, t, h, w)
|
| 290 |
+
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
|
| 291 |
+
x = x.reshape(b, c, t * 2, h, w)
|
| 292 |
+
t = x.shape[2]
|
| 293 |
+
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
| 294 |
+
x = self.resample(x)
|
| 295 |
+
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
|
| 296 |
+
|
| 297 |
+
if self.mode == "downsample3d":
|
| 298 |
+
if feat_cache is not None:
|
| 299 |
+
idx = feat_idx[0]
|
| 300 |
+
if feat_cache[idx] is None:
|
| 301 |
+
feat_cache[idx] = x.clone()
|
| 302 |
+
feat_idx[0] += 1
|
| 303 |
+
else:
|
| 304 |
+
cache_x = x[:, :, -1:, :, :].clone()
|
| 305 |
+
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
| 306 |
+
feat_cache[idx] = cache_x
|
| 307 |
+
feat_idx[0] += 1
|
| 308 |
+
return x
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class WanResidualBlock(nn.Module):
|
| 312 |
+
r"""
|
| 313 |
+
A custom residual block module.
|
| 314 |
+
|
| 315 |
+
Args:
|
| 316 |
+
in_dim (int): Number of input channels.
|
| 317 |
+
out_dim (int): Number of output channels.
|
| 318 |
+
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
|
| 319 |
+
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
|
| 320 |
+
"""
|
| 321 |
+
|
| 322 |
+
def __init__(
|
| 323 |
+
self,
|
| 324 |
+
in_dim: int,
|
| 325 |
+
out_dim: int,
|
| 326 |
+
dropout: float = 0.0,
|
| 327 |
+
non_linearity: str = "silu",
|
| 328 |
+
) -> None:
|
| 329 |
+
super().__init__()
|
| 330 |
+
self.in_dim = in_dim
|
| 331 |
+
self.out_dim = out_dim
|
| 332 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 333 |
+
|
| 334 |
+
# layers
|
| 335 |
+
self.norm1 = WanRMS_norm(in_dim, images=False)
|
| 336 |
+
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
|
| 337 |
+
self.norm2 = WanRMS_norm(out_dim, images=False)
|
| 338 |
+
self.dropout = nn.Dropout(dropout)
|
| 339 |
+
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
|
| 340 |
+
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
|
| 341 |
+
|
| 342 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 343 |
+
# Apply shortcut connection
|
| 344 |
+
h = self.conv_shortcut(x)
|
| 345 |
+
|
| 346 |
+
# First normalization and activation
|
| 347 |
+
x = self.norm1(x)
|
| 348 |
+
x = self.nonlinearity(x)
|
| 349 |
+
|
| 350 |
+
if feat_cache is not None:
|
| 351 |
+
idx = feat_idx[0]
|
| 352 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 353 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 354 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 355 |
+
|
| 356 |
+
x = self.conv1(x, feat_cache[idx])
|
| 357 |
+
feat_cache[idx] = cache_x
|
| 358 |
+
feat_idx[0] += 1
|
| 359 |
+
else:
|
| 360 |
+
x = self.conv1(x)
|
| 361 |
+
|
| 362 |
+
# Second normalization and activation
|
| 363 |
+
x = self.norm2(x)
|
| 364 |
+
x = self.nonlinearity(x)
|
| 365 |
+
|
| 366 |
+
# Dropout
|
| 367 |
+
x = self.dropout(x)
|
| 368 |
+
|
| 369 |
+
if feat_cache is not None:
|
| 370 |
+
idx = feat_idx[0]
|
| 371 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 372 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 373 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 374 |
+
|
| 375 |
+
x = self.conv2(x, feat_cache[idx])
|
| 376 |
+
feat_cache[idx] = cache_x
|
| 377 |
+
feat_idx[0] += 1
|
| 378 |
+
else:
|
| 379 |
+
x = self.conv2(x)
|
| 380 |
+
|
| 381 |
+
# Add residual connection
|
| 382 |
+
return x + h
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
class WanAttentionBlock(nn.Module):
|
| 386 |
+
r"""
|
| 387 |
+
Causal self-attention with a single head.
|
| 388 |
+
|
| 389 |
+
Args:
|
| 390 |
+
dim (int): The number of channels in the input tensor.
|
| 391 |
+
"""
|
| 392 |
+
|
| 393 |
+
def __init__(self, dim):
|
| 394 |
+
super().__init__()
|
| 395 |
+
self.dim = dim
|
| 396 |
+
|
| 397 |
+
# layers
|
| 398 |
+
self.norm = WanRMS_norm(dim)
|
| 399 |
+
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
| 400 |
+
self.proj = nn.Conv2d(dim, dim, 1)
|
| 401 |
+
|
| 402 |
+
def forward(self, x):
|
| 403 |
+
identity = x
|
| 404 |
+
batch_size, channels, time, height, width = x.size()
|
| 405 |
+
|
| 406 |
+
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
|
| 407 |
+
x = self.norm(x)
|
| 408 |
+
|
| 409 |
+
# compute query, key, value
|
| 410 |
+
qkv = self.to_qkv(x)
|
| 411 |
+
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
|
| 412 |
+
qkv = qkv.permute(0, 1, 3, 2).contiguous()
|
| 413 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
| 414 |
+
|
| 415 |
+
# apply attention
|
| 416 |
+
x = F.scaled_dot_product_attention(q, k, v)
|
| 417 |
+
|
| 418 |
+
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
|
| 419 |
+
|
| 420 |
+
# output projection
|
| 421 |
+
x = self.proj(x)
|
| 422 |
+
|
| 423 |
+
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
|
| 424 |
+
x = x.view(batch_size, time, channels, height, width)
|
| 425 |
+
x = x.permute(0, 2, 1, 3, 4)
|
| 426 |
+
|
| 427 |
+
return x + identity
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
class WanMidBlock(nn.Module):
|
| 431 |
+
"""
|
| 432 |
+
Middle block for WanVAE encoder and decoder.
|
| 433 |
+
|
| 434 |
+
Args:
|
| 435 |
+
dim (int): Number of input/output channels.
|
| 436 |
+
dropout (float): Dropout rate.
|
| 437 |
+
non_linearity (str): Type of non-linearity to use.
|
| 438 |
+
"""
|
| 439 |
+
|
| 440 |
+
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
|
| 441 |
+
super().__init__()
|
| 442 |
+
self.dim = dim
|
| 443 |
+
|
| 444 |
+
# Create the components
|
| 445 |
+
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
|
| 446 |
+
attentions = []
|
| 447 |
+
for _ in range(num_layers):
|
| 448 |
+
attentions.append(WanAttentionBlock(dim))
|
| 449 |
+
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
|
| 450 |
+
self.attentions = nn.ModuleList(attentions)
|
| 451 |
+
self.resnets = nn.ModuleList(resnets)
|
| 452 |
+
|
| 453 |
+
self.gradient_checkpointing = False
|
| 454 |
+
|
| 455 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 456 |
+
# First residual block
|
| 457 |
+
x = self.resnets[0](x, feat_cache, feat_idx)
|
| 458 |
+
|
| 459 |
+
# Process through attention and residual blocks
|
| 460 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
| 461 |
+
if attn is not None:
|
| 462 |
+
x = attn(x)
|
| 463 |
+
|
| 464 |
+
x = resnet(x, feat_cache, feat_idx)
|
| 465 |
+
|
| 466 |
+
return x
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
class WanResidualDownBlock(nn.Module):
|
| 470 |
+
def __init__(self, in_dim, out_dim, dropout, num_res_blocks, temperal_downsample=False, down_flag=False):
|
| 471 |
+
super().__init__()
|
| 472 |
+
|
| 473 |
+
# Shortcut path with downsample
|
| 474 |
+
self.avg_shortcut = AvgDown3D(
|
| 475 |
+
in_dim,
|
| 476 |
+
out_dim,
|
| 477 |
+
factor_t=2 if temperal_downsample else 1,
|
| 478 |
+
factor_s=2 if down_flag else 1,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
# Main path with residual blocks and downsample
|
| 482 |
+
resnets = []
|
| 483 |
+
for _ in range(num_res_blocks):
|
| 484 |
+
resnets.append(WanResidualBlock(in_dim, out_dim, dropout))
|
| 485 |
+
in_dim = out_dim
|
| 486 |
+
self.resnets = nn.ModuleList(resnets)
|
| 487 |
+
|
| 488 |
+
# Add the final downsample block
|
| 489 |
+
if down_flag:
|
| 490 |
+
mode = "downsample3d" if temperal_downsample else "downsample2d"
|
| 491 |
+
self.downsampler = WanResample(out_dim, mode=mode)
|
| 492 |
+
else:
|
| 493 |
+
self.downsampler = None
|
| 494 |
+
|
| 495 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 496 |
+
x_copy = x.clone()
|
| 497 |
+
for resnet in self.resnets:
|
| 498 |
+
x = resnet(x, feat_cache, feat_idx)
|
| 499 |
+
if self.downsampler is not None:
|
| 500 |
+
x = self.downsampler(x, feat_cache, feat_idx)
|
| 501 |
+
|
| 502 |
+
return x + self.avg_shortcut(x_copy)
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
class WanEncoder3d(nn.Module):
|
| 506 |
+
r"""
|
| 507 |
+
A 3D encoder module.
|
| 508 |
+
|
| 509 |
+
Args:
|
| 510 |
+
dim (int): The base number of channels in the first layer.
|
| 511 |
+
z_dim (int): The dimensionality of the latent space.
|
| 512 |
+
dim_mult (list of int): Multipliers for the number of channels in each block.
|
| 513 |
+
num_res_blocks (int): Number of residual blocks in each block.
|
| 514 |
+
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
| 515 |
+
temperal_downsample (list of bool): Whether to downsample temporally in each block.
|
| 516 |
+
dropout (float): Dropout rate for the dropout layers.
|
| 517 |
+
non_linearity (str): Type of non-linearity to use.
|
| 518 |
+
"""
|
| 519 |
+
|
| 520 |
+
def __init__(
|
| 521 |
+
self,
|
| 522 |
+
in_channels: int = 3,
|
| 523 |
+
dim=128,
|
| 524 |
+
z_dim=4,
|
| 525 |
+
dim_mult=[1, 2, 4, 4],
|
| 526 |
+
num_res_blocks=2,
|
| 527 |
+
attn_scales=[],
|
| 528 |
+
temperal_downsample=[True, True, False],
|
| 529 |
+
dropout=0.0,
|
| 530 |
+
non_linearity: str = "silu",
|
| 531 |
+
is_residual: bool = False, # wan 2.2 vae use a residual downblock
|
| 532 |
+
):
|
| 533 |
+
super().__init__()
|
| 534 |
+
self.dim = dim
|
| 535 |
+
self.z_dim = z_dim
|
| 536 |
+
self.dim_mult = dim_mult
|
| 537 |
+
self.num_res_blocks = num_res_blocks
|
| 538 |
+
self.attn_scales = attn_scales
|
| 539 |
+
self.temperal_downsample = temperal_downsample
|
| 540 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 541 |
+
|
| 542 |
+
# dimensions
|
| 543 |
+
dims = [dim * u for u in [1] + dim_mult]
|
| 544 |
+
scale = 1.0
|
| 545 |
+
|
| 546 |
+
# init block
|
| 547 |
+
self.conv_in = WanCausalConv3d(in_channels, dims[0], 3, padding=1)
|
| 548 |
+
|
| 549 |
+
# downsample blocks
|
| 550 |
+
self.down_blocks = nn.ModuleList([])
|
| 551 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 552 |
+
# residual (+attention) blocks
|
| 553 |
+
if is_residual:
|
| 554 |
+
self.down_blocks.append(
|
| 555 |
+
WanResidualDownBlock(
|
| 556 |
+
in_dim,
|
| 557 |
+
out_dim,
|
| 558 |
+
dropout,
|
| 559 |
+
num_res_blocks,
|
| 560 |
+
temperal_downsample=temperal_downsample[i] if i != len(dim_mult) - 1 else False,
|
| 561 |
+
down_flag=i != len(dim_mult) - 1,
|
| 562 |
+
)
|
| 563 |
+
)
|
| 564 |
+
else:
|
| 565 |
+
for _ in range(num_res_blocks):
|
| 566 |
+
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
|
| 567 |
+
if scale in attn_scales:
|
| 568 |
+
self.down_blocks.append(WanAttentionBlock(out_dim))
|
| 569 |
+
in_dim = out_dim
|
| 570 |
+
|
| 571 |
+
# downsample block
|
| 572 |
+
if i != len(dim_mult) - 1:
|
| 573 |
+
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
|
| 574 |
+
self.down_blocks.append(WanResample(out_dim, mode=mode))
|
| 575 |
+
scale /= 2.0
|
| 576 |
+
|
| 577 |
+
# middle blocks
|
| 578 |
+
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
|
| 579 |
+
|
| 580 |
+
# output blocks
|
| 581 |
+
self.norm_out = WanRMS_norm(out_dim, images=False)
|
| 582 |
+
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
|
| 583 |
+
|
| 584 |
+
self.gradient_checkpointing = False
|
| 585 |
+
|
| 586 |
+
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
| 587 |
+
if feat_cache is not None:
|
| 588 |
+
idx = feat_idx[0]
|
| 589 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 590 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 591 |
+
# cache last frame of last two chunk
|
| 592 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 593 |
+
x = self.conv_in(x, feat_cache[idx])
|
| 594 |
+
feat_cache[idx] = cache_x
|
| 595 |
+
feat_idx[0] += 1
|
| 596 |
+
else:
|
| 597 |
+
x = self.conv_in(x)
|
| 598 |
+
|
| 599 |
+
## downsamples
|
| 600 |
+
for layer in self.down_blocks:
|
| 601 |
+
if feat_cache is not None:
|
| 602 |
+
x = layer(x, feat_cache, feat_idx)
|
| 603 |
+
else:
|
| 604 |
+
x = layer(x)
|
| 605 |
+
|
| 606 |
+
## middle
|
| 607 |
+
x = self.mid_block(x, feat_cache, feat_idx)
|
| 608 |
+
|
| 609 |
+
## head
|
| 610 |
+
x = self.norm_out(x)
|
| 611 |
+
x = self.nonlinearity(x)
|
| 612 |
+
if feat_cache is not None:
|
| 613 |
+
idx = feat_idx[0]
|
| 614 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 615 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 616 |
+
# cache last frame of last two chunk
|
| 617 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 618 |
+
x = self.conv_out(x, feat_cache[idx])
|
| 619 |
+
feat_cache[idx] = cache_x
|
| 620 |
+
feat_idx[0] += 1
|
| 621 |
+
else:
|
| 622 |
+
x = self.conv_out(x)
|
| 623 |
+
return x
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class WanResidualUpBlock(nn.Module):
|
| 627 |
+
"""
|
| 628 |
+
A block that handles upsampling for the WanVAE decoder.
|
| 629 |
+
|
| 630 |
+
Args:
|
| 631 |
+
in_dim (int): Input dimension
|
| 632 |
+
out_dim (int): Output dimension
|
| 633 |
+
num_res_blocks (int): Number of residual blocks
|
| 634 |
+
dropout (float): Dropout rate
|
| 635 |
+
temperal_upsample (bool): Whether to upsample on temporal dimension
|
| 636 |
+
up_flag (bool): Whether to upsample or not
|
| 637 |
+
non_linearity (str): Type of non-linearity to use
|
| 638 |
+
"""
|
| 639 |
+
|
| 640 |
+
def __init__(
|
| 641 |
+
self,
|
| 642 |
+
in_dim: int,
|
| 643 |
+
out_dim: int,
|
| 644 |
+
num_res_blocks: int,
|
| 645 |
+
dropout: float = 0.0,
|
| 646 |
+
temperal_upsample: bool = False,
|
| 647 |
+
up_flag: bool = False,
|
| 648 |
+
non_linearity: str = "silu",
|
| 649 |
+
):
|
| 650 |
+
super().__init__()
|
| 651 |
+
self.in_dim = in_dim
|
| 652 |
+
self.out_dim = out_dim
|
| 653 |
+
|
| 654 |
+
if up_flag:
|
| 655 |
+
self.avg_shortcut = DupUp3D(
|
| 656 |
+
in_dim,
|
| 657 |
+
out_dim,
|
| 658 |
+
factor_t=2 if temperal_upsample else 1,
|
| 659 |
+
factor_s=2,
|
| 660 |
+
)
|
| 661 |
+
else:
|
| 662 |
+
self.avg_shortcut = None
|
| 663 |
+
|
| 664 |
+
# create residual blocks
|
| 665 |
+
resnets = []
|
| 666 |
+
current_dim = in_dim
|
| 667 |
+
for _ in range(num_res_blocks + 1):
|
| 668 |
+
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
|
| 669 |
+
current_dim = out_dim
|
| 670 |
+
|
| 671 |
+
self.resnets = nn.ModuleList(resnets)
|
| 672 |
+
|
| 673 |
+
# Add upsampling layer if needed
|
| 674 |
+
if up_flag:
|
| 675 |
+
upsample_mode = "upsample3d" if temperal_upsample else "upsample2d"
|
| 676 |
+
self.upsampler = WanResample(out_dim, mode=upsample_mode, upsample_out_dim=out_dim)
|
| 677 |
+
else:
|
| 678 |
+
self.upsampler = None
|
| 679 |
+
|
| 680 |
+
self.gradient_checkpointing = False
|
| 681 |
+
|
| 682 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
| 683 |
+
"""
|
| 684 |
+
Forward pass through the upsampling block.
|
| 685 |
+
|
| 686 |
+
Args:
|
| 687 |
+
x (torch.Tensor): Input tensor
|
| 688 |
+
feat_cache (list, optional): Feature cache for causal convolutions
|
| 689 |
+
feat_idx (list, optional): Feature index for cache management
|
| 690 |
+
|
| 691 |
+
Returns:
|
| 692 |
+
torch.Tensor: Output tensor
|
| 693 |
+
"""
|
| 694 |
+
x_copy = x.clone()
|
| 695 |
+
|
| 696 |
+
for resnet in self.resnets:
|
| 697 |
+
if feat_cache is not None:
|
| 698 |
+
x = resnet(x, feat_cache, feat_idx)
|
| 699 |
+
else:
|
| 700 |
+
x = resnet(x)
|
| 701 |
+
|
| 702 |
+
if self.upsampler is not None:
|
| 703 |
+
if feat_cache is not None:
|
| 704 |
+
x = self.upsampler(x, feat_cache, feat_idx)
|
| 705 |
+
else:
|
| 706 |
+
x = self.upsampler(x)
|
| 707 |
+
|
| 708 |
+
if self.avg_shortcut is not None:
|
| 709 |
+
x = x + self.avg_shortcut(x_copy, first_chunk=first_chunk)
|
| 710 |
+
|
| 711 |
+
return x
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
class WanUpBlock(nn.Module):
|
| 715 |
+
"""
|
| 716 |
+
A block that handles upsampling for the WanVAE decoder.
|
| 717 |
+
|
| 718 |
+
Args:
|
| 719 |
+
in_dim (int): Input dimension
|
| 720 |
+
out_dim (int): Output dimension
|
| 721 |
+
num_res_blocks (int): Number of residual blocks
|
| 722 |
+
dropout (float): Dropout rate
|
| 723 |
+
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
|
| 724 |
+
non_linearity (str): Type of non-linearity to use
|
| 725 |
+
"""
|
| 726 |
+
|
| 727 |
+
def __init__(
|
| 728 |
+
self,
|
| 729 |
+
in_dim: int,
|
| 730 |
+
out_dim: int,
|
| 731 |
+
num_res_blocks: int,
|
| 732 |
+
dropout: float = 0.0,
|
| 733 |
+
upsample_mode: Optional[str] = None,
|
| 734 |
+
non_linearity: str = "silu",
|
| 735 |
+
):
|
| 736 |
+
super().__init__()
|
| 737 |
+
self.in_dim = in_dim
|
| 738 |
+
self.out_dim = out_dim
|
| 739 |
+
|
| 740 |
+
# Create layers list
|
| 741 |
+
resnets = []
|
| 742 |
+
# Add residual blocks and attention if needed
|
| 743 |
+
current_dim = in_dim
|
| 744 |
+
for _ in range(num_res_blocks + 1):
|
| 745 |
+
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
|
| 746 |
+
current_dim = out_dim
|
| 747 |
+
|
| 748 |
+
self.resnets = nn.ModuleList(resnets)
|
| 749 |
+
|
| 750 |
+
# Add upsampling layer if needed
|
| 751 |
+
self.upsamplers = None
|
| 752 |
+
if upsample_mode is not None:
|
| 753 |
+
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
|
| 754 |
+
|
| 755 |
+
self.gradient_checkpointing = False
|
| 756 |
+
|
| 757 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=None):
|
| 758 |
+
"""
|
| 759 |
+
Forward pass through the upsampling block.
|
| 760 |
+
|
| 761 |
+
Args:
|
| 762 |
+
x (torch.Tensor): Input tensor
|
| 763 |
+
feat_cache (list, optional): Feature cache for causal convolutions
|
| 764 |
+
feat_idx (list, optional): Feature index for cache management
|
| 765 |
+
|
| 766 |
+
Returns:
|
| 767 |
+
torch.Tensor: Output tensor
|
| 768 |
+
"""
|
| 769 |
+
for resnet in self.resnets:
|
| 770 |
+
if feat_cache is not None:
|
| 771 |
+
x = resnet(x, feat_cache, feat_idx)
|
| 772 |
+
else:
|
| 773 |
+
x = resnet(x)
|
| 774 |
+
|
| 775 |
+
if self.upsamplers is not None:
|
| 776 |
+
if feat_cache is not None:
|
| 777 |
+
x = self.upsamplers[0](x, feat_cache, feat_idx)
|
| 778 |
+
else:
|
| 779 |
+
x = self.upsamplers[0](x)
|
| 780 |
+
return x
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
class WanDecoder3d(nn.Module):
|
| 784 |
+
r"""
|
| 785 |
+
A 3D decoder module.
|
| 786 |
+
|
| 787 |
+
Args:
|
| 788 |
+
dim (int): The base number of channels in the first layer.
|
| 789 |
+
z_dim (int): The dimensionality of the latent space.
|
| 790 |
+
dim_mult (list of int): Multipliers for the number of channels in each block.
|
| 791 |
+
num_res_blocks (int): Number of residual blocks in each block.
|
| 792 |
+
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
| 793 |
+
temperal_upsample (list of bool): Whether to upsample temporally in each block.
|
| 794 |
+
dropout (float): Dropout rate for the dropout layers.
|
| 795 |
+
non_linearity (str): Type of non-linearity to use.
|
| 796 |
+
"""
|
| 797 |
+
|
| 798 |
+
def __init__(
|
| 799 |
+
self,
|
| 800 |
+
dim=128,
|
| 801 |
+
z_dim=4,
|
| 802 |
+
dim_mult=[1, 2, 4, 4],
|
| 803 |
+
num_res_blocks=2,
|
| 804 |
+
attn_scales=[],
|
| 805 |
+
temperal_upsample=[False, True, True],
|
| 806 |
+
dropout=0.0,
|
| 807 |
+
non_linearity: str = "silu",
|
| 808 |
+
out_channels: int = 3,
|
| 809 |
+
is_residual: bool = False,
|
| 810 |
+
):
|
| 811 |
+
super().__init__()
|
| 812 |
+
self.dim = dim
|
| 813 |
+
self.z_dim = z_dim
|
| 814 |
+
self.dim_mult = dim_mult
|
| 815 |
+
self.num_res_blocks = num_res_blocks
|
| 816 |
+
self.attn_scales = attn_scales
|
| 817 |
+
self.temperal_upsample = temperal_upsample
|
| 818 |
+
|
| 819 |
+
self.nonlinearity = get_activation(non_linearity)
|
| 820 |
+
|
| 821 |
+
# dimensions
|
| 822 |
+
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
| 823 |
+
|
| 824 |
+
# init block
|
| 825 |
+
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
|
| 826 |
+
|
| 827 |
+
# middle blocks
|
| 828 |
+
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
|
| 829 |
+
|
| 830 |
+
# upsample blocks
|
| 831 |
+
self.up_blocks = nn.ModuleList([])
|
| 832 |
+
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
| 833 |
+
# residual (+attention) blocks
|
| 834 |
+
if i > 0 and not is_residual:
|
| 835 |
+
# wan vae 2.1
|
| 836 |
+
in_dim = in_dim // 2
|
| 837 |
+
|
| 838 |
+
# determine if we need upsampling
|
| 839 |
+
up_flag = i != len(dim_mult) - 1
|
| 840 |
+
# determine upsampling mode, if not upsampling, set to None
|
| 841 |
+
upsample_mode = None
|
| 842 |
+
if up_flag and temperal_upsample[i]:
|
| 843 |
+
upsample_mode = "upsample3d"
|
| 844 |
+
elif up_flag:
|
| 845 |
+
upsample_mode = "upsample2d"
|
| 846 |
+
# Create and add the upsampling block
|
| 847 |
+
if is_residual:
|
| 848 |
+
up_block = WanResidualUpBlock(
|
| 849 |
+
in_dim=in_dim,
|
| 850 |
+
out_dim=out_dim,
|
| 851 |
+
num_res_blocks=num_res_blocks,
|
| 852 |
+
dropout=dropout,
|
| 853 |
+
temperal_upsample=temperal_upsample[i] if up_flag else False,
|
| 854 |
+
up_flag=up_flag,
|
| 855 |
+
non_linearity=non_linearity,
|
| 856 |
+
)
|
| 857 |
+
else:
|
| 858 |
+
up_block = WanUpBlock(
|
| 859 |
+
in_dim=in_dim,
|
| 860 |
+
out_dim=out_dim,
|
| 861 |
+
num_res_blocks=num_res_blocks,
|
| 862 |
+
dropout=dropout,
|
| 863 |
+
upsample_mode=upsample_mode,
|
| 864 |
+
non_linearity=non_linearity,
|
| 865 |
+
)
|
| 866 |
+
self.up_blocks.append(up_block)
|
| 867 |
+
|
| 868 |
+
# output blocks
|
| 869 |
+
self.norm_out = WanRMS_norm(out_dim, images=False)
|
| 870 |
+
self.conv_out = WanCausalConv3d(out_dim, out_channels, 3, padding=1)
|
| 871 |
+
|
| 872 |
+
self.gradient_checkpointing = False
|
| 873 |
+
|
| 874 |
+
def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False):
|
| 875 |
+
## conv1
|
| 876 |
+
if feat_cache is not None:
|
| 877 |
+
idx = feat_idx[0]
|
| 878 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 879 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 880 |
+
# cache last frame of last two chunk
|
| 881 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 882 |
+
x = self.conv_in(x, feat_cache[idx])
|
| 883 |
+
feat_cache[idx] = cache_x
|
| 884 |
+
feat_idx[0] += 1
|
| 885 |
+
else:
|
| 886 |
+
x = self.conv_in(x)
|
| 887 |
+
|
| 888 |
+
## middle
|
| 889 |
+
x = self.mid_block(x, feat_cache, feat_idx)
|
| 890 |
+
|
| 891 |
+
## upsamples
|
| 892 |
+
for up_block in self.up_blocks:
|
| 893 |
+
x = up_block(x, feat_cache, feat_idx, first_chunk=first_chunk)
|
| 894 |
+
|
| 895 |
+
## head
|
| 896 |
+
x = self.norm_out(x)
|
| 897 |
+
x = self.nonlinearity(x)
|
| 898 |
+
if feat_cache is not None:
|
| 899 |
+
idx = feat_idx[0]
|
| 900 |
+
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
| 901 |
+
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
| 902 |
+
# cache last frame of last two chunk
|
| 903 |
+
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
| 904 |
+
x = self.conv_out(x, feat_cache[idx])
|
| 905 |
+
feat_cache[idx] = cache_x
|
| 906 |
+
feat_idx[0] += 1
|
| 907 |
+
else:
|
| 908 |
+
x = self.conv_out(x)
|
| 909 |
+
return x
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
def patchify(x, patch_size):
|
| 913 |
+
if patch_size == 1:
|
| 914 |
+
return x
|
| 915 |
+
|
| 916 |
+
if x.dim() != 5:
|
| 917 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
| 918 |
+
# x shape: [batch_size, channels, frames, height, width]
|
| 919 |
+
batch_size, channels, frames, height, width = x.shape
|
| 920 |
+
|
| 921 |
+
# Ensure height and width are divisible by patch_size
|
| 922 |
+
if height % patch_size != 0 or width % patch_size != 0:
|
| 923 |
+
raise ValueError(f"Height ({height}) and width ({width}) must be divisible by patch_size ({patch_size})")
|
| 924 |
+
|
| 925 |
+
# Reshape to [batch_size, channels, frames, height//patch_size, patch_size, width//patch_size, patch_size]
|
| 926 |
+
x = x.view(batch_size, channels, frames, height // patch_size, patch_size, width // patch_size, patch_size)
|
| 927 |
+
|
| 928 |
+
# Rearrange to [batch_size, channels * patch_size * patch_size, frames, height//patch_size, width//patch_size]
|
| 929 |
+
x = x.permute(0, 1, 6, 4, 2, 3, 5).contiguous()
|
| 930 |
+
x = x.view(batch_size, channels * patch_size * patch_size, frames, height // patch_size, width // patch_size)
|
| 931 |
+
|
| 932 |
+
return x
|
| 933 |
+
|
| 934 |
+
|
| 935 |
+
def unpatchify(x, patch_size):
|
| 936 |
+
if patch_size == 1:
|
| 937 |
+
return x
|
| 938 |
+
|
| 939 |
+
if x.dim() != 5:
|
| 940 |
+
raise ValueError(f"Invalid input shape: {x.shape}")
|
| 941 |
+
# x shape: [batch_size, (channels * patch_size * patch_size), frame, height, width]
|
| 942 |
+
batch_size, c_patches, frames, height, width = x.shape
|
| 943 |
+
channels = c_patches // (patch_size * patch_size)
|
| 944 |
+
|
| 945 |
+
# Reshape to [b, c, patch_size, patch_size, f, h, w]
|
| 946 |
+
x = x.view(batch_size, channels, patch_size, patch_size, frames, height, width)
|
| 947 |
+
|
| 948 |
+
# Rearrange to [b, c, f, h * patch_size, w * patch_size]
|
| 949 |
+
x = x.permute(0, 1, 4, 5, 3, 6, 2).contiguous()
|
| 950 |
+
x = x.view(batch_size, channels, frames, height * patch_size, width * patch_size)
|
| 951 |
+
|
| 952 |
+
return x
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
class AutoencoderKLWan(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 956 |
+
r"""
|
| 957 |
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
| 958 |
+
Introduced in [Wan 2.1].
|
| 959 |
+
|
| 960 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 961 |
+
for all models (such as downloading or saving).
|
| 962 |
+
"""
|
| 963 |
+
|
| 964 |
+
_supports_gradient_checkpointing = False
|
| 965 |
+
|
| 966 |
+
@register_to_config
|
| 967 |
+
def __init__(
|
| 968 |
+
self,
|
| 969 |
+
base_dim: int = 96,
|
| 970 |
+
decoder_base_dim: Optional[int] = None,
|
| 971 |
+
z_dim: int = 16,
|
| 972 |
+
dim_mult: Tuple[int] = [1, 2, 4, 4],
|
| 973 |
+
num_res_blocks: int = 2,
|
| 974 |
+
attn_scales: List[float] = [],
|
| 975 |
+
temperal_downsample: List[bool] = [False, True, True],
|
| 976 |
+
dropout: float = 0.0,
|
| 977 |
+
latents_mean: List[float] = [
|
| 978 |
+
-0.7571,
|
| 979 |
+
-0.7089,
|
| 980 |
+
-0.9113,
|
| 981 |
+
0.1075,
|
| 982 |
+
-0.1745,
|
| 983 |
+
0.9653,
|
| 984 |
+
-0.1517,
|
| 985 |
+
1.5508,
|
| 986 |
+
0.4134,
|
| 987 |
+
-0.0715,
|
| 988 |
+
0.5517,
|
| 989 |
+
-0.3632,
|
| 990 |
+
-0.1922,
|
| 991 |
+
-0.9497,
|
| 992 |
+
0.2503,
|
| 993 |
+
-0.2921,
|
| 994 |
+
],
|
| 995 |
+
latents_std: List[float] = [
|
| 996 |
+
2.8184,
|
| 997 |
+
1.4541,
|
| 998 |
+
2.3275,
|
| 999 |
+
2.6558,
|
| 1000 |
+
1.2196,
|
| 1001 |
+
1.7708,
|
| 1002 |
+
2.6052,
|
| 1003 |
+
2.0743,
|
| 1004 |
+
3.2687,
|
| 1005 |
+
2.1526,
|
| 1006 |
+
2.8652,
|
| 1007 |
+
1.5579,
|
| 1008 |
+
1.6382,
|
| 1009 |
+
1.1253,
|
| 1010 |
+
2.8251,
|
| 1011 |
+
1.9160,
|
| 1012 |
+
],
|
| 1013 |
+
is_residual: bool = False,
|
| 1014 |
+
in_channels: int = 3,
|
| 1015 |
+
out_channels: int = 3,
|
| 1016 |
+
patch_size: Optional[int] = None,
|
| 1017 |
+
scale_factor_temporal: Optional[int] = 4,
|
| 1018 |
+
scale_factor_spatial: Optional[int] = 8,
|
| 1019 |
+
) -> None:
|
| 1020 |
+
super().__init__()
|
| 1021 |
+
|
| 1022 |
+
self.z_dim = z_dim
|
| 1023 |
+
self.temperal_downsample = temperal_downsample
|
| 1024 |
+
self.temperal_upsample = temperal_downsample[::-1]
|
| 1025 |
+
|
| 1026 |
+
if decoder_base_dim is None:
|
| 1027 |
+
decoder_base_dim = base_dim
|
| 1028 |
+
|
| 1029 |
+
self.encoder = WanEncoder3d(
|
| 1030 |
+
in_channels=in_channels,
|
| 1031 |
+
dim=base_dim,
|
| 1032 |
+
z_dim=z_dim * 2,
|
| 1033 |
+
dim_mult=dim_mult,
|
| 1034 |
+
num_res_blocks=num_res_blocks,
|
| 1035 |
+
attn_scales=attn_scales,
|
| 1036 |
+
temperal_downsample=temperal_downsample,
|
| 1037 |
+
dropout=dropout,
|
| 1038 |
+
is_residual=is_residual,
|
| 1039 |
+
)
|
| 1040 |
+
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
|
| 1041 |
+
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
|
| 1042 |
+
|
| 1043 |
+
self.decoder = WanDecoder3d(
|
| 1044 |
+
dim=decoder_base_dim,
|
| 1045 |
+
z_dim=z_dim,
|
| 1046 |
+
dim_mult=dim_mult,
|
| 1047 |
+
num_res_blocks=num_res_blocks,
|
| 1048 |
+
attn_scales=attn_scales,
|
| 1049 |
+
temperal_upsample=self.temperal_upsample,
|
| 1050 |
+
dropout=dropout,
|
| 1051 |
+
out_channels=out_channels,
|
| 1052 |
+
is_residual=is_residual,
|
| 1053 |
+
)
|
| 1054 |
+
|
| 1055 |
+
self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
|
| 1056 |
+
|
| 1057 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
| 1058 |
+
# to perform decoding of a single video latent at a time.
|
| 1059 |
+
self.use_slicing = False
|
| 1060 |
+
|
| 1061 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
| 1062 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
| 1063 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
| 1064 |
+
self.use_tiling = False
|
| 1065 |
+
|
| 1066 |
+
# The minimal tile height and width for spatial tiling to be used
|
| 1067 |
+
self.tile_sample_min_height = 256
|
| 1068 |
+
self.tile_sample_min_width = 256
|
| 1069 |
+
|
| 1070 |
+
# The minimal distance between two spatial tiles
|
| 1071 |
+
self.tile_sample_stride_height = 192
|
| 1072 |
+
self.tile_sample_stride_width = 192
|
| 1073 |
+
|
| 1074 |
+
# Precompute and cache conv counts for encoder and decoder for clear_cache speedup
|
| 1075 |
+
self._cached_conv_counts = {
|
| 1076 |
+
"decoder": sum(isinstance(m, WanCausalConv3d) for m in self.decoder.modules())
|
| 1077 |
+
if self.decoder is not None
|
| 1078 |
+
else 0,
|
| 1079 |
+
"encoder": sum(isinstance(m, WanCausalConv3d) for m in self.encoder.modules())
|
| 1080 |
+
if self.encoder is not None
|
| 1081 |
+
else 0,
|
| 1082 |
+
}
|
| 1083 |
+
|
| 1084 |
+
def enable_tiling(
|
| 1085 |
+
self,
|
| 1086 |
+
tile_sample_min_height: Optional[int] = None,
|
| 1087 |
+
tile_sample_min_width: Optional[int] = None,
|
| 1088 |
+
tile_sample_stride_height: Optional[float] = None,
|
| 1089 |
+
tile_sample_stride_width: Optional[float] = None,
|
| 1090 |
+
) -> None:
|
| 1091 |
+
r"""
|
| 1092 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 1093 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 1094 |
+
processing larger images.
|
| 1095 |
+
|
| 1096 |
+
Args:
|
| 1097 |
+
tile_sample_min_height (`int`, *optional*):
|
| 1098 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
| 1099 |
+
tile_sample_min_width (`int`, *optional*):
|
| 1100 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
| 1101 |
+
tile_sample_stride_height (`int`, *optional*):
|
| 1102 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
| 1103 |
+
no tiling artifacts produced across the height dimension.
|
| 1104 |
+
tile_sample_stride_width (`int`, *optional*):
|
| 1105 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
| 1106 |
+
artifacts produced across the width dimension.
|
| 1107 |
+
"""
|
| 1108 |
+
self.use_tiling = True
|
| 1109 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
| 1110 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
| 1111 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
| 1112 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
| 1113 |
+
|
| 1114 |
+
def disable_tiling(self) -> None:
|
| 1115 |
+
r"""
|
| 1116 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 1117 |
+
decoding in one step.
|
| 1118 |
+
"""
|
| 1119 |
+
self.use_tiling = False
|
| 1120 |
+
|
| 1121 |
+
def enable_slicing(self) -> None:
|
| 1122 |
+
r"""
|
| 1123 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 1124 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 1125 |
+
"""
|
| 1126 |
+
self.use_slicing = True
|
| 1127 |
+
|
| 1128 |
+
def disable_slicing(self) -> None:
|
| 1129 |
+
r"""
|
| 1130 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 1131 |
+
decoding in one step.
|
| 1132 |
+
"""
|
| 1133 |
+
self.use_slicing = False
|
| 1134 |
+
|
| 1135 |
+
def clear_cache(self):
|
| 1136 |
+
# Use cached conv counts for decoder and encoder to avoid re-iterating modules each call
|
| 1137 |
+
self._conv_num = self._cached_conv_counts["decoder"]
|
| 1138 |
+
self._conv_idx = [0]
|
| 1139 |
+
self._feat_map = [None] * self._conv_num
|
| 1140 |
+
# cache encode
|
| 1141 |
+
self._enc_conv_num = self._cached_conv_counts["encoder"]
|
| 1142 |
+
self._enc_conv_idx = [0]
|
| 1143 |
+
self._enc_feat_map = [None] * self._enc_conv_num
|
| 1144 |
+
|
| 1145 |
+
def _encode(self, x: torch.Tensor):
|
| 1146 |
+
_, _, num_frame, height, width = x.shape
|
| 1147 |
+
|
| 1148 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
| 1149 |
+
return self.tiled_encode(x)
|
| 1150 |
+
|
| 1151 |
+
self.clear_cache()
|
| 1152 |
+
if self.config.patch_size is not None:
|
| 1153 |
+
x = patchify(x, patch_size=self.config.patch_size)
|
| 1154 |
+
iter_ = 1 + (num_frame - 1) // 4
|
| 1155 |
+
for i in range(iter_):
|
| 1156 |
+
self._enc_conv_idx = [0]
|
| 1157 |
+
if i == 0:
|
| 1158 |
+
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
| 1159 |
+
else:
|
| 1160 |
+
out_ = self.encoder(
|
| 1161 |
+
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
|
| 1162 |
+
feat_cache=self._enc_feat_map,
|
| 1163 |
+
feat_idx=self._enc_conv_idx,
|
| 1164 |
+
)
|
| 1165 |
+
out = torch.cat([out, out_], 2)
|
| 1166 |
+
|
| 1167 |
+
enc = self.quant_conv(out)
|
| 1168 |
+
self.clear_cache()
|
| 1169 |
+
return enc
|
| 1170 |
+
|
| 1171 |
+
@apply_forward_hook
|
| 1172 |
+
def encode(
|
| 1173 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 1174 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 1175 |
+
r"""
|
| 1176 |
+
Encode a batch of images into latents.
|
| 1177 |
+
|
| 1178 |
+
Args:
|
| 1179 |
+
x (`torch.Tensor`): Input batch of images.
|
| 1180 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1181 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 1182 |
+
|
| 1183 |
+
Returns:
|
| 1184 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
| 1185 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 1186 |
+
"""
|
| 1187 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 1188 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
| 1189 |
+
h = torch.cat(encoded_slices)
|
| 1190 |
+
else:
|
| 1191 |
+
h = self._encode(x)
|
| 1192 |
+
posterior = DiagonalGaussianDistribution(h)
|
| 1193 |
+
|
| 1194 |
+
if not return_dict:
|
| 1195 |
+
return (posterior,)
|
| 1196 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
| 1197 |
+
|
| 1198 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True):
|
| 1199 |
+
_, _, num_frame, height, width = z.shape
|
| 1200 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1201 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1202 |
+
|
| 1203 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
| 1204 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
| 1205 |
+
|
| 1206 |
+
self.clear_cache()
|
| 1207 |
+
x = self.post_quant_conv(z)
|
| 1208 |
+
for i in range(num_frame):
|
| 1209 |
+
self._conv_idx = [0]
|
| 1210 |
+
if i == 0:
|
| 1211 |
+
out = self.decoder(
|
| 1212 |
+
x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx, first_chunk=True
|
| 1213 |
+
)
|
| 1214 |
+
else:
|
| 1215 |
+
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
| 1216 |
+
out = torch.cat([out, out_], 2)
|
| 1217 |
+
|
| 1218 |
+
if self.config.patch_size is not None:
|
| 1219 |
+
out = unpatchify(out, patch_size=self.config.patch_size)
|
| 1220 |
+
|
| 1221 |
+
out = torch.clamp(out, min=-1.0, max=1.0)
|
| 1222 |
+
|
| 1223 |
+
self.clear_cache()
|
| 1224 |
+
if not return_dict:
|
| 1225 |
+
return (out,)
|
| 1226 |
+
|
| 1227 |
+
return DecoderOutput(sample=out)
|
| 1228 |
+
|
| 1229 |
+
@apply_forward_hook
|
| 1230 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 1231 |
+
r"""
|
| 1232 |
+
Decode a batch of images.
|
| 1233 |
+
|
| 1234 |
+
Args:
|
| 1235 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 1236 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1237 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 1238 |
+
|
| 1239 |
+
Returns:
|
| 1240 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 1241 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 1242 |
+
returned.
|
| 1243 |
+
"""
|
| 1244 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 1245 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 1246 |
+
decoded = torch.cat(decoded_slices)
|
| 1247 |
+
else:
|
| 1248 |
+
decoded = self._decode(z).sample
|
| 1249 |
+
|
| 1250 |
+
if not return_dict:
|
| 1251 |
+
return (decoded,)
|
| 1252 |
+
return DecoderOutput(sample=decoded)
|
| 1253 |
+
|
| 1254 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 1255 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
| 1256 |
+
for y in range(blend_extent):
|
| 1257 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
| 1258 |
+
y / blend_extent
|
| 1259 |
+
)
|
| 1260 |
+
return b
|
| 1261 |
+
|
| 1262 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 1263 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
| 1264 |
+
for x in range(blend_extent):
|
| 1265 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
| 1266 |
+
x / blend_extent
|
| 1267 |
+
)
|
| 1268 |
+
return b
|
| 1269 |
+
|
| 1270 |
+
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
| 1271 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 1272 |
+
|
| 1273 |
+
Args:
|
| 1274 |
+
x (`torch.Tensor`): Input batch of videos.
|
| 1275 |
+
|
| 1276 |
+
Returns:
|
| 1277 |
+
`torch.Tensor`:
|
| 1278 |
+
The latent representation of the encoded videos.
|
| 1279 |
+
"""
|
| 1280 |
+
_, _, num_frames, height, width = x.shape
|
| 1281 |
+
latent_height = height // self.spatial_compression_ratio
|
| 1282 |
+
latent_width = width // self.spatial_compression_ratio
|
| 1283 |
+
|
| 1284 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1285 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1286 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1287 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1288 |
+
|
| 1289 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
| 1290 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
| 1291 |
+
|
| 1292 |
+
# Split x into overlapping tiles and encode them separately.
|
| 1293 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1294 |
+
rows = []
|
| 1295 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
| 1296 |
+
row = []
|
| 1297 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
| 1298 |
+
self.clear_cache()
|
| 1299 |
+
time = []
|
| 1300 |
+
frame_range = 1 + (num_frames - 1) // 4
|
| 1301 |
+
for k in range(frame_range):
|
| 1302 |
+
self._enc_conv_idx = [0]
|
| 1303 |
+
if k == 0:
|
| 1304 |
+
tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
| 1305 |
+
else:
|
| 1306 |
+
tile = x[
|
| 1307 |
+
:,
|
| 1308 |
+
:,
|
| 1309 |
+
1 + 4 * (k - 1) : 1 + 4 * k,
|
| 1310 |
+
i : i + self.tile_sample_min_height,
|
| 1311 |
+
j : j + self.tile_sample_min_width,
|
| 1312 |
+
]
|
| 1313 |
+
tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
| 1314 |
+
tile = self.quant_conv(tile)
|
| 1315 |
+
time.append(tile)
|
| 1316 |
+
row.append(torch.cat(time, dim=2))
|
| 1317 |
+
rows.append(row)
|
| 1318 |
+
self.clear_cache()
|
| 1319 |
+
|
| 1320 |
+
result_rows = []
|
| 1321 |
+
for i, row in enumerate(rows):
|
| 1322 |
+
result_row = []
|
| 1323 |
+
for j, tile in enumerate(row):
|
| 1324 |
+
# blend the above tile and the left tile
|
| 1325 |
+
# to the current tile and add the current tile to the result row
|
| 1326 |
+
if i > 0:
|
| 1327 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1328 |
+
if j > 0:
|
| 1329 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1330 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
| 1331 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 1332 |
+
|
| 1333 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
| 1334 |
+
return enc
|
| 1335 |
+
|
| 1336 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
| 1337 |
+
r"""
|
| 1338 |
+
Decode a batch of images using a tiled decoder.
|
| 1339 |
+
|
| 1340 |
+
Args:
|
| 1341 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 1342 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1343 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
| 1344 |
+
|
| 1345 |
+
Returns:
|
| 1346 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
| 1347 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
| 1348 |
+
returned.
|
| 1349 |
+
"""
|
| 1350 |
+
_, _, num_frames, height, width = z.shape
|
| 1351 |
+
sample_height = height * self.spatial_compression_ratio
|
| 1352 |
+
sample_width = width * self.spatial_compression_ratio
|
| 1353 |
+
|
| 1354 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
| 1355 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
| 1356 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
| 1357 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
| 1358 |
+
|
| 1359 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
| 1360 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
| 1361 |
+
|
| 1362 |
+
# Split z into overlapping tiles and decode them separately.
|
| 1363 |
+
# The tiles have an overlap to avoid seams between tiles.
|
| 1364 |
+
rows = []
|
| 1365 |
+
for i in range(0, height, tile_latent_stride_height):
|
| 1366 |
+
row = []
|
| 1367 |
+
for j in range(0, width, tile_latent_stride_width):
|
| 1368 |
+
self.clear_cache()
|
| 1369 |
+
time = []
|
| 1370 |
+
for k in range(num_frames):
|
| 1371 |
+
self._conv_idx = [0]
|
| 1372 |
+
tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
|
| 1373 |
+
tile = self.post_quant_conv(tile)
|
| 1374 |
+
decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
| 1375 |
+
time.append(decoded)
|
| 1376 |
+
row.append(torch.cat(time, dim=2))
|
| 1377 |
+
rows.append(row)
|
| 1378 |
+
self.clear_cache()
|
| 1379 |
+
|
| 1380 |
+
result_rows = []
|
| 1381 |
+
for i, row in enumerate(rows):
|
| 1382 |
+
result_row = []
|
| 1383 |
+
for j, tile in enumerate(row):
|
| 1384 |
+
# blend the above tile and the left tile
|
| 1385 |
+
# to the current tile and add the current tile to the result row
|
| 1386 |
+
if i > 0:
|
| 1387 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
| 1388 |
+
if j > 0:
|
| 1389 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
| 1390 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
| 1391 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
| 1392 |
+
|
| 1393 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
| 1394 |
+
|
| 1395 |
+
if not return_dict:
|
| 1396 |
+
return (dec,)
|
| 1397 |
+
return DecoderOutput(sample=dec)
|
| 1398 |
+
|
| 1399 |
+
def forward(
|
| 1400 |
+
self,
|
| 1401 |
+
sample: torch.Tensor,
|
| 1402 |
+
sample_posterior: bool = False,
|
| 1403 |
+
return_dict: bool = True,
|
| 1404 |
+
generator: Optional[torch.Generator] = None,
|
| 1405 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 1406 |
+
"""
|
| 1407 |
+
Args:
|
| 1408 |
+
sample (`torch.Tensor`): Input sample.
|
| 1409 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1410 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 1411 |
+
"""
|
| 1412 |
+
x = sample
|
| 1413 |
+
posterior = self.encode(x).latent_dist
|
| 1414 |
+
if sample_posterior:
|
| 1415 |
+
z = posterior.sample(generator=generator)
|
| 1416 |
+
else:
|
| 1417 |
+
z = posterior.mode()
|
| 1418 |
+
dec = self.decode(z, return_dict=return_dict)
|
| 1419 |
+
return dec
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_oobleck.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import math
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
from torch.nn.utils import weight_norm
|
| 22 |
+
|
| 23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from ...utils import BaseOutput
|
| 25 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 26 |
+
from ...utils.torch_utils import randn_tensor
|
| 27 |
+
from ..modeling_utils import ModelMixin
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class Snake1d(nn.Module):
|
| 31 |
+
"""
|
| 32 |
+
A 1-dimensional Snake activation function module.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, hidden_dim, logscale=True):
|
| 36 |
+
super().__init__()
|
| 37 |
+
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
| 38 |
+
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
| 39 |
+
|
| 40 |
+
self.alpha.requires_grad = True
|
| 41 |
+
self.beta.requires_grad = True
|
| 42 |
+
self.logscale = logscale
|
| 43 |
+
|
| 44 |
+
def forward(self, hidden_states):
|
| 45 |
+
shape = hidden_states.shape
|
| 46 |
+
|
| 47 |
+
alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
|
| 48 |
+
beta = self.beta if not self.logscale else torch.exp(self.beta)
|
| 49 |
+
|
| 50 |
+
hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
|
| 51 |
+
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
|
| 52 |
+
hidden_states = hidden_states.reshape(shape)
|
| 53 |
+
return hidden_states
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class OobleckResidualUnit(nn.Module):
|
| 57 |
+
"""
|
| 58 |
+
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(self, dimension: int = 16, dilation: int = 1):
|
| 62 |
+
super().__init__()
|
| 63 |
+
pad = ((7 - 1) * dilation) // 2
|
| 64 |
+
|
| 65 |
+
self.snake1 = Snake1d(dimension)
|
| 66 |
+
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
|
| 67 |
+
self.snake2 = Snake1d(dimension)
|
| 68 |
+
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
|
| 69 |
+
|
| 70 |
+
def forward(self, hidden_state):
|
| 71 |
+
"""
|
| 72 |
+
Forward pass through the residual unit.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
|
| 76 |
+
Input tensor .
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
|
| 80 |
+
Input tensor after passing through the residual unit.
|
| 81 |
+
"""
|
| 82 |
+
output_tensor = hidden_state
|
| 83 |
+
output_tensor = self.conv1(self.snake1(output_tensor))
|
| 84 |
+
output_tensor = self.conv2(self.snake2(output_tensor))
|
| 85 |
+
|
| 86 |
+
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
|
| 87 |
+
if padding > 0:
|
| 88 |
+
hidden_state = hidden_state[..., padding:-padding]
|
| 89 |
+
output_tensor = hidden_state + output_tensor
|
| 90 |
+
return output_tensor
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class OobleckEncoderBlock(nn.Module):
|
| 94 |
+
"""Encoder block used in Oobleck encoder."""
|
| 95 |
+
|
| 96 |
+
def __init__(self, input_dim, output_dim, stride: int = 1):
|
| 97 |
+
super().__init__()
|
| 98 |
+
|
| 99 |
+
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
|
| 100 |
+
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
|
| 101 |
+
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
|
| 102 |
+
self.snake1 = Snake1d(input_dim)
|
| 103 |
+
self.conv1 = weight_norm(
|
| 104 |
+
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
def forward(self, hidden_state):
|
| 108 |
+
hidden_state = self.res_unit1(hidden_state)
|
| 109 |
+
hidden_state = self.res_unit2(hidden_state)
|
| 110 |
+
hidden_state = self.snake1(self.res_unit3(hidden_state))
|
| 111 |
+
hidden_state = self.conv1(hidden_state)
|
| 112 |
+
|
| 113 |
+
return hidden_state
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class OobleckDecoderBlock(nn.Module):
|
| 117 |
+
"""Decoder block used in Oobleck decoder."""
|
| 118 |
+
|
| 119 |
+
def __init__(self, input_dim, output_dim, stride: int = 1):
|
| 120 |
+
super().__init__()
|
| 121 |
+
|
| 122 |
+
self.snake1 = Snake1d(input_dim)
|
| 123 |
+
self.conv_t1 = weight_norm(
|
| 124 |
+
nn.ConvTranspose1d(
|
| 125 |
+
input_dim,
|
| 126 |
+
output_dim,
|
| 127 |
+
kernel_size=2 * stride,
|
| 128 |
+
stride=stride,
|
| 129 |
+
padding=math.ceil(stride / 2),
|
| 130 |
+
)
|
| 131 |
+
)
|
| 132 |
+
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
|
| 133 |
+
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
|
| 134 |
+
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
|
| 135 |
+
|
| 136 |
+
def forward(self, hidden_state):
|
| 137 |
+
hidden_state = self.snake1(hidden_state)
|
| 138 |
+
hidden_state = self.conv_t1(hidden_state)
|
| 139 |
+
hidden_state = self.res_unit1(hidden_state)
|
| 140 |
+
hidden_state = self.res_unit2(hidden_state)
|
| 141 |
+
hidden_state = self.res_unit3(hidden_state)
|
| 142 |
+
|
| 143 |
+
return hidden_state
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class OobleckDiagonalGaussianDistribution(object):
|
| 147 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
| 148 |
+
self.parameters = parameters
|
| 149 |
+
self.mean, self.scale = parameters.chunk(2, dim=1)
|
| 150 |
+
self.std = nn.functional.softplus(self.scale) + 1e-4
|
| 151 |
+
self.var = self.std * self.std
|
| 152 |
+
self.logvar = torch.log(self.var)
|
| 153 |
+
self.deterministic = deterministic
|
| 154 |
+
|
| 155 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
| 156 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
| 157 |
+
sample = randn_tensor(
|
| 158 |
+
self.mean.shape,
|
| 159 |
+
generator=generator,
|
| 160 |
+
device=self.parameters.device,
|
| 161 |
+
dtype=self.parameters.dtype,
|
| 162 |
+
)
|
| 163 |
+
x = self.mean + self.std * sample
|
| 164 |
+
return x
|
| 165 |
+
|
| 166 |
+
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
|
| 167 |
+
if self.deterministic:
|
| 168 |
+
return torch.Tensor([0.0])
|
| 169 |
+
else:
|
| 170 |
+
if other is None:
|
| 171 |
+
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
|
| 172 |
+
else:
|
| 173 |
+
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
|
| 174 |
+
var_ratio = self.var / other.var
|
| 175 |
+
logvar_diff = self.logvar - other.logvar
|
| 176 |
+
|
| 177 |
+
kl = normalized_diff + var_ratio + logvar_diff - 1
|
| 178 |
+
|
| 179 |
+
kl = kl.sum(1).mean()
|
| 180 |
+
return kl
|
| 181 |
+
|
| 182 |
+
def mode(self) -> torch.Tensor:
|
| 183 |
+
return self.mean
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@dataclass
|
| 187 |
+
class AutoencoderOobleckOutput(BaseOutput):
|
| 188 |
+
"""
|
| 189 |
+
Output of AutoencoderOobleck encoding method.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
latent_dist (`OobleckDiagonalGaussianDistribution`):
|
| 193 |
+
Encoded outputs of `Encoder` represented as the mean and standard deviation of
|
| 194 |
+
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
|
| 195 |
+
from the distribution.
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@dataclass
|
| 202 |
+
class OobleckDecoderOutput(BaseOutput):
|
| 203 |
+
r"""
|
| 204 |
+
Output of decoding method.
|
| 205 |
+
|
| 206 |
+
Args:
|
| 207 |
+
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
|
| 208 |
+
The decoded output sample from the last layer of the model.
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
sample: torch.Tensor
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
class OobleckEncoder(nn.Module):
|
| 215 |
+
"""Oobleck Encoder"""
|
| 216 |
+
|
| 217 |
+
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
|
| 218 |
+
super().__init__()
|
| 219 |
+
|
| 220 |
+
strides = downsampling_ratios
|
| 221 |
+
channel_multiples = [1] + channel_multiples
|
| 222 |
+
|
| 223 |
+
# Create first convolution
|
| 224 |
+
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
|
| 225 |
+
|
| 226 |
+
self.block = []
|
| 227 |
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
| 228 |
+
for stride_index, stride in enumerate(strides):
|
| 229 |
+
self.block += [
|
| 230 |
+
OobleckEncoderBlock(
|
| 231 |
+
input_dim=encoder_hidden_size * channel_multiples[stride_index],
|
| 232 |
+
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
|
| 233 |
+
stride=stride,
|
| 234 |
+
)
|
| 235 |
+
]
|
| 236 |
+
|
| 237 |
+
self.block = nn.ModuleList(self.block)
|
| 238 |
+
d_model = encoder_hidden_size * channel_multiples[-1]
|
| 239 |
+
self.snake1 = Snake1d(d_model)
|
| 240 |
+
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
|
| 241 |
+
|
| 242 |
+
def forward(self, hidden_state):
|
| 243 |
+
hidden_state = self.conv1(hidden_state)
|
| 244 |
+
|
| 245 |
+
for module in self.block:
|
| 246 |
+
hidden_state = module(hidden_state)
|
| 247 |
+
|
| 248 |
+
hidden_state = self.snake1(hidden_state)
|
| 249 |
+
hidden_state = self.conv2(hidden_state)
|
| 250 |
+
|
| 251 |
+
return hidden_state
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
class OobleckDecoder(nn.Module):
|
| 255 |
+
"""Oobleck Decoder"""
|
| 256 |
+
|
| 257 |
+
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
|
| 258 |
+
super().__init__()
|
| 259 |
+
|
| 260 |
+
strides = upsampling_ratios
|
| 261 |
+
channel_multiples = [1] + channel_multiples
|
| 262 |
+
|
| 263 |
+
# Add first conv layer
|
| 264 |
+
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
|
| 265 |
+
|
| 266 |
+
# Add upsampling + MRF blocks
|
| 267 |
+
block = []
|
| 268 |
+
for stride_index, stride in enumerate(strides):
|
| 269 |
+
block += [
|
| 270 |
+
OobleckDecoderBlock(
|
| 271 |
+
input_dim=channels * channel_multiples[len(strides) - stride_index],
|
| 272 |
+
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
|
| 273 |
+
stride=stride,
|
| 274 |
+
)
|
| 275 |
+
]
|
| 276 |
+
|
| 277 |
+
self.block = nn.ModuleList(block)
|
| 278 |
+
output_dim = channels
|
| 279 |
+
self.snake1 = Snake1d(output_dim)
|
| 280 |
+
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
|
| 281 |
+
|
| 282 |
+
def forward(self, hidden_state):
|
| 283 |
+
hidden_state = self.conv1(hidden_state)
|
| 284 |
+
|
| 285 |
+
for layer in self.block:
|
| 286 |
+
hidden_state = layer(hidden_state)
|
| 287 |
+
|
| 288 |
+
hidden_state = self.snake1(hidden_state)
|
| 289 |
+
hidden_state = self.conv2(hidden_state)
|
| 290 |
+
|
| 291 |
+
return hidden_state
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class AutoencoderOobleck(ModelMixin, ConfigMixin):
|
| 295 |
+
r"""
|
| 296 |
+
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
|
| 297 |
+
introduced in Stable Audio.
|
| 298 |
+
|
| 299 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 300 |
+
for all models (such as downloading or saving).
|
| 301 |
+
|
| 302 |
+
Parameters:
|
| 303 |
+
encoder_hidden_size (`int`, *optional*, defaults to 128):
|
| 304 |
+
Intermediate representation dimension for the encoder.
|
| 305 |
+
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
|
| 306 |
+
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
|
| 307 |
+
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
|
| 308 |
+
Multiples used to determine the hidden sizes of the hidden layers.
|
| 309 |
+
decoder_channels (`int`, *optional*, defaults to 128):
|
| 310 |
+
Intermediate representation dimension for the decoder.
|
| 311 |
+
decoder_input_channels (`int`, *optional*, defaults to 64):
|
| 312 |
+
Input dimension for the decoder. Corresponds to the latent dimension.
|
| 313 |
+
audio_channels (`int`, *optional*, defaults to 2):
|
| 314 |
+
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
|
| 315 |
+
sampling_rate (`int`, *optional*, defaults to 44100):
|
| 316 |
+
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
|
| 317 |
+
"""
|
| 318 |
+
|
| 319 |
+
_supports_gradient_checkpointing = False
|
| 320 |
+
_supports_group_offloading = False
|
| 321 |
+
|
| 322 |
+
@register_to_config
|
| 323 |
+
def __init__(
|
| 324 |
+
self,
|
| 325 |
+
encoder_hidden_size=128,
|
| 326 |
+
downsampling_ratios=[2, 4, 4, 8, 8],
|
| 327 |
+
channel_multiples=[1, 2, 4, 8, 16],
|
| 328 |
+
decoder_channels=128,
|
| 329 |
+
decoder_input_channels=64,
|
| 330 |
+
audio_channels=2,
|
| 331 |
+
sampling_rate=44100,
|
| 332 |
+
):
|
| 333 |
+
super().__init__()
|
| 334 |
+
|
| 335 |
+
self.encoder_hidden_size = encoder_hidden_size
|
| 336 |
+
self.downsampling_ratios = downsampling_ratios
|
| 337 |
+
self.decoder_channels = decoder_channels
|
| 338 |
+
self.upsampling_ratios = downsampling_ratios[::-1]
|
| 339 |
+
self.hop_length = int(np.prod(downsampling_ratios))
|
| 340 |
+
self.sampling_rate = sampling_rate
|
| 341 |
+
|
| 342 |
+
self.encoder = OobleckEncoder(
|
| 343 |
+
encoder_hidden_size=encoder_hidden_size,
|
| 344 |
+
audio_channels=audio_channels,
|
| 345 |
+
downsampling_ratios=downsampling_ratios,
|
| 346 |
+
channel_multiples=channel_multiples,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
self.decoder = OobleckDecoder(
|
| 350 |
+
channels=decoder_channels,
|
| 351 |
+
input_channels=decoder_input_channels,
|
| 352 |
+
audio_channels=audio_channels,
|
| 353 |
+
upsampling_ratios=self.upsampling_ratios,
|
| 354 |
+
channel_multiples=channel_multiples,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
self.use_slicing = False
|
| 358 |
+
|
| 359 |
+
def enable_slicing(self):
|
| 360 |
+
r"""
|
| 361 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 362 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 363 |
+
"""
|
| 364 |
+
self.use_slicing = True
|
| 365 |
+
|
| 366 |
+
def disable_slicing(self):
|
| 367 |
+
r"""
|
| 368 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 369 |
+
decoding in one step.
|
| 370 |
+
"""
|
| 371 |
+
self.use_slicing = False
|
| 372 |
+
|
| 373 |
+
@apply_forward_hook
|
| 374 |
+
def encode(
|
| 375 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 376 |
+
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
|
| 377 |
+
"""
|
| 378 |
+
Encode a batch of images into latents.
|
| 379 |
+
|
| 380 |
+
Args:
|
| 381 |
+
x (`torch.Tensor`): Input batch of images.
|
| 382 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 383 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
| 384 |
+
|
| 385 |
+
Returns:
|
| 386 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
| 387 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 388 |
+
"""
|
| 389 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 390 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
| 391 |
+
h = torch.cat(encoded_slices)
|
| 392 |
+
else:
|
| 393 |
+
h = self.encoder(x)
|
| 394 |
+
|
| 395 |
+
posterior = OobleckDiagonalGaussianDistribution(h)
|
| 396 |
+
|
| 397 |
+
if not return_dict:
|
| 398 |
+
return (posterior,)
|
| 399 |
+
|
| 400 |
+
return AutoencoderOobleckOutput(latent_dist=posterior)
|
| 401 |
+
|
| 402 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
| 403 |
+
dec = self.decoder(z)
|
| 404 |
+
|
| 405 |
+
if not return_dict:
|
| 406 |
+
return (dec,)
|
| 407 |
+
|
| 408 |
+
return OobleckDecoderOutput(sample=dec)
|
| 409 |
+
|
| 410 |
+
@apply_forward_hook
|
| 411 |
+
def decode(
|
| 412 |
+
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
| 413 |
+
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
|
| 414 |
+
"""
|
| 415 |
+
Decode a batch of images.
|
| 416 |
+
|
| 417 |
+
Args:
|
| 418 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
| 419 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 420 |
+
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
|
| 421 |
+
|
| 422 |
+
Returns:
|
| 423 |
+
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
|
| 424 |
+
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
|
| 425 |
+
is returned.
|
| 426 |
+
|
| 427 |
+
"""
|
| 428 |
+
if self.use_slicing and z.shape[0] > 1:
|
| 429 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
| 430 |
+
decoded = torch.cat(decoded_slices)
|
| 431 |
+
else:
|
| 432 |
+
decoded = self._decode(z).sample
|
| 433 |
+
|
| 434 |
+
if not return_dict:
|
| 435 |
+
return (decoded,)
|
| 436 |
+
|
| 437 |
+
return OobleckDecoderOutput(sample=decoded)
|
| 438 |
+
|
| 439 |
+
def forward(
|
| 440 |
+
self,
|
| 441 |
+
sample: torch.Tensor,
|
| 442 |
+
sample_posterior: bool = False,
|
| 443 |
+
return_dict: bool = True,
|
| 444 |
+
generator: Optional[torch.Generator] = None,
|
| 445 |
+
) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
| 446 |
+
r"""
|
| 447 |
+
Args:
|
| 448 |
+
sample (`torch.Tensor`): Input sample.
|
| 449 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 450 |
+
Whether to sample from the posterior.
|
| 451 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 452 |
+
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
|
| 453 |
+
"""
|
| 454 |
+
x = sample
|
| 455 |
+
posterior = self.encode(x).latent_dist
|
| 456 |
+
if sample_posterior:
|
| 457 |
+
z = posterior.sample(generator=generator)
|
| 458 |
+
else:
|
| 459 |
+
z = posterior.mode()
|
| 460 |
+
dec = self.decode(z).sample
|
| 461 |
+
|
| 462 |
+
if not return_dict:
|
| 463 |
+
return (dec,)
|
| 464 |
+
|
| 465 |
+
return OobleckDecoderOutput(sample=dec)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/autoencoder_tiny.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Ollin Boer Bohan and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from typing import Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...utils import BaseOutput
|
| 23 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 24 |
+
from ..modeling_utils import ModelMixin
|
| 25 |
+
from .vae import DecoderOutput, DecoderTiny, EncoderTiny
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
@dataclass
|
| 29 |
+
class AutoencoderTinyOutput(BaseOutput):
|
| 30 |
+
"""
|
| 31 |
+
Output of AutoencoderTiny encoding method.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
latents (`torch.Tensor`): Encoded outputs of the `Encoder`.
|
| 35 |
+
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
latents: torch.Tensor
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class AutoencoderTiny(ModelMixin, ConfigMixin):
|
| 42 |
+
r"""
|
| 43 |
+
A tiny distilled VAE model for encoding images into latents and decoding latent representations into images.
|
| 44 |
+
|
| 45 |
+
[`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`.
|
| 46 |
+
|
| 47 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for
|
| 48 |
+
all models (such as downloading or saving).
|
| 49 |
+
|
| 50 |
+
Parameters:
|
| 51 |
+
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
|
| 52 |
+
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
| 53 |
+
encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
|
| 54 |
+
Tuple of integers representing the number of output channels for each encoder block. The length of the
|
| 55 |
+
tuple should be equal to the number of encoder blocks.
|
| 56 |
+
decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
|
| 57 |
+
Tuple of integers representing the number of output channels for each decoder block. The length of the
|
| 58 |
+
tuple should be equal to the number of decoder blocks.
|
| 59 |
+
act_fn (`str`, *optional*, defaults to `"relu"`):
|
| 60 |
+
Activation function to be used throughout the model.
|
| 61 |
+
latent_channels (`int`, *optional*, defaults to 4):
|
| 62 |
+
Number of channels in the latent representation. The latent space acts as a compressed representation of
|
| 63 |
+
the input image.
|
| 64 |
+
upsampling_scaling_factor (`int`, *optional*, defaults to 2):
|
| 65 |
+
Scaling factor for upsampling in the decoder. It determines the size of the output image during the
|
| 66 |
+
upsampling process.
|
| 67 |
+
num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`):
|
| 68 |
+
Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The
|
| 69 |
+
length of the tuple should be equal to the number of stages in the encoder. Each stage has a different
|
| 70 |
+
number of encoder blocks.
|
| 71 |
+
num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`):
|
| 72 |
+
Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The
|
| 73 |
+
length of the tuple should be equal to the number of stages in the decoder. Each stage has a different
|
| 74 |
+
number of decoder blocks.
|
| 75 |
+
latent_magnitude (`float`, *optional*, defaults to 3.0):
|
| 76 |
+
Magnitude of the latent representation. This parameter scales the latent representation values to control
|
| 77 |
+
the extent of information preservation.
|
| 78 |
+
latent_shift (float, *optional*, defaults to 0.5):
|
| 79 |
+
Shift applied to the latent representation. This parameter controls the center of the latent space.
|
| 80 |
+
scaling_factor (`float`, *optional*, defaults to 1.0):
|
| 81 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
| 82 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
| 83 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
| 84 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
| 85 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
| 86 |
+
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper. For this
|
| 87 |
+
Autoencoder, however, no such scaling factor was used, hence the value of 1.0 as the default.
|
| 88 |
+
force_upcast (`bool`, *optional*, default to `False`):
|
| 89 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
| 90 |
+
can be fine-tuned / trained to a lower range without losing too much precision, in which case
|
| 91 |
+
`force_upcast` can be set to `False` (see this fp16-friendly
|
| 92 |
+
[AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
_supports_gradient_checkpointing = True
|
| 96 |
+
|
| 97 |
+
@register_to_config
|
| 98 |
+
def __init__(
|
| 99 |
+
self,
|
| 100 |
+
in_channels: int = 3,
|
| 101 |
+
out_channels: int = 3,
|
| 102 |
+
encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
|
| 103 |
+
decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
|
| 104 |
+
act_fn: str = "relu",
|
| 105 |
+
upsample_fn: str = "nearest",
|
| 106 |
+
latent_channels: int = 4,
|
| 107 |
+
upsampling_scaling_factor: int = 2,
|
| 108 |
+
num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
|
| 109 |
+
num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1),
|
| 110 |
+
latent_magnitude: int = 3,
|
| 111 |
+
latent_shift: float = 0.5,
|
| 112 |
+
force_upcast: bool = False,
|
| 113 |
+
scaling_factor: float = 1.0,
|
| 114 |
+
shift_factor: float = 0.0,
|
| 115 |
+
):
|
| 116 |
+
super().__init__()
|
| 117 |
+
|
| 118 |
+
if len(encoder_block_out_channels) != len(num_encoder_blocks):
|
| 119 |
+
raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.")
|
| 120 |
+
if len(decoder_block_out_channels) != len(num_decoder_blocks):
|
| 121 |
+
raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.")
|
| 122 |
+
|
| 123 |
+
self.encoder = EncoderTiny(
|
| 124 |
+
in_channels=in_channels,
|
| 125 |
+
out_channels=latent_channels,
|
| 126 |
+
num_blocks=num_encoder_blocks,
|
| 127 |
+
block_out_channels=encoder_block_out_channels,
|
| 128 |
+
act_fn=act_fn,
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
self.decoder = DecoderTiny(
|
| 132 |
+
in_channels=latent_channels,
|
| 133 |
+
out_channels=out_channels,
|
| 134 |
+
num_blocks=num_decoder_blocks,
|
| 135 |
+
block_out_channels=decoder_block_out_channels,
|
| 136 |
+
upsampling_scaling_factor=upsampling_scaling_factor,
|
| 137 |
+
act_fn=act_fn,
|
| 138 |
+
upsample_fn=upsample_fn,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
self.latent_magnitude = latent_magnitude
|
| 142 |
+
self.latent_shift = latent_shift
|
| 143 |
+
self.scaling_factor = scaling_factor
|
| 144 |
+
|
| 145 |
+
self.use_slicing = False
|
| 146 |
+
self.use_tiling = False
|
| 147 |
+
|
| 148 |
+
# only relevant if vae tiling is enabled
|
| 149 |
+
self.spatial_scale_factor = 2**out_channels
|
| 150 |
+
self.tile_overlap_factor = 0.125
|
| 151 |
+
self.tile_sample_min_size = 512
|
| 152 |
+
self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor
|
| 153 |
+
|
| 154 |
+
self.register_to_config(block_out_channels=decoder_block_out_channels)
|
| 155 |
+
self.register_to_config(force_upcast=False)
|
| 156 |
+
|
| 157 |
+
def scale_latents(self, x: torch.Tensor) -> torch.Tensor:
|
| 158 |
+
"""raw latents -> [0, 1]"""
|
| 159 |
+
return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)
|
| 160 |
+
|
| 161 |
+
def unscale_latents(self, x: torch.Tensor) -> torch.Tensor:
|
| 162 |
+
"""[0, 1] -> raw latents"""
|
| 163 |
+
return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)
|
| 164 |
+
|
| 165 |
+
def enable_slicing(self) -> None:
|
| 166 |
+
r"""
|
| 167 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 168 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 169 |
+
"""
|
| 170 |
+
self.use_slicing = True
|
| 171 |
+
|
| 172 |
+
def disable_slicing(self) -> None:
|
| 173 |
+
r"""
|
| 174 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 175 |
+
decoding in one step.
|
| 176 |
+
"""
|
| 177 |
+
self.use_slicing = False
|
| 178 |
+
|
| 179 |
+
def enable_tiling(self, use_tiling: bool = True) -> None:
|
| 180 |
+
r"""
|
| 181 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 182 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 183 |
+
processing larger images.
|
| 184 |
+
"""
|
| 185 |
+
self.use_tiling = use_tiling
|
| 186 |
+
|
| 187 |
+
def disable_tiling(self) -> None:
|
| 188 |
+
r"""
|
| 189 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 190 |
+
decoding in one step.
|
| 191 |
+
"""
|
| 192 |
+
self.enable_tiling(False)
|
| 193 |
+
|
| 194 |
+
def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
| 195 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 196 |
+
|
| 197 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
| 198 |
+
steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
|
| 199 |
+
tiles overlap and are blended together to form a smooth output.
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
x (`torch.Tensor`): Input batch of images.
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
`torch.Tensor`: Encoded batch of images.
|
| 206 |
+
"""
|
| 207 |
+
# scale of encoder output relative to input
|
| 208 |
+
sf = self.spatial_scale_factor
|
| 209 |
+
tile_size = self.tile_sample_min_size
|
| 210 |
+
|
| 211 |
+
# number of pixels to blend and to traverse between tile
|
| 212 |
+
blend_size = int(tile_size * self.tile_overlap_factor)
|
| 213 |
+
traverse_size = tile_size - blend_size
|
| 214 |
+
|
| 215 |
+
# tiles index (up/left)
|
| 216 |
+
ti = range(0, x.shape[-2], traverse_size)
|
| 217 |
+
tj = range(0, x.shape[-1], traverse_size)
|
| 218 |
+
|
| 219 |
+
# mask for blending
|
| 220 |
+
blend_masks = torch.stack(
|
| 221 |
+
torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij")
|
| 222 |
+
)
|
| 223 |
+
blend_masks = blend_masks.clamp(0, 1).to(x.device)
|
| 224 |
+
|
| 225 |
+
# output array
|
| 226 |
+
out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device)
|
| 227 |
+
for i in ti:
|
| 228 |
+
for j in tj:
|
| 229 |
+
tile_in = x[..., i : i + tile_size, j : j + tile_size]
|
| 230 |
+
# tile result
|
| 231 |
+
tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf]
|
| 232 |
+
tile = self.encoder(tile_in)
|
| 233 |
+
h, w = tile.shape[-2], tile.shape[-1]
|
| 234 |
+
# blend tile result into output
|
| 235 |
+
blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
|
| 236 |
+
blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
|
| 237 |
+
blend_mask = blend_mask_i * blend_mask_j
|
| 238 |
+
tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w]
|
| 239 |
+
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
|
| 240 |
+
return out
|
| 241 |
+
|
| 242 |
+
def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor:
|
| 243 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 244 |
+
|
| 245 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
| 246 |
+
steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
|
| 247 |
+
tiles overlap and are blended together to form a smooth output.
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
x (`torch.Tensor`): Input batch of images.
|
| 251 |
+
|
| 252 |
+
Returns:
|
| 253 |
+
`torch.Tensor`: Encoded batch of images.
|
| 254 |
+
"""
|
| 255 |
+
# scale of decoder output relative to input
|
| 256 |
+
sf = self.spatial_scale_factor
|
| 257 |
+
tile_size = self.tile_latent_min_size
|
| 258 |
+
|
| 259 |
+
# number of pixels to blend and to traverse between tiles
|
| 260 |
+
blend_size = int(tile_size * self.tile_overlap_factor)
|
| 261 |
+
traverse_size = tile_size - blend_size
|
| 262 |
+
|
| 263 |
+
# tiles index (up/left)
|
| 264 |
+
ti = range(0, x.shape[-2], traverse_size)
|
| 265 |
+
tj = range(0, x.shape[-1], traverse_size)
|
| 266 |
+
|
| 267 |
+
# mask for blending
|
| 268 |
+
blend_masks = torch.stack(
|
| 269 |
+
torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij")
|
| 270 |
+
)
|
| 271 |
+
blend_masks = blend_masks.clamp(0, 1).to(x.device)
|
| 272 |
+
|
| 273 |
+
# output array
|
| 274 |
+
out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device)
|
| 275 |
+
for i in ti:
|
| 276 |
+
for j in tj:
|
| 277 |
+
tile_in = x[..., i : i + tile_size, j : j + tile_size]
|
| 278 |
+
# tile result
|
| 279 |
+
tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf]
|
| 280 |
+
tile = self.decoder(tile_in)
|
| 281 |
+
h, w = tile.shape[-2], tile.shape[-1]
|
| 282 |
+
# blend tile result into output
|
| 283 |
+
blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
|
| 284 |
+
blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
|
| 285 |
+
blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w]
|
| 286 |
+
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
|
| 287 |
+
return out
|
| 288 |
+
|
| 289 |
+
@apply_forward_hook
|
| 290 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]:
|
| 291 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 292 |
+
output = [
|
| 293 |
+
self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
|
| 294 |
+
]
|
| 295 |
+
output = torch.cat(output)
|
| 296 |
+
else:
|
| 297 |
+
output = self._tiled_encode(x) if self.use_tiling else self.encoder(x)
|
| 298 |
+
|
| 299 |
+
if not return_dict:
|
| 300 |
+
return (output,)
|
| 301 |
+
|
| 302 |
+
return AutoencoderTinyOutput(latents=output)
|
| 303 |
+
|
| 304 |
+
@apply_forward_hook
|
| 305 |
+
def decode(
|
| 306 |
+
self, x: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
|
| 307 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
| 308 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 309 |
+
output = [
|
| 310 |
+
self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x_slice) for x_slice in x.split(1)
|
| 311 |
+
]
|
| 312 |
+
output = torch.cat(output)
|
| 313 |
+
else:
|
| 314 |
+
output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
|
| 315 |
+
|
| 316 |
+
if not return_dict:
|
| 317 |
+
return (output,)
|
| 318 |
+
|
| 319 |
+
return DecoderOutput(sample=output)
|
| 320 |
+
|
| 321 |
+
def forward(
|
| 322 |
+
self,
|
| 323 |
+
sample: torch.Tensor,
|
| 324 |
+
return_dict: bool = True,
|
| 325 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
| 326 |
+
r"""
|
| 327 |
+
Args:
|
| 328 |
+
sample (`torch.Tensor`): Input sample.
|
| 329 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 330 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 331 |
+
"""
|
| 332 |
+
enc = self.encode(sample).latents
|
| 333 |
+
|
| 334 |
+
# scale latents to be in [0, 1], then quantize latents to a byte tensor,
|
| 335 |
+
# as if we were storing the latents in an RGBA uint8 image.
|
| 336 |
+
scaled_enc = self.scale_latents(enc).mul_(255).round_().byte()
|
| 337 |
+
|
| 338 |
+
# unquantize latents back into [0, 1], then unscale latents back to their original range,
|
| 339 |
+
# as if we were loading the latents from an RGBA uint8 image.
|
| 340 |
+
unscaled_enc = self.unscale_latents(scaled_enc / 255.0)
|
| 341 |
+
|
| 342 |
+
dec = self.decode(unscaled_enc).sample
|
| 343 |
+
|
| 344 |
+
if not return_dict:
|
| 345 |
+
return (dec,)
|
| 346 |
+
return DecoderOutput(sample=dec)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/consistency_decoder_vae.py
ADDED
|
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Dict, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch import nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...schedulers import ConsistencyDecoderScheduler
|
| 23 |
+
from ...utils import BaseOutput
|
| 24 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 25 |
+
from ...utils.torch_utils import randn_tensor
|
| 26 |
+
from ..attention_processor import (
|
| 27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 28 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 29 |
+
AttentionProcessor,
|
| 30 |
+
AttnAddedKVProcessor,
|
| 31 |
+
AttnProcessor,
|
| 32 |
+
)
|
| 33 |
+
from ..modeling_utils import ModelMixin
|
| 34 |
+
from ..unets.unet_2d import UNet2DModel
|
| 35 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@dataclass
|
| 39 |
+
class ConsistencyDecoderVAEOutput(BaseOutput):
|
| 40 |
+
"""
|
| 41 |
+
Output of encoding method.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
latent_dist (`DiagonalGaussianDistribution`):
|
| 45 |
+
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
|
| 46 |
+
`DiagonalGaussianDistribution` allows for sampling latents from the distribution.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
latent_dist: "DiagonalGaussianDistribution"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
| 53 |
+
r"""
|
| 54 |
+
The consistency decoder used with DALL-E 3.
|
| 55 |
+
|
| 56 |
+
Examples:
|
| 57 |
+
```py
|
| 58 |
+
>>> import torch
|
| 59 |
+
>>> from diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE
|
| 60 |
+
|
| 61 |
+
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
|
| 62 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained(
|
| 63 |
+
... "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
|
| 64 |
+
... ).to("cuda")
|
| 65 |
+
|
| 66 |
+
>>> image = pipe("horse", generator=torch.manual_seed(0)).images[0]
|
| 67 |
+
>>> image
|
| 68 |
+
```
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
_supports_group_offloading = False
|
| 72 |
+
|
| 73 |
+
@register_to_config
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
scaling_factor: float = 0.18215,
|
| 77 |
+
latent_channels: int = 4,
|
| 78 |
+
sample_size: int = 32,
|
| 79 |
+
encoder_act_fn: str = "silu",
|
| 80 |
+
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
| 81 |
+
encoder_double_z: bool = True,
|
| 82 |
+
encoder_down_block_types: Tuple[str, ...] = (
|
| 83 |
+
"DownEncoderBlock2D",
|
| 84 |
+
"DownEncoderBlock2D",
|
| 85 |
+
"DownEncoderBlock2D",
|
| 86 |
+
"DownEncoderBlock2D",
|
| 87 |
+
),
|
| 88 |
+
encoder_in_channels: int = 3,
|
| 89 |
+
encoder_layers_per_block: int = 2,
|
| 90 |
+
encoder_norm_num_groups: int = 32,
|
| 91 |
+
encoder_out_channels: int = 4,
|
| 92 |
+
decoder_add_attention: bool = False,
|
| 93 |
+
decoder_block_out_channels: Tuple[int, ...] = (320, 640, 1024, 1024),
|
| 94 |
+
decoder_down_block_types: Tuple[str, ...] = (
|
| 95 |
+
"ResnetDownsampleBlock2D",
|
| 96 |
+
"ResnetDownsampleBlock2D",
|
| 97 |
+
"ResnetDownsampleBlock2D",
|
| 98 |
+
"ResnetDownsampleBlock2D",
|
| 99 |
+
),
|
| 100 |
+
decoder_downsample_padding: int = 1,
|
| 101 |
+
decoder_in_channels: int = 7,
|
| 102 |
+
decoder_layers_per_block: int = 3,
|
| 103 |
+
decoder_norm_eps: float = 1e-05,
|
| 104 |
+
decoder_norm_num_groups: int = 32,
|
| 105 |
+
decoder_num_train_timesteps: int = 1024,
|
| 106 |
+
decoder_out_channels: int = 6,
|
| 107 |
+
decoder_resnet_time_scale_shift: str = "scale_shift",
|
| 108 |
+
decoder_time_embedding_type: str = "learned",
|
| 109 |
+
decoder_up_block_types: Tuple[str, ...] = (
|
| 110 |
+
"ResnetUpsampleBlock2D",
|
| 111 |
+
"ResnetUpsampleBlock2D",
|
| 112 |
+
"ResnetUpsampleBlock2D",
|
| 113 |
+
"ResnetUpsampleBlock2D",
|
| 114 |
+
),
|
| 115 |
+
):
|
| 116 |
+
super().__init__()
|
| 117 |
+
self.encoder = Encoder(
|
| 118 |
+
act_fn=encoder_act_fn,
|
| 119 |
+
block_out_channels=encoder_block_out_channels,
|
| 120 |
+
double_z=encoder_double_z,
|
| 121 |
+
down_block_types=encoder_down_block_types,
|
| 122 |
+
in_channels=encoder_in_channels,
|
| 123 |
+
layers_per_block=encoder_layers_per_block,
|
| 124 |
+
norm_num_groups=encoder_norm_num_groups,
|
| 125 |
+
out_channels=encoder_out_channels,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
self.decoder_unet = UNet2DModel(
|
| 129 |
+
add_attention=decoder_add_attention,
|
| 130 |
+
block_out_channels=decoder_block_out_channels,
|
| 131 |
+
down_block_types=decoder_down_block_types,
|
| 132 |
+
downsample_padding=decoder_downsample_padding,
|
| 133 |
+
in_channels=decoder_in_channels,
|
| 134 |
+
layers_per_block=decoder_layers_per_block,
|
| 135 |
+
norm_eps=decoder_norm_eps,
|
| 136 |
+
norm_num_groups=decoder_norm_num_groups,
|
| 137 |
+
num_train_timesteps=decoder_num_train_timesteps,
|
| 138 |
+
out_channels=decoder_out_channels,
|
| 139 |
+
resnet_time_scale_shift=decoder_resnet_time_scale_shift,
|
| 140 |
+
time_embedding_type=decoder_time_embedding_type,
|
| 141 |
+
up_block_types=decoder_up_block_types,
|
| 142 |
+
)
|
| 143 |
+
self.decoder_scheduler = ConsistencyDecoderScheduler()
|
| 144 |
+
self.register_to_config(block_out_channels=encoder_block_out_channels)
|
| 145 |
+
self.register_to_config(force_upcast=False)
|
| 146 |
+
self.register_buffer(
|
| 147 |
+
"means",
|
| 148 |
+
torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None],
|
| 149 |
+
persistent=False,
|
| 150 |
+
)
|
| 151 |
+
self.register_buffer(
|
| 152 |
+
"stds", torch.tensor([0.9654121, 1.0440036, 0.76147926, 0.77022034])[None, :, None, None], persistent=False
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
| 156 |
+
|
| 157 |
+
self.use_slicing = False
|
| 158 |
+
self.use_tiling = False
|
| 159 |
+
|
| 160 |
+
# only relevant if vae tiling is enabled
|
| 161 |
+
self.tile_sample_min_size = self.config.sample_size
|
| 162 |
+
sample_size = (
|
| 163 |
+
self.config.sample_size[0]
|
| 164 |
+
if isinstance(self.config.sample_size, (list, tuple))
|
| 165 |
+
else self.config.sample_size
|
| 166 |
+
)
|
| 167 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
| 168 |
+
self.tile_overlap_factor = 0.25
|
| 169 |
+
|
| 170 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling
|
| 171 |
+
def enable_tiling(self, use_tiling: bool = True):
|
| 172 |
+
r"""
|
| 173 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
| 174 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
| 175 |
+
processing larger images.
|
| 176 |
+
"""
|
| 177 |
+
self.use_tiling = use_tiling
|
| 178 |
+
|
| 179 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_tiling
|
| 180 |
+
def disable_tiling(self):
|
| 181 |
+
r"""
|
| 182 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
| 183 |
+
decoding in one step.
|
| 184 |
+
"""
|
| 185 |
+
self.enable_tiling(False)
|
| 186 |
+
|
| 187 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_slicing
|
| 188 |
+
def enable_slicing(self):
|
| 189 |
+
r"""
|
| 190 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
| 191 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
| 192 |
+
"""
|
| 193 |
+
self.use_slicing = True
|
| 194 |
+
|
| 195 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_slicing
|
| 196 |
+
def disable_slicing(self):
|
| 197 |
+
r"""
|
| 198 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
| 199 |
+
decoding in one step.
|
| 200 |
+
"""
|
| 201 |
+
self.use_slicing = False
|
| 202 |
+
|
| 203 |
+
@property
|
| 204 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 205 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 206 |
+
r"""
|
| 207 |
+
Returns:
|
| 208 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 209 |
+
indexed by its weight name.
|
| 210 |
+
"""
|
| 211 |
+
# set recursively
|
| 212 |
+
processors = {}
|
| 213 |
+
|
| 214 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 215 |
+
if hasattr(module, "get_processor"):
|
| 216 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 217 |
+
|
| 218 |
+
for sub_name, child in module.named_children():
|
| 219 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 220 |
+
|
| 221 |
+
return processors
|
| 222 |
+
|
| 223 |
+
for name, module in self.named_children():
|
| 224 |
+
fn_recursive_add_processors(name, module, processors)
|
| 225 |
+
|
| 226 |
+
return processors
|
| 227 |
+
|
| 228 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 229 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 230 |
+
r"""
|
| 231 |
+
Sets the attention processor to use to compute attention.
|
| 232 |
+
|
| 233 |
+
Parameters:
|
| 234 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 235 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 236 |
+
for **all** `Attention` layers.
|
| 237 |
+
|
| 238 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 239 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 240 |
+
|
| 241 |
+
"""
|
| 242 |
+
count = len(self.attn_processors.keys())
|
| 243 |
+
|
| 244 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 245 |
+
raise ValueError(
|
| 246 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 247 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 251 |
+
if hasattr(module, "set_processor"):
|
| 252 |
+
if not isinstance(processor, dict):
|
| 253 |
+
module.set_processor(processor)
|
| 254 |
+
else:
|
| 255 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 256 |
+
|
| 257 |
+
for sub_name, child in module.named_children():
|
| 258 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 259 |
+
|
| 260 |
+
for name, module in self.named_children():
|
| 261 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 262 |
+
|
| 263 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 264 |
+
def set_default_attn_processor(self):
|
| 265 |
+
"""
|
| 266 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 267 |
+
"""
|
| 268 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 269 |
+
processor = AttnAddedKVProcessor()
|
| 270 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 271 |
+
processor = AttnProcessor()
|
| 272 |
+
else:
|
| 273 |
+
raise ValueError(
|
| 274 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
self.set_attn_processor(processor)
|
| 278 |
+
|
| 279 |
+
@apply_forward_hook
|
| 280 |
+
def encode(
|
| 281 |
+
self, x: torch.Tensor, return_dict: bool = True
|
| 282 |
+
) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]:
|
| 283 |
+
"""
|
| 284 |
+
Encode a batch of images into latents.
|
| 285 |
+
|
| 286 |
+
Args:
|
| 287 |
+
x (`torch.Tensor`): Input batch of images.
|
| 288 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 289 |
+
Whether to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
| 290 |
+
instead of a plain tuple.
|
| 291 |
+
|
| 292 |
+
Returns:
|
| 293 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
| 294 |
+
[`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a
|
| 295 |
+
plain `tuple` is returned.
|
| 296 |
+
"""
|
| 297 |
+
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
| 298 |
+
return self.tiled_encode(x, return_dict=return_dict)
|
| 299 |
+
|
| 300 |
+
if self.use_slicing and x.shape[0] > 1:
|
| 301 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
| 302 |
+
h = torch.cat(encoded_slices)
|
| 303 |
+
else:
|
| 304 |
+
h = self.encoder(x)
|
| 305 |
+
|
| 306 |
+
moments = self.quant_conv(h)
|
| 307 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 308 |
+
|
| 309 |
+
if not return_dict:
|
| 310 |
+
return (posterior,)
|
| 311 |
+
|
| 312 |
+
return ConsistencyDecoderVAEOutput(latent_dist=posterior)
|
| 313 |
+
|
| 314 |
+
@apply_forward_hook
|
| 315 |
+
def decode(
|
| 316 |
+
self,
|
| 317 |
+
z: torch.Tensor,
|
| 318 |
+
generator: Optional[torch.Generator] = None,
|
| 319 |
+
return_dict: bool = True,
|
| 320 |
+
num_inference_steps: int = 2,
|
| 321 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
| 322 |
+
"""
|
| 323 |
+
Decodes the input latent vector `z` using the consistency decoder VAE model.
|
| 324 |
+
|
| 325 |
+
Args:
|
| 326 |
+
z (torch.Tensor): The input latent vector.
|
| 327 |
+
generator (Optional[torch.Generator]): The random number generator. Default is None.
|
| 328 |
+
return_dict (bool): Whether to return the output as a dictionary. Default is True.
|
| 329 |
+
num_inference_steps (int): The number of inference steps. Default is 2.
|
| 330 |
+
|
| 331 |
+
Returns:
|
| 332 |
+
Union[DecoderOutput, Tuple[torch.Tensor]]: The decoded output.
|
| 333 |
+
|
| 334 |
+
"""
|
| 335 |
+
z = (z * self.config.scaling_factor - self.means) / self.stds
|
| 336 |
+
|
| 337 |
+
scale_factor = 2 ** (len(self.config.block_out_channels) - 1)
|
| 338 |
+
z = F.interpolate(z, mode="nearest", scale_factor=scale_factor)
|
| 339 |
+
|
| 340 |
+
batch_size, _, height, width = z.shape
|
| 341 |
+
|
| 342 |
+
self.decoder_scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 343 |
+
|
| 344 |
+
x_t = self.decoder_scheduler.init_noise_sigma * randn_tensor(
|
| 345 |
+
(batch_size, 3, height, width), generator=generator, dtype=z.dtype, device=z.device
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
for t in self.decoder_scheduler.timesteps:
|
| 349 |
+
model_input = torch.concat([self.decoder_scheduler.scale_model_input(x_t, t), z], dim=1)
|
| 350 |
+
model_output = self.decoder_unet(model_input, t).sample[:, :3, :, :]
|
| 351 |
+
prev_sample = self.decoder_scheduler.step(model_output, t, x_t, generator).prev_sample
|
| 352 |
+
x_t = prev_sample
|
| 353 |
+
|
| 354 |
+
x_0 = x_t
|
| 355 |
+
|
| 356 |
+
if not return_dict:
|
| 357 |
+
return (x_0,)
|
| 358 |
+
|
| 359 |
+
return DecoderOutput(sample=x_0)
|
| 360 |
+
|
| 361 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_v
|
| 362 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 363 |
+
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
| 364 |
+
for y in range(blend_extent):
|
| 365 |
+
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
|
| 366 |
+
return b
|
| 367 |
+
|
| 368 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_h
|
| 369 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
| 370 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
| 371 |
+
for x in range(blend_extent):
|
| 372 |
+
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
|
| 373 |
+
return b
|
| 374 |
+
|
| 375 |
+
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[ConsistencyDecoderVAEOutput, Tuple]:
|
| 376 |
+
r"""Encode a batch of images using a tiled encoder.
|
| 377 |
+
|
| 378 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
| 379 |
+
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
| 380 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
| 381 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
| 382 |
+
output, but they should be much less noticeable.
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
x (`torch.Tensor`): Input batch of images.
|
| 386 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 387 |
+
Whether or not to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
| 388 |
+
instead of a plain tuple.
|
| 389 |
+
|
| 390 |
+
Returns:
|
| 391 |
+
[`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
|
| 392 |
+
If return_dict is True, a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
| 393 |
+
is returned, otherwise a plain `tuple` is returned.
|
| 394 |
+
"""
|
| 395 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
| 396 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
| 397 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
| 398 |
+
|
| 399 |
+
# Split the image into 512x512 tiles and encode them separately.
|
| 400 |
+
rows = []
|
| 401 |
+
for i in range(0, x.shape[2], overlap_size):
|
| 402 |
+
row = []
|
| 403 |
+
for j in range(0, x.shape[3], overlap_size):
|
| 404 |
+
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
| 405 |
+
tile = self.encoder(tile)
|
| 406 |
+
tile = self.quant_conv(tile)
|
| 407 |
+
row.append(tile)
|
| 408 |
+
rows.append(row)
|
| 409 |
+
result_rows = []
|
| 410 |
+
for i, row in enumerate(rows):
|
| 411 |
+
result_row = []
|
| 412 |
+
for j, tile in enumerate(row):
|
| 413 |
+
# blend the above tile and the left tile
|
| 414 |
+
# to the current tile and add the current tile to the result row
|
| 415 |
+
if i > 0:
|
| 416 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
| 417 |
+
if j > 0:
|
| 418 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
| 419 |
+
result_row.append(tile[:, :, :row_limit, :row_limit])
|
| 420 |
+
result_rows.append(torch.cat(result_row, dim=3))
|
| 421 |
+
|
| 422 |
+
moments = torch.cat(result_rows, dim=2)
|
| 423 |
+
posterior = DiagonalGaussianDistribution(moments)
|
| 424 |
+
|
| 425 |
+
if not return_dict:
|
| 426 |
+
return (posterior,)
|
| 427 |
+
|
| 428 |
+
return ConsistencyDecoderVAEOutput(latent_dist=posterior)
|
| 429 |
+
|
| 430 |
+
def forward(
|
| 431 |
+
self,
|
| 432 |
+
sample: torch.Tensor,
|
| 433 |
+
sample_posterior: bool = False,
|
| 434 |
+
return_dict: bool = True,
|
| 435 |
+
generator: Optional[torch.Generator] = None,
|
| 436 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
| 437 |
+
r"""
|
| 438 |
+
Args:
|
| 439 |
+
sample (`torch.Tensor`): Input sample.
|
| 440 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
| 441 |
+
Whether to sample from the posterior.
|
| 442 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 443 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
| 444 |
+
generator (`torch.Generator`, *optional*, defaults to `None`):
|
| 445 |
+
Generator to use for sampling.
|
| 446 |
+
|
| 447 |
+
Returns:
|
| 448 |
+
[`DecoderOutput`] or `tuple`:
|
| 449 |
+
If return_dict is True, a [`DecoderOutput`] is returned, otherwise a plain `tuple` is returned.
|
| 450 |
+
"""
|
| 451 |
+
x = sample
|
| 452 |
+
posterior = self.encode(x).latent_dist
|
| 453 |
+
if sample_posterior:
|
| 454 |
+
z = posterior.sample(generator=generator)
|
| 455 |
+
else:
|
| 456 |
+
z = posterior.mode()
|
| 457 |
+
dec = self.decode(z, generator=generator).sample
|
| 458 |
+
|
| 459 |
+
if not return_dict:
|
| 460 |
+
return (dec,)
|
| 461 |
+
|
| 462 |
+
return DecoderOutput(sample=dec)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/vae.py
ADDED
|
@@ -0,0 +1,896 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Optional, Tuple
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from ...utils import BaseOutput
|
| 22 |
+
from ...utils.torch_utils import randn_tensor
|
| 23 |
+
from ..activations import get_activation
|
| 24 |
+
from ..attention_processor import SpatialNorm
|
| 25 |
+
from ..unets.unet_2d_blocks import (
|
| 26 |
+
AutoencoderTinyBlock,
|
| 27 |
+
UNetMidBlock2D,
|
| 28 |
+
get_down_block,
|
| 29 |
+
get_up_block,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@dataclass
|
| 34 |
+
class EncoderOutput(BaseOutput):
|
| 35 |
+
r"""
|
| 36 |
+
Output of encoding method.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
|
| 40 |
+
The encoded latent.
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
latent: torch.Tensor
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@dataclass
|
| 47 |
+
class DecoderOutput(BaseOutput):
|
| 48 |
+
r"""
|
| 49 |
+
Output of decoding method.
|
| 50 |
+
|
| 51 |
+
Args:
|
| 52 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
| 53 |
+
The decoded output sample from the last layer of the model.
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
sample: torch.Tensor
|
| 57 |
+
commit_loss: Optional[torch.FloatTensor] = None
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class Encoder(nn.Module):
|
| 61 |
+
r"""
|
| 62 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 66 |
+
The number of input channels.
|
| 67 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 68 |
+
The number of output channels.
|
| 69 |
+
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
| 70 |
+
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
|
| 71 |
+
options.
|
| 72 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
| 73 |
+
The number of output channels for each block.
|
| 74 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
| 75 |
+
The number of layers per block.
|
| 76 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 77 |
+
The number of groups for normalization.
|
| 78 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
| 79 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
| 80 |
+
double_z (`bool`, *optional*, defaults to `True`):
|
| 81 |
+
Whether to double the number of output channels for the last block.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(
|
| 85 |
+
self,
|
| 86 |
+
in_channels: int = 3,
|
| 87 |
+
out_channels: int = 3,
|
| 88 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
| 89 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
| 90 |
+
layers_per_block: int = 2,
|
| 91 |
+
norm_num_groups: int = 32,
|
| 92 |
+
act_fn: str = "silu",
|
| 93 |
+
double_z: bool = True,
|
| 94 |
+
mid_block_add_attention=True,
|
| 95 |
+
):
|
| 96 |
+
super().__init__()
|
| 97 |
+
self.layers_per_block = layers_per_block
|
| 98 |
+
|
| 99 |
+
self.conv_in = nn.Conv2d(
|
| 100 |
+
in_channels,
|
| 101 |
+
block_out_channels[0],
|
| 102 |
+
kernel_size=3,
|
| 103 |
+
stride=1,
|
| 104 |
+
padding=1,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self.down_blocks = nn.ModuleList([])
|
| 108 |
+
|
| 109 |
+
# down
|
| 110 |
+
output_channel = block_out_channels[0]
|
| 111 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 112 |
+
input_channel = output_channel
|
| 113 |
+
output_channel = block_out_channels[i]
|
| 114 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 115 |
+
|
| 116 |
+
down_block = get_down_block(
|
| 117 |
+
down_block_type,
|
| 118 |
+
num_layers=self.layers_per_block,
|
| 119 |
+
in_channels=input_channel,
|
| 120 |
+
out_channels=output_channel,
|
| 121 |
+
add_downsample=not is_final_block,
|
| 122 |
+
resnet_eps=1e-6,
|
| 123 |
+
downsample_padding=0,
|
| 124 |
+
resnet_act_fn=act_fn,
|
| 125 |
+
resnet_groups=norm_num_groups,
|
| 126 |
+
attention_head_dim=output_channel,
|
| 127 |
+
temb_channels=None,
|
| 128 |
+
)
|
| 129 |
+
self.down_blocks.append(down_block)
|
| 130 |
+
|
| 131 |
+
# mid
|
| 132 |
+
self.mid_block = UNetMidBlock2D(
|
| 133 |
+
in_channels=block_out_channels[-1],
|
| 134 |
+
resnet_eps=1e-6,
|
| 135 |
+
resnet_act_fn=act_fn,
|
| 136 |
+
output_scale_factor=1,
|
| 137 |
+
resnet_time_scale_shift="default",
|
| 138 |
+
attention_head_dim=block_out_channels[-1],
|
| 139 |
+
resnet_groups=norm_num_groups,
|
| 140 |
+
temb_channels=None,
|
| 141 |
+
add_attention=mid_block_add_attention,
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# out
|
| 145 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
| 146 |
+
self.conv_act = nn.SiLU()
|
| 147 |
+
|
| 148 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
| 149 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
| 150 |
+
|
| 151 |
+
self.gradient_checkpointing = False
|
| 152 |
+
|
| 153 |
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
| 154 |
+
r"""The forward method of the `Encoder` class."""
|
| 155 |
+
|
| 156 |
+
sample = self.conv_in(sample)
|
| 157 |
+
|
| 158 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 159 |
+
# down
|
| 160 |
+
for down_block in self.down_blocks:
|
| 161 |
+
sample = self._gradient_checkpointing_func(down_block, sample)
|
| 162 |
+
# middle
|
| 163 |
+
sample = self._gradient_checkpointing_func(self.mid_block, sample)
|
| 164 |
+
|
| 165 |
+
else:
|
| 166 |
+
# down
|
| 167 |
+
for down_block in self.down_blocks:
|
| 168 |
+
sample = down_block(sample)
|
| 169 |
+
|
| 170 |
+
# middle
|
| 171 |
+
sample = self.mid_block(sample)
|
| 172 |
+
|
| 173 |
+
# post-process
|
| 174 |
+
sample = self.conv_norm_out(sample)
|
| 175 |
+
sample = self.conv_act(sample)
|
| 176 |
+
sample = self.conv_out(sample)
|
| 177 |
+
|
| 178 |
+
return sample
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class Decoder(nn.Module):
|
| 182 |
+
r"""
|
| 183 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 187 |
+
The number of input channels.
|
| 188 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 189 |
+
The number of output channels.
|
| 190 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
| 191 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
| 192 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
| 193 |
+
The number of output channels for each block.
|
| 194 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
| 195 |
+
The number of layers per block.
|
| 196 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 197 |
+
The number of groups for normalization.
|
| 198 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
| 199 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
| 200 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
| 201 |
+
The normalization type to use. Can be either `"group"` or `"spatial"`.
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
def __init__(
|
| 205 |
+
self,
|
| 206 |
+
in_channels: int = 3,
|
| 207 |
+
out_channels: int = 3,
|
| 208 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
| 209 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
| 210 |
+
layers_per_block: int = 2,
|
| 211 |
+
norm_num_groups: int = 32,
|
| 212 |
+
act_fn: str = "silu",
|
| 213 |
+
norm_type: str = "group", # group, spatial
|
| 214 |
+
mid_block_add_attention=True,
|
| 215 |
+
):
|
| 216 |
+
super().__init__()
|
| 217 |
+
self.layers_per_block = layers_per_block
|
| 218 |
+
|
| 219 |
+
self.conv_in = nn.Conv2d(
|
| 220 |
+
in_channels,
|
| 221 |
+
block_out_channels[-1],
|
| 222 |
+
kernel_size=3,
|
| 223 |
+
stride=1,
|
| 224 |
+
padding=1,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
self.up_blocks = nn.ModuleList([])
|
| 228 |
+
|
| 229 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
| 230 |
+
|
| 231 |
+
# mid
|
| 232 |
+
self.mid_block = UNetMidBlock2D(
|
| 233 |
+
in_channels=block_out_channels[-1],
|
| 234 |
+
resnet_eps=1e-6,
|
| 235 |
+
resnet_act_fn=act_fn,
|
| 236 |
+
output_scale_factor=1,
|
| 237 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
| 238 |
+
attention_head_dim=block_out_channels[-1],
|
| 239 |
+
resnet_groups=norm_num_groups,
|
| 240 |
+
temb_channels=temb_channels,
|
| 241 |
+
add_attention=mid_block_add_attention,
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
# up
|
| 245 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 246 |
+
output_channel = reversed_block_out_channels[0]
|
| 247 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 248 |
+
prev_output_channel = output_channel
|
| 249 |
+
output_channel = reversed_block_out_channels[i]
|
| 250 |
+
|
| 251 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 252 |
+
|
| 253 |
+
up_block = get_up_block(
|
| 254 |
+
up_block_type,
|
| 255 |
+
num_layers=self.layers_per_block + 1,
|
| 256 |
+
in_channels=prev_output_channel,
|
| 257 |
+
out_channels=output_channel,
|
| 258 |
+
prev_output_channel=prev_output_channel,
|
| 259 |
+
add_upsample=not is_final_block,
|
| 260 |
+
resnet_eps=1e-6,
|
| 261 |
+
resnet_act_fn=act_fn,
|
| 262 |
+
resnet_groups=norm_num_groups,
|
| 263 |
+
attention_head_dim=output_channel,
|
| 264 |
+
temb_channels=temb_channels,
|
| 265 |
+
resnet_time_scale_shift=norm_type,
|
| 266 |
+
)
|
| 267 |
+
self.up_blocks.append(up_block)
|
| 268 |
+
prev_output_channel = output_channel
|
| 269 |
+
|
| 270 |
+
# out
|
| 271 |
+
if norm_type == "spatial":
|
| 272 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
| 273 |
+
else:
|
| 274 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
| 275 |
+
self.conv_act = nn.SiLU()
|
| 276 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
| 277 |
+
|
| 278 |
+
self.gradient_checkpointing = False
|
| 279 |
+
|
| 280 |
+
def forward(
|
| 281 |
+
self,
|
| 282 |
+
sample: torch.Tensor,
|
| 283 |
+
latent_embeds: Optional[torch.Tensor] = None,
|
| 284 |
+
) -> torch.Tensor:
|
| 285 |
+
r"""The forward method of the `Decoder` class."""
|
| 286 |
+
|
| 287 |
+
sample = self.conv_in(sample)
|
| 288 |
+
|
| 289 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
| 290 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 291 |
+
# middle
|
| 292 |
+
sample = self._gradient_checkpointing_func(self.mid_block, sample, latent_embeds)
|
| 293 |
+
sample = sample.to(upscale_dtype)
|
| 294 |
+
|
| 295 |
+
# up
|
| 296 |
+
for up_block in self.up_blocks:
|
| 297 |
+
sample = self._gradient_checkpointing_func(up_block, sample, latent_embeds)
|
| 298 |
+
else:
|
| 299 |
+
# middle
|
| 300 |
+
sample = self.mid_block(sample, latent_embeds)
|
| 301 |
+
sample = sample.to(upscale_dtype)
|
| 302 |
+
|
| 303 |
+
# up
|
| 304 |
+
for up_block in self.up_blocks:
|
| 305 |
+
sample = up_block(sample, latent_embeds)
|
| 306 |
+
|
| 307 |
+
# post-process
|
| 308 |
+
if latent_embeds is None:
|
| 309 |
+
sample = self.conv_norm_out(sample)
|
| 310 |
+
else:
|
| 311 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
| 312 |
+
sample = self.conv_act(sample)
|
| 313 |
+
sample = self.conv_out(sample)
|
| 314 |
+
|
| 315 |
+
return sample
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class UpSample(nn.Module):
|
| 319 |
+
r"""
|
| 320 |
+
The `UpSample` layer of a variational autoencoder that upsamples its input.
|
| 321 |
+
|
| 322 |
+
Args:
|
| 323 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 324 |
+
The number of input channels.
|
| 325 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 326 |
+
The number of output channels.
|
| 327 |
+
"""
|
| 328 |
+
|
| 329 |
+
def __init__(
|
| 330 |
+
self,
|
| 331 |
+
in_channels: int,
|
| 332 |
+
out_channels: int,
|
| 333 |
+
) -> None:
|
| 334 |
+
super().__init__()
|
| 335 |
+
self.in_channels = in_channels
|
| 336 |
+
self.out_channels = out_channels
|
| 337 |
+
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
|
| 338 |
+
|
| 339 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 340 |
+
r"""The forward method of the `UpSample` class."""
|
| 341 |
+
x = torch.relu(x)
|
| 342 |
+
x = self.deconv(x)
|
| 343 |
+
return x
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
class MaskConditionEncoder(nn.Module):
|
| 347 |
+
"""
|
| 348 |
+
used in AsymmetricAutoencoderKL
|
| 349 |
+
"""
|
| 350 |
+
|
| 351 |
+
def __init__(
|
| 352 |
+
self,
|
| 353 |
+
in_ch: int,
|
| 354 |
+
out_ch: int = 192,
|
| 355 |
+
res_ch: int = 768,
|
| 356 |
+
stride: int = 16,
|
| 357 |
+
) -> None:
|
| 358 |
+
super().__init__()
|
| 359 |
+
|
| 360 |
+
channels = []
|
| 361 |
+
while stride > 1:
|
| 362 |
+
stride = stride // 2
|
| 363 |
+
in_ch_ = out_ch * 2
|
| 364 |
+
if out_ch > res_ch:
|
| 365 |
+
out_ch = res_ch
|
| 366 |
+
if stride == 1:
|
| 367 |
+
in_ch_ = res_ch
|
| 368 |
+
channels.append((in_ch_, out_ch))
|
| 369 |
+
out_ch *= 2
|
| 370 |
+
|
| 371 |
+
out_channels = []
|
| 372 |
+
for _in_ch, _out_ch in channels:
|
| 373 |
+
out_channels.append(_out_ch)
|
| 374 |
+
out_channels.append(channels[-1][0])
|
| 375 |
+
|
| 376 |
+
layers = []
|
| 377 |
+
in_ch_ = in_ch
|
| 378 |
+
for l in range(len(out_channels)):
|
| 379 |
+
out_ch_ = out_channels[l]
|
| 380 |
+
if l == 0 or l == 1:
|
| 381 |
+
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
|
| 382 |
+
else:
|
| 383 |
+
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
|
| 384 |
+
in_ch_ = out_ch_
|
| 385 |
+
|
| 386 |
+
self.layers = nn.Sequential(*layers)
|
| 387 |
+
|
| 388 |
+
def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
|
| 389 |
+
r"""The forward method of the `MaskConditionEncoder` class."""
|
| 390 |
+
out = {}
|
| 391 |
+
for l in range(len(self.layers)):
|
| 392 |
+
layer = self.layers[l]
|
| 393 |
+
x = layer(x)
|
| 394 |
+
out[str(tuple(x.shape))] = x
|
| 395 |
+
x = torch.relu(x)
|
| 396 |
+
return out
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
class MaskConditionDecoder(nn.Module):
|
| 400 |
+
r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
|
| 401 |
+
decoder with a conditioner on the mask and masked image.
|
| 402 |
+
|
| 403 |
+
Args:
|
| 404 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 405 |
+
The number of input channels.
|
| 406 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 407 |
+
The number of output channels.
|
| 408 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
| 409 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
| 410 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
| 411 |
+
The number of output channels for each block.
|
| 412 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
| 413 |
+
The number of layers per block.
|
| 414 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 415 |
+
The number of groups for normalization.
|
| 416 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
| 417 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
| 418 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
| 419 |
+
The normalization type to use. Can be either `"group"` or `"spatial"`.
|
| 420 |
+
"""
|
| 421 |
+
|
| 422 |
+
def __init__(
|
| 423 |
+
self,
|
| 424 |
+
in_channels: int = 3,
|
| 425 |
+
out_channels: int = 3,
|
| 426 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
| 427 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
| 428 |
+
layers_per_block: int = 2,
|
| 429 |
+
norm_num_groups: int = 32,
|
| 430 |
+
act_fn: str = "silu",
|
| 431 |
+
norm_type: str = "group", # group, spatial
|
| 432 |
+
):
|
| 433 |
+
super().__init__()
|
| 434 |
+
self.layers_per_block = layers_per_block
|
| 435 |
+
|
| 436 |
+
self.conv_in = nn.Conv2d(
|
| 437 |
+
in_channels,
|
| 438 |
+
block_out_channels[-1],
|
| 439 |
+
kernel_size=3,
|
| 440 |
+
stride=1,
|
| 441 |
+
padding=1,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
self.up_blocks = nn.ModuleList([])
|
| 445 |
+
|
| 446 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
| 447 |
+
|
| 448 |
+
# mid
|
| 449 |
+
self.mid_block = UNetMidBlock2D(
|
| 450 |
+
in_channels=block_out_channels[-1],
|
| 451 |
+
resnet_eps=1e-6,
|
| 452 |
+
resnet_act_fn=act_fn,
|
| 453 |
+
output_scale_factor=1,
|
| 454 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
| 455 |
+
attention_head_dim=block_out_channels[-1],
|
| 456 |
+
resnet_groups=norm_num_groups,
|
| 457 |
+
temb_channels=temb_channels,
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
# up
|
| 461 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 462 |
+
output_channel = reversed_block_out_channels[0]
|
| 463 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 464 |
+
prev_output_channel = output_channel
|
| 465 |
+
output_channel = reversed_block_out_channels[i]
|
| 466 |
+
|
| 467 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 468 |
+
|
| 469 |
+
up_block = get_up_block(
|
| 470 |
+
up_block_type,
|
| 471 |
+
num_layers=self.layers_per_block + 1,
|
| 472 |
+
in_channels=prev_output_channel,
|
| 473 |
+
out_channels=output_channel,
|
| 474 |
+
prev_output_channel=None,
|
| 475 |
+
add_upsample=not is_final_block,
|
| 476 |
+
resnet_eps=1e-6,
|
| 477 |
+
resnet_act_fn=act_fn,
|
| 478 |
+
resnet_groups=norm_num_groups,
|
| 479 |
+
attention_head_dim=output_channel,
|
| 480 |
+
temb_channels=temb_channels,
|
| 481 |
+
resnet_time_scale_shift=norm_type,
|
| 482 |
+
)
|
| 483 |
+
self.up_blocks.append(up_block)
|
| 484 |
+
prev_output_channel = output_channel
|
| 485 |
+
|
| 486 |
+
# condition encoder
|
| 487 |
+
self.condition_encoder = MaskConditionEncoder(
|
| 488 |
+
in_ch=out_channels,
|
| 489 |
+
out_ch=block_out_channels[0],
|
| 490 |
+
res_ch=block_out_channels[-1],
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
# out
|
| 494 |
+
if norm_type == "spatial":
|
| 495 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
| 496 |
+
else:
|
| 497 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
| 498 |
+
self.conv_act = nn.SiLU()
|
| 499 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
| 500 |
+
|
| 501 |
+
self.gradient_checkpointing = False
|
| 502 |
+
|
| 503 |
+
def forward(
|
| 504 |
+
self,
|
| 505 |
+
z: torch.Tensor,
|
| 506 |
+
image: Optional[torch.Tensor] = None,
|
| 507 |
+
mask: Optional[torch.Tensor] = None,
|
| 508 |
+
latent_embeds: Optional[torch.Tensor] = None,
|
| 509 |
+
) -> torch.Tensor:
|
| 510 |
+
r"""The forward method of the `MaskConditionDecoder` class."""
|
| 511 |
+
sample = z
|
| 512 |
+
sample = self.conv_in(sample)
|
| 513 |
+
|
| 514 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
| 515 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 516 |
+
# middle
|
| 517 |
+
sample = self._gradient_checkpointing_func(self.mid_block, sample, latent_embeds)
|
| 518 |
+
sample = sample.to(upscale_dtype)
|
| 519 |
+
|
| 520 |
+
# condition encoder
|
| 521 |
+
if image is not None and mask is not None:
|
| 522 |
+
masked_image = (1 - mask) * image
|
| 523 |
+
im_x = self._gradient_checkpointing_func(
|
| 524 |
+
self.condition_encoder,
|
| 525 |
+
masked_image,
|
| 526 |
+
mask,
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
# up
|
| 530 |
+
for up_block in self.up_blocks:
|
| 531 |
+
if image is not None and mask is not None:
|
| 532 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
| 533 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
| 534 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
| 535 |
+
sample = self._gradient_checkpointing_func(up_block, sample, latent_embeds)
|
| 536 |
+
if image is not None and mask is not None:
|
| 537 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
| 538 |
+
else:
|
| 539 |
+
# middle
|
| 540 |
+
sample = self.mid_block(sample, latent_embeds)
|
| 541 |
+
sample = sample.to(upscale_dtype)
|
| 542 |
+
|
| 543 |
+
# condition encoder
|
| 544 |
+
if image is not None and mask is not None:
|
| 545 |
+
masked_image = (1 - mask) * image
|
| 546 |
+
im_x = self.condition_encoder(masked_image, mask)
|
| 547 |
+
|
| 548 |
+
# up
|
| 549 |
+
for up_block in self.up_blocks:
|
| 550 |
+
if image is not None and mask is not None:
|
| 551 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
| 552 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
| 553 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
| 554 |
+
sample = up_block(sample, latent_embeds)
|
| 555 |
+
if image is not None and mask is not None:
|
| 556 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
| 557 |
+
|
| 558 |
+
# post-process
|
| 559 |
+
if latent_embeds is None:
|
| 560 |
+
sample = self.conv_norm_out(sample)
|
| 561 |
+
else:
|
| 562 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
| 563 |
+
sample = self.conv_act(sample)
|
| 564 |
+
sample = self.conv_out(sample)
|
| 565 |
+
|
| 566 |
+
return sample
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
class VectorQuantizer(nn.Module):
|
| 570 |
+
"""
|
| 571 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
|
| 572 |
+
multiplications and allows for post-hoc remapping of indices.
|
| 573 |
+
"""
|
| 574 |
+
|
| 575 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
| 576 |
+
# backwards compatibility we use the buggy version by default, but you can
|
| 577 |
+
# specify legacy=False to fix it.
|
| 578 |
+
def __init__(
|
| 579 |
+
self,
|
| 580 |
+
n_e: int,
|
| 581 |
+
vq_embed_dim: int,
|
| 582 |
+
beta: float,
|
| 583 |
+
remap=None,
|
| 584 |
+
unknown_index: str = "random",
|
| 585 |
+
sane_index_shape: bool = False,
|
| 586 |
+
legacy: bool = True,
|
| 587 |
+
):
|
| 588 |
+
super().__init__()
|
| 589 |
+
self.n_e = n_e
|
| 590 |
+
self.vq_embed_dim = vq_embed_dim
|
| 591 |
+
self.beta = beta
|
| 592 |
+
self.legacy = legacy
|
| 593 |
+
|
| 594 |
+
self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
|
| 595 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
| 596 |
+
|
| 597 |
+
self.remap = remap
|
| 598 |
+
if self.remap is not None:
|
| 599 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
| 600 |
+
self.used: torch.Tensor
|
| 601 |
+
self.re_embed = self.used.shape[0]
|
| 602 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
| 603 |
+
if self.unknown_index == "extra":
|
| 604 |
+
self.unknown_index = self.re_embed
|
| 605 |
+
self.re_embed = self.re_embed + 1
|
| 606 |
+
print(
|
| 607 |
+
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
| 608 |
+
f"Using {self.unknown_index} for unknown indices."
|
| 609 |
+
)
|
| 610 |
+
else:
|
| 611 |
+
self.re_embed = n_e
|
| 612 |
+
|
| 613 |
+
self.sane_index_shape = sane_index_shape
|
| 614 |
+
|
| 615 |
+
def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
|
| 616 |
+
ishape = inds.shape
|
| 617 |
+
assert len(ishape) > 1
|
| 618 |
+
inds = inds.reshape(ishape[0], -1)
|
| 619 |
+
used = self.used.to(inds)
|
| 620 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
| 621 |
+
new = match.argmax(-1)
|
| 622 |
+
unknown = match.sum(2) < 1
|
| 623 |
+
if self.unknown_index == "random":
|
| 624 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
| 625 |
+
else:
|
| 626 |
+
new[unknown] = self.unknown_index
|
| 627 |
+
return new.reshape(ishape)
|
| 628 |
+
|
| 629 |
+
def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
|
| 630 |
+
ishape = inds.shape
|
| 631 |
+
assert len(ishape) > 1
|
| 632 |
+
inds = inds.reshape(ishape[0], -1)
|
| 633 |
+
used = self.used.to(inds)
|
| 634 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
| 635 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
| 636 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
| 637 |
+
return back.reshape(ishape)
|
| 638 |
+
|
| 639 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
|
| 640 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
| 641 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
| 642 |
+
z_flattened = z.view(-1, self.vq_embed_dim)
|
| 643 |
+
|
| 644 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
| 645 |
+
min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
|
| 646 |
+
|
| 647 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
| 648 |
+
perplexity = None
|
| 649 |
+
min_encodings = None
|
| 650 |
+
|
| 651 |
+
# compute loss for embedding
|
| 652 |
+
if not self.legacy:
|
| 653 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
| 654 |
+
else:
|
| 655 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
| 656 |
+
|
| 657 |
+
# preserve gradients
|
| 658 |
+
z_q: torch.Tensor = z + (z_q - z).detach()
|
| 659 |
+
|
| 660 |
+
# reshape back to match original input shape
|
| 661 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 662 |
+
|
| 663 |
+
if self.remap is not None:
|
| 664 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
| 665 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
| 666 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
| 667 |
+
|
| 668 |
+
if self.sane_index_shape:
|
| 669 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
| 670 |
+
|
| 671 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
| 672 |
+
|
| 673 |
+
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
|
| 674 |
+
# shape specifying (batch, height, width, channel)
|
| 675 |
+
if self.remap is not None:
|
| 676 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
| 677 |
+
indices = self.unmap_to_all(indices)
|
| 678 |
+
indices = indices.reshape(-1) # flatten again
|
| 679 |
+
|
| 680 |
+
# get quantized latent vectors
|
| 681 |
+
z_q: torch.Tensor = self.embedding(indices)
|
| 682 |
+
|
| 683 |
+
if shape is not None:
|
| 684 |
+
z_q = z_q.view(shape)
|
| 685 |
+
# reshape back to match original input shape
|
| 686 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
| 687 |
+
|
| 688 |
+
return z_q
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
class DiagonalGaussianDistribution(object):
|
| 692 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
| 693 |
+
self.parameters = parameters
|
| 694 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 695 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 696 |
+
self.deterministic = deterministic
|
| 697 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 698 |
+
self.var = torch.exp(self.logvar)
|
| 699 |
+
if self.deterministic:
|
| 700 |
+
self.var = self.std = torch.zeros_like(
|
| 701 |
+
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
| 702 |
+
)
|
| 703 |
+
|
| 704 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
| 705 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
| 706 |
+
sample = randn_tensor(
|
| 707 |
+
self.mean.shape,
|
| 708 |
+
generator=generator,
|
| 709 |
+
device=self.parameters.device,
|
| 710 |
+
dtype=self.parameters.dtype,
|
| 711 |
+
)
|
| 712 |
+
x = self.mean + self.std * sample
|
| 713 |
+
return x
|
| 714 |
+
|
| 715 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
| 716 |
+
if self.deterministic:
|
| 717 |
+
return torch.Tensor([0.0])
|
| 718 |
+
else:
|
| 719 |
+
if other is None:
|
| 720 |
+
return 0.5 * torch.sum(
|
| 721 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
| 722 |
+
dim=[1, 2, 3],
|
| 723 |
+
)
|
| 724 |
+
else:
|
| 725 |
+
return 0.5 * torch.sum(
|
| 726 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 727 |
+
+ self.var / other.var
|
| 728 |
+
- 1.0
|
| 729 |
+
- self.logvar
|
| 730 |
+
+ other.logvar,
|
| 731 |
+
dim=[1, 2, 3],
|
| 732 |
+
)
|
| 733 |
+
|
| 734 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
| 735 |
+
if self.deterministic:
|
| 736 |
+
return torch.Tensor([0.0])
|
| 737 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 738 |
+
return 0.5 * torch.sum(
|
| 739 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 740 |
+
dim=dims,
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
def mode(self) -> torch.Tensor:
|
| 744 |
+
return self.mean
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
class IdentityDistribution(object):
|
| 748 |
+
def __init__(self, parameters: torch.Tensor):
|
| 749 |
+
self.parameters = parameters
|
| 750 |
+
|
| 751 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
| 752 |
+
return self.parameters
|
| 753 |
+
|
| 754 |
+
def mode(self) -> torch.Tensor:
|
| 755 |
+
return self.parameters
|
| 756 |
+
|
| 757 |
+
|
| 758 |
+
class EncoderTiny(nn.Module):
|
| 759 |
+
r"""
|
| 760 |
+
The `EncoderTiny` layer is a simpler version of the `Encoder` layer.
|
| 761 |
+
|
| 762 |
+
Args:
|
| 763 |
+
in_channels (`int`):
|
| 764 |
+
The number of input channels.
|
| 765 |
+
out_channels (`int`):
|
| 766 |
+
The number of output channels.
|
| 767 |
+
num_blocks (`Tuple[int, ...]`):
|
| 768 |
+
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
|
| 769 |
+
use.
|
| 770 |
+
block_out_channels (`Tuple[int, ...]`):
|
| 771 |
+
The number of output channels for each block.
|
| 772 |
+
act_fn (`str`):
|
| 773 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
| 774 |
+
"""
|
| 775 |
+
|
| 776 |
+
def __init__(
|
| 777 |
+
self,
|
| 778 |
+
in_channels: int,
|
| 779 |
+
out_channels: int,
|
| 780 |
+
num_blocks: Tuple[int, ...],
|
| 781 |
+
block_out_channels: Tuple[int, ...],
|
| 782 |
+
act_fn: str,
|
| 783 |
+
):
|
| 784 |
+
super().__init__()
|
| 785 |
+
|
| 786 |
+
layers = []
|
| 787 |
+
for i, num_block in enumerate(num_blocks):
|
| 788 |
+
num_channels = block_out_channels[i]
|
| 789 |
+
|
| 790 |
+
if i == 0:
|
| 791 |
+
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
|
| 792 |
+
else:
|
| 793 |
+
layers.append(
|
| 794 |
+
nn.Conv2d(
|
| 795 |
+
num_channels,
|
| 796 |
+
num_channels,
|
| 797 |
+
kernel_size=3,
|
| 798 |
+
padding=1,
|
| 799 |
+
stride=2,
|
| 800 |
+
bias=False,
|
| 801 |
+
)
|
| 802 |
+
)
|
| 803 |
+
|
| 804 |
+
for _ in range(num_block):
|
| 805 |
+
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
| 806 |
+
|
| 807 |
+
layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))
|
| 808 |
+
|
| 809 |
+
self.layers = nn.Sequential(*layers)
|
| 810 |
+
self.gradient_checkpointing = False
|
| 811 |
+
|
| 812 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 813 |
+
r"""The forward method of the `EncoderTiny` class."""
|
| 814 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 815 |
+
x = self._gradient_checkpointing_func(self.layers, x)
|
| 816 |
+
|
| 817 |
+
else:
|
| 818 |
+
# scale image from [-1, 1] to [0, 1] to match TAESD convention
|
| 819 |
+
x = self.layers(x.add(1).div(2))
|
| 820 |
+
|
| 821 |
+
return x
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
class DecoderTiny(nn.Module):
|
| 825 |
+
r"""
|
| 826 |
+
The `DecoderTiny` layer is a simpler version of the `Decoder` layer.
|
| 827 |
+
|
| 828 |
+
Args:
|
| 829 |
+
in_channels (`int`):
|
| 830 |
+
The number of input channels.
|
| 831 |
+
out_channels (`int`):
|
| 832 |
+
The number of output channels.
|
| 833 |
+
num_blocks (`Tuple[int, ...]`):
|
| 834 |
+
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
|
| 835 |
+
use.
|
| 836 |
+
block_out_channels (`Tuple[int, ...]`):
|
| 837 |
+
The number of output channels for each block.
|
| 838 |
+
upsampling_scaling_factor (`int`):
|
| 839 |
+
The scaling factor to use for upsampling.
|
| 840 |
+
act_fn (`str`):
|
| 841 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
| 842 |
+
"""
|
| 843 |
+
|
| 844 |
+
def __init__(
|
| 845 |
+
self,
|
| 846 |
+
in_channels: int,
|
| 847 |
+
out_channels: int,
|
| 848 |
+
num_blocks: Tuple[int, ...],
|
| 849 |
+
block_out_channels: Tuple[int, ...],
|
| 850 |
+
upsampling_scaling_factor: int,
|
| 851 |
+
act_fn: str,
|
| 852 |
+
upsample_fn: str,
|
| 853 |
+
):
|
| 854 |
+
super().__init__()
|
| 855 |
+
|
| 856 |
+
layers = [
|
| 857 |
+
nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
|
| 858 |
+
get_activation(act_fn),
|
| 859 |
+
]
|
| 860 |
+
|
| 861 |
+
for i, num_block in enumerate(num_blocks):
|
| 862 |
+
is_final_block = i == (len(num_blocks) - 1)
|
| 863 |
+
num_channels = block_out_channels[i]
|
| 864 |
+
|
| 865 |
+
for _ in range(num_block):
|
| 866 |
+
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
| 867 |
+
|
| 868 |
+
if not is_final_block:
|
| 869 |
+
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
|
| 870 |
+
|
| 871 |
+
conv_out_channel = num_channels if not is_final_block else out_channels
|
| 872 |
+
layers.append(
|
| 873 |
+
nn.Conv2d(
|
| 874 |
+
num_channels,
|
| 875 |
+
conv_out_channel,
|
| 876 |
+
kernel_size=3,
|
| 877 |
+
padding=1,
|
| 878 |
+
bias=is_final_block,
|
| 879 |
+
)
|
| 880 |
+
)
|
| 881 |
+
|
| 882 |
+
self.layers = nn.Sequential(*layers)
|
| 883 |
+
self.gradient_checkpointing = False
|
| 884 |
+
|
| 885 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 886 |
+
r"""The forward method of the `DecoderTiny` class."""
|
| 887 |
+
# Clamp.
|
| 888 |
+
x = torch.tanh(x / 3) * 3
|
| 889 |
+
|
| 890 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 891 |
+
x = self._gradient_checkpointing_func(self.layers, x)
|
| 892 |
+
else:
|
| 893 |
+
x = self.layers(x)
|
| 894 |
+
|
| 895 |
+
# scale image from [0, 1] to [-1, 1] to match diffusers convention
|
| 896 |
+
return x.mul(2).sub(1)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/autoencoders/vq_model.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ...utils import BaseOutput
|
| 22 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
| 23 |
+
from ..autoencoders.vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
|
| 24 |
+
from ..modeling_utils import ModelMixin
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@dataclass
|
| 28 |
+
class VQEncoderOutput(BaseOutput):
|
| 29 |
+
"""
|
| 30 |
+
Output of VQModel encoding method.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
latents (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
| 34 |
+
The encoded output sample from the last layer of the model.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
latents: torch.Tensor
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class VQModel(ModelMixin, ConfigMixin):
|
| 41 |
+
r"""
|
| 42 |
+
A VQ-VAE model for decoding latent representations.
|
| 43 |
+
|
| 44 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
| 45 |
+
for all models (such as downloading or saving).
|
| 46 |
+
|
| 47 |
+
Parameters:
|
| 48 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
| 49 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
| 50 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
| 51 |
+
Tuple of downsample block types.
|
| 52 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
| 53 |
+
Tuple of upsample block types.
|
| 54 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
| 55 |
+
Tuple of block output channels.
|
| 56 |
+
layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block.
|
| 57 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
| 58 |
+
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
|
| 59 |
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
| 60 |
+
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
|
| 61 |
+
norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers.
|
| 62 |
+
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
|
| 63 |
+
scaling_factor (`float`, *optional*, defaults to `0.18215`):
|
| 64 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
| 65 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
| 66 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
| 67 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
| 68 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
| 69 |
+
Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) paper.
|
| 70 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
| 71 |
+
Type of normalization layer to use. Can be one of `"group"` or `"spatial"`.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
_skip_layerwise_casting_patterns = ["quantize"]
|
| 75 |
+
_supports_group_offloading = False
|
| 76 |
+
|
| 77 |
+
@register_to_config
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
in_channels: int = 3,
|
| 81 |
+
out_channels: int = 3,
|
| 82 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
| 83 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
| 84 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
| 85 |
+
layers_per_block: int = 1,
|
| 86 |
+
act_fn: str = "silu",
|
| 87 |
+
latent_channels: int = 3,
|
| 88 |
+
sample_size: int = 32,
|
| 89 |
+
num_vq_embeddings: int = 256,
|
| 90 |
+
norm_num_groups: int = 32,
|
| 91 |
+
vq_embed_dim: Optional[int] = None,
|
| 92 |
+
scaling_factor: float = 0.18215,
|
| 93 |
+
norm_type: str = "group", # group, spatial
|
| 94 |
+
mid_block_add_attention=True,
|
| 95 |
+
lookup_from_codebook=False,
|
| 96 |
+
force_upcast=False,
|
| 97 |
+
):
|
| 98 |
+
super().__init__()
|
| 99 |
+
|
| 100 |
+
# pass init params to Encoder
|
| 101 |
+
self.encoder = Encoder(
|
| 102 |
+
in_channels=in_channels,
|
| 103 |
+
out_channels=latent_channels,
|
| 104 |
+
down_block_types=down_block_types,
|
| 105 |
+
block_out_channels=block_out_channels,
|
| 106 |
+
layers_per_block=layers_per_block,
|
| 107 |
+
act_fn=act_fn,
|
| 108 |
+
norm_num_groups=norm_num_groups,
|
| 109 |
+
double_z=False,
|
| 110 |
+
mid_block_add_attention=mid_block_add_attention,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
|
| 114 |
+
|
| 115 |
+
self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
|
| 116 |
+
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
|
| 117 |
+
self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)
|
| 118 |
+
|
| 119 |
+
# pass init params to Decoder
|
| 120 |
+
self.decoder = Decoder(
|
| 121 |
+
in_channels=latent_channels,
|
| 122 |
+
out_channels=out_channels,
|
| 123 |
+
up_block_types=up_block_types,
|
| 124 |
+
block_out_channels=block_out_channels,
|
| 125 |
+
layers_per_block=layers_per_block,
|
| 126 |
+
act_fn=act_fn,
|
| 127 |
+
norm_num_groups=norm_num_groups,
|
| 128 |
+
norm_type=norm_type,
|
| 129 |
+
mid_block_add_attention=mid_block_add_attention,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
@apply_forward_hook
|
| 133 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput:
|
| 134 |
+
h = self.encoder(x)
|
| 135 |
+
h = self.quant_conv(h)
|
| 136 |
+
|
| 137 |
+
if not return_dict:
|
| 138 |
+
return (h,)
|
| 139 |
+
|
| 140 |
+
return VQEncoderOutput(latents=h)
|
| 141 |
+
|
| 142 |
+
@apply_forward_hook
|
| 143 |
+
def decode(
|
| 144 |
+
self, h: torch.Tensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
|
| 145 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
| 146 |
+
# also go through quantization layer
|
| 147 |
+
if not force_not_quantize:
|
| 148 |
+
quant, commit_loss, _ = self.quantize(h)
|
| 149 |
+
elif self.config.lookup_from_codebook:
|
| 150 |
+
quant = self.quantize.get_codebook_entry(h, shape)
|
| 151 |
+
commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
|
| 152 |
+
else:
|
| 153 |
+
quant = h
|
| 154 |
+
commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
|
| 155 |
+
quant2 = self.post_quant_conv(quant)
|
| 156 |
+
dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
|
| 157 |
+
|
| 158 |
+
if not return_dict:
|
| 159 |
+
return dec, commit_loss
|
| 160 |
+
|
| 161 |
+
return DecoderOutput(sample=dec, commit_loss=commit_loss)
|
| 162 |
+
|
| 163 |
+
def forward(
|
| 164 |
+
self, sample: torch.Tensor, return_dict: bool = True
|
| 165 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor, ...]]:
|
| 166 |
+
r"""
|
| 167 |
+
The [`VQModel`] forward method.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
sample (`torch.Tensor`): Input sample.
|
| 171 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 172 |
+
Whether or not to return a [`models.autoencoders.vq_model.VQEncoderOutput`] instead of a plain tuple.
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
[`~models.autoencoders.vq_model.VQEncoderOutput`] or `tuple`:
|
| 176 |
+
If return_dict is True, a [`~models.autoencoders.vq_model.VQEncoderOutput`] is returned, otherwise a
|
| 177 |
+
plain `tuple` is returned.
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
h = self.encode(sample).latents
|
| 181 |
+
dec = self.decode(h)
|
| 182 |
+
|
| 183 |
+
if not return_dict:
|
| 184 |
+
return dec.sample, dec.commit_loss
|
| 185 |
+
return dec
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/__init__.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ...utils import is_flax_available, is_torch_available
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
if is_torch_available():
|
| 5 |
+
from .controlnet import ControlNetModel, ControlNetOutput
|
| 6 |
+
from .controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel
|
| 7 |
+
from .controlnet_hunyuan import (
|
| 8 |
+
HunyuanControlNetOutput,
|
| 9 |
+
HunyuanDiT2DControlNetModel,
|
| 10 |
+
HunyuanDiT2DMultiControlNetModel,
|
| 11 |
+
)
|
| 12 |
+
from .controlnet_qwenimage import QwenImageControlNetModel, QwenImageMultiControlNetModel
|
| 13 |
+
from .controlnet_sana import SanaControlNetModel
|
| 14 |
+
from .controlnet_sd3 import SD3ControlNetModel, SD3ControlNetOutput, SD3MultiControlNetModel
|
| 15 |
+
from .controlnet_sparsectrl import (
|
| 16 |
+
SparseControlNetConditioningEmbedding,
|
| 17 |
+
SparseControlNetModel,
|
| 18 |
+
SparseControlNetOutput,
|
| 19 |
+
)
|
| 20 |
+
from .controlnet_union import ControlNetUnionModel
|
| 21 |
+
from .controlnet_xs import ControlNetXSAdapter, ControlNetXSOutput, UNetControlNetXSModel
|
| 22 |
+
from .multicontrolnet import MultiControlNetModel
|
| 23 |
+
from .multicontrolnet_union import MultiControlNetUnionModel
|
| 24 |
+
|
| 25 |
+
if is_flax_available():
|
| 26 |
+
from .controlnet_flax import FlaxControlNetModel
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet.py
ADDED
|
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders.single_file_model import FromOriginalModelMixin
|
| 23 |
+
from ...utils import BaseOutput, logging
|
| 24 |
+
from ..attention_processor import (
|
| 25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 26 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 27 |
+
AttentionProcessor,
|
| 28 |
+
AttnAddedKVProcessor,
|
| 29 |
+
AttnProcessor,
|
| 30 |
+
)
|
| 31 |
+
from ..embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
| 32 |
+
from ..modeling_utils import ModelMixin
|
| 33 |
+
from ..unets.unet_2d_blocks import (
|
| 34 |
+
UNetMidBlock2D,
|
| 35 |
+
UNetMidBlock2DCrossAttn,
|
| 36 |
+
get_down_block,
|
| 37 |
+
)
|
| 38 |
+
from ..unets.unet_2d_condition import UNet2DConditionModel
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@dataclass
|
| 45 |
+
class ControlNetOutput(BaseOutput):
|
| 46 |
+
"""
|
| 47 |
+
The output of [`ControlNetModel`].
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
| 51 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
| 52 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
| 53 |
+
used to condition the original UNet's downsampling activations.
|
| 54 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
| 55 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
| 56 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
| 57 |
+
Output can be used to condition the original UNet's middle block activation.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
| 61 |
+
mid_block_res_sample: torch.Tensor
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class ControlNetConditioningEmbedding(nn.Module):
|
| 65 |
+
"""
|
| 66 |
+
Quoting from https://huggingface.co/papers/2302.05543: "Stable Diffusion uses a pre-processing method similar to
|
| 67 |
+
VQ-GAN [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
| 68 |
+
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
| 69 |
+
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
| 70 |
+
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
| 71 |
+
model) to encode image-space conditions ... into feature maps ..."
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
conditioning_embedding_channels: int,
|
| 77 |
+
conditioning_channels: int = 3,
|
| 78 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 79 |
+
):
|
| 80 |
+
super().__init__()
|
| 81 |
+
|
| 82 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 83 |
+
|
| 84 |
+
self.blocks = nn.ModuleList([])
|
| 85 |
+
|
| 86 |
+
for i in range(len(block_out_channels) - 1):
|
| 87 |
+
channel_in = block_out_channels[i]
|
| 88 |
+
channel_out = block_out_channels[i + 1]
|
| 89 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 90 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
| 91 |
+
|
| 92 |
+
self.conv_out = zero_module(
|
| 93 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
def forward(self, conditioning):
|
| 97 |
+
embedding = self.conv_in(conditioning)
|
| 98 |
+
embedding = F.silu(embedding)
|
| 99 |
+
|
| 100 |
+
for block in self.blocks:
|
| 101 |
+
embedding = block(embedding)
|
| 102 |
+
embedding = F.silu(embedding)
|
| 103 |
+
|
| 104 |
+
embedding = self.conv_out(embedding)
|
| 105 |
+
|
| 106 |
+
return embedding
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 110 |
+
"""
|
| 111 |
+
A ControlNet model.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
in_channels (`int`, defaults to 4):
|
| 115 |
+
The number of channels in the input sample.
|
| 116 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 117 |
+
Whether to flip the sin to cos in the time embedding.
|
| 118 |
+
freq_shift (`int`, defaults to 0):
|
| 119 |
+
The frequency shift to apply to the time embedding.
|
| 120 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 121 |
+
The tuple of downsample blocks to use.
|
| 122 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
| 123 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
| 124 |
+
The tuple of output channels for each block.
|
| 125 |
+
layers_per_block (`int`, defaults to 2):
|
| 126 |
+
The number of layers per block.
|
| 127 |
+
downsample_padding (`int`, defaults to 1):
|
| 128 |
+
The padding to use for the downsampling convolution.
|
| 129 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
| 130 |
+
The scale factor to use for the mid block.
|
| 131 |
+
act_fn (`str`, defaults to "silu"):
|
| 132 |
+
The activation function to use.
|
| 133 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 134 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
| 135 |
+
in post-processing.
|
| 136 |
+
norm_eps (`float`, defaults to 1e-5):
|
| 137 |
+
The epsilon to use for the normalization.
|
| 138 |
+
cross_attention_dim (`int`, defaults to 1280):
|
| 139 |
+
The dimension of the cross attention features.
|
| 140 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 141 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 142 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 143 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 144 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 145 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 146 |
+
dimension to `cross_attention_dim`.
|
| 147 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 148 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 149 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 150 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
| 151 |
+
The dimension of the attention heads.
|
| 152 |
+
use_linear_projection (`bool`, defaults to `False`):
|
| 153 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 154 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
| 155 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 156 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 157 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 158 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 159 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
| 160 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 161 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 162 |
+
upcast_attention (`bool`, defaults to `False`):
|
| 163 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
| 164 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
| 165 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
| 166 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
| 167 |
+
`class_embed_type="projection"`.
|
| 168 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 169 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 170 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
| 171 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
| 172 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
| 173 |
+
TODO(Patrick) - unused parameter.
|
| 174 |
+
addition_embed_type_num_heads (`int`, defaults to 64):
|
| 175 |
+
The number of heads to use for the `TextTimeEmbedding` layer.
|
| 176 |
+
"""
|
| 177 |
+
|
| 178 |
+
_supports_gradient_checkpointing = True
|
| 179 |
+
|
| 180 |
+
@register_to_config
|
| 181 |
+
def __init__(
|
| 182 |
+
self,
|
| 183 |
+
in_channels: int = 4,
|
| 184 |
+
conditioning_channels: int = 3,
|
| 185 |
+
flip_sin_to_cos: bool = True,
|
| 186 |
+
freq_shift: int = 0,
|
| 187 |
+
down_block_types: Tuple[str, ...] = (
|
| 188 |
+
"CrossAttnDownBlock2D",
|
| 189 |
+
"CrossAttnDownBlock2D",
|
| 190 |
+
"CrossAttnDownBlock2D",
|
| 191 |
+
"DownBlock2D",
|
| 192 |
+
),
|
| 193 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
| 194 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 195 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 196 |
+
layers_per_block: int = 2,
|
| 197 |
+
downsample_padding: int = 1,
|
| 198 |
+
mid_block_scale_factor: float = 1,
|
| 199 |
+
act_fn: str = "silu",
|
| 200 |
+
norm_num_groups: Optional[int] = 32,
|
| 201 |
+
norm_eps: float = 1e-5,
|
| 202 |
+
cross_attention_dim: int = 1280,
|
| 203 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
| 204 |
+
encoder_hid_dim: Optional[int] = None,
|
| 205 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 206 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
| 207 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
| 208 |
+
use_linear_projection: bool = False,
|
| 209 |
+
class_embed_type: Optional[str] = None,
|
| 210 |
+
addition_embed_type: Optional[str] = None,
|
| 211 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 212 |
+
num_class_embeds: Optional[int] = None,
|
| 213 |
+
upcast_attention: bool = False,
|
| 214 |
+
resnet_time_scale_shift: str = "default",
|
| 215 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 216 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 217 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 218 |
+
global_pool_conditions: bool = False,
|
| 219 |
+
addition_embed_type_num_heads: int = 64,
|
| 220 |
+
):
|
| 221 |
+
super().__init__()
|
| 222 |
+
|
| 223 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 224 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 225 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 226 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 227 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 228 |
+
# which is why we correct for the naming here.
|
| 229 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 230 |
+
|
| 231 |
+
# Check inputs
|
| 232 |
+
if len(block_out_channels) != len(down_block_types):
|
| 233 |
+
raise ValueError(
|
| 234 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 238 |
+
raise ValueError(
|
| 239 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 243 |
+
raise ValueError(
|
| 244 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
if isinstance(transformer_layers_per_block, int):
|
| 248 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 249 |
+
|
| 250 |
+
# input
|
| 251 |
+
conv_in_kernel = 3
|
| 252 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 253 |
+
self.conv_in = nn.Conv2d(
|
| 254 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# time
|
| 258 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 259 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 260 |
+
timestep_input_dim = block_out_channels[0]
|
| 261 |
+
self.time_embedding = TimestepEmbedding(
|
| 262 |
+
timestep_input_dim,
|
| 263 |
+
time_embed_dim,
|
| 264 |
+
act_fn=act_fn,
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
| 268 |
+
encoder_hid_dim_type = "text_proj"
|
| 269 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
| 270 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
| 271 |
+
|
| 272 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
| 273 |
+
raise ValueError(
|
| 274 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
if encoder_hid_dim_type == "text_proj":
|
| 278 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
| 279 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
| 280 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 281 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 282 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
| 283 |
+
self.encoder_hid_proj = TextImageProjection(
|
| 284 |
+
text_embed_dim=encoder_hid_dim,
|
| 285 |
+
image_embed_dim=cross_attention_dim,
|
| 286 |
+
cross_attention_dim=cross_attention_dim,
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
elif encoder_hid_dim_type is not None:
|
| 290 |
+
raise ValueError(
|
| 291 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
| 292 |
+
)
|
| 293 |
+
else:
|
| 294 |
+
self.encoder_hid_proj = None
|
| 295 |
+
|
| 296 |
+
# class embedding
|
| 297 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 298 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 299 |
+
elif class_embed_type == "timestep":
|
| 300 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 301 |
+
elif class_embed_type == "identity":
|
| 302 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 303 |
+
elif class_embed_type == "projection":
|
| 304 |
+
if projection_class_embeddings_input_dim is None:
|
| 305 |
+
raise ValueError(
|
| 306 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 307 |
+
)
|
| 308 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 309 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 310 |
+
# 2. it projects from an arbitrary input dimension.
|
| 311 |
+
#
|
| 312 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 313 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 314 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 315 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 316 |
+
else:
|
| 317 |
+
self.class_embedding = None
|
| 318 |
+
|
| 319 |
+
if addition_embed_type == "text":
|
| 320 |
+
if encoder_hid_dim is not None:
|
| 321 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 322 |
+
else:
|
| 323 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 324 |
+
|
| 325 |
+
self.add_embedding = TextTimeEmbedding(
|
| 326 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 327 |
+
)
|
| 328 |
+
elif addition_embed_type == "text_image":
|
| 329 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 330 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 331 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
| 332 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 333 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 334 |
+
)
|
| 335 |
+
elif addition_embed_type == "text_time":
|
| 336 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 337 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 338 |
+
|
| 339 |
+
elif addition_embed_type is not None:
|
| 340 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 341 |
+
|
| 342 |
+
# control net conditioning embedding
|
| 343 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 344 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 345 |
+
block_out_channels=conditioning_embedding_out_channels,
|
| 346 |
+
conditioning_channels=conditioning_channels,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
self.down_blocks = nn.ModuleList([])
|
| 350 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
| 351 |
+
|
| 352 |
+
if isinstance(only_cross_attention, bool):
|
| 353 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 354 |
+
|
| 355 |
+
if isinstance(attention_head_dim, int):
|
| 356 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 357 |
+
|
| 358 |
+
if isinstance(num_attention_heads, int):
|
| 359 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 360 |
+
|
| 361 |
+
# down
|
| 362 |
+
output_channel = block_out_channels[0]
|
| 363 |
+
|
| 364 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 365 |
+
controlnet_block = zero_module(controlnet_block)
|
| 366 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 367 |
+
|
| 368 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 369 |
+
input_channel = output_channel
|
| 370 |
+
output_channel = block_out_channels[i]
|
| 371 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 372 |
+
|
| 373 |
+
down_block = get_down_block(
|
| 374 |
+
down_block_type,
|
| 375 |
+
num_layers=layers_per_block,
|
| 376 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 377 |
+
in_channels=input_channel,
|
| 378 |
+
out_channels=output_channel,
|
| 379 |
+
temb_channels=time_embed_dim,
|
| 380 |
+
add_downsample=not is_final_block,
|
| 381 |
+
resnet_eps=norm_eps,
|
| 382 |
+
resnet_act_fn=act_fn,
|
| 383 |
+
resnet_groups=norm_num_groups,
|
| 384 |
+
cross_attention_dim=cross_attention_dim,
|
| 385 |
+
num_attention_heads=num_attention_heads[i],
|
| 386 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 387 |
+
downsample_padding=downsample_padding,
|
| 388 |
+
use_linear_projection=use_linear_projection,
|
| 389 |
+
only_cross_attention=only_cross_attention[i],
|
| 390 |
+
upcast_attention=upcast_attention,
|
| 391 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 392 |
+
)
|
| 393 |
+
self.down_blocks.append(down_block)
|
| 394 |
+
|
| 395 |
+
for _ in range(layers_per_block):
|
| 396 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 397 |
+
controlnet_block = zero_module(controlnet_block)
|
| 398 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 399 |
+
|
| 400 |
+
if not is_final_block:
|
| 401 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 402 |
+
controlnet_block = zero_module(controlnet_block)
|
| 403 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 404 |
+
|
| 405 |
+
# mid
|
| 406 |
+
mid_block_channel = block_out_channels[-1]
|
| 407 |
+
|
| 408 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
| 409 |
+
controlnet_block = zero_module(controlnet_block)
|
| 410 |
+
self.controlnet_mid_block = controlnet_block
|
| 411 |
+
|
| 412 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
| 413 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 414 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 415 |
+
in_channels=mid_block_channel,
|
| 416 |
+
temb_channels=time_embed_dim,
|
| 417 |
+
resnet_eps=norm_eps,
|
| 418 |
+
resnet_act_fn=act_fn,
|
| 419 |
+
output_scale_factor=mid_block_scale_factor,
|
| 420 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 421 |
+
cross_attention_dim=cross_attention_dim,
|
| 422 |
+
num_attention_heads=num_attention_heads[-1],
|
| 423 |
+
resnet_groups=norm_num_groups,
|
| 424 |
+
use_linear_projection=use_linear_projection,
|
| 425 |
+
upcast_attention=upcast_attention,
|
| 426 |
+
)
|
| 427 |
+
elif mid_block_type == "UNetMidBlock2D":
|
| 428 |
+
self.mid_block = UNetMidBlock2D(
|
| 429 |
+
in_channels=block_out_channels[-1],
|
| 430 |
+
temb_channels=time_embed_dim,
|
| 431 |
+
num_layers=0,
|
| 432 |
+
resnet_eps=norm_eps,
|
| 433 |
+
resnet_act_fn=act_fn,
|
| 434 |
+
output_scale_factor=mid_block_scale_factor,
|
| 435 |
+
resnet_groups=norm_num_groups,
|
| 436 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 437 |
+
add_attention=False,
|
| 438 |
+
)
|
| 439 |
+
else:
|
| 440 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
| 441 |
+
|
| 442 |
+
@classmethod
|
| 443 |
+
def from_unet(
|
| 444 |
+
cls,
|
| 445 |
+
unet: UNet2DConditionModel,
|
| 446 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 447 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 448 |
+
load_weights_from_unet: bool = True,
|
| 449 |
+
conditioning_channels: int = 3,
|
| 450 |
+
):
|
| 451 |
+
r"""
|
| 452 |
+
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
| 453 |
+
|
| 454 |
+
Parameters:
|
| 455 |
+
unet (`UNet2DConditionModel`):
|
| 456 |
+
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
| 457 |
+
where applicable.
|
| 458 |
+
"""
|
| 459 |
+
transformer_layers_per_block = (
|
| 460 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
| 461 |
+
)
|
| 462 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
| 463 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
| 464 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
| 465 |
+
addition_time_embed_dim = (
|
| 466 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
controlnet = cls(
|
| 470 |
+
encoder_hid_dim=encoder_hid_dim,
|
| 471 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
| 472 |
+
addition_embed_type=addition_embed_type,
|
| 473 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
| 474 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 475 |
+
in_channels=unet.config.in_channels,
|
| 476 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
| 477 |
+
freq_shift=unet.config.freq_shift,
|
| 478 |
+
down_block_types=unet.config.down_block_types,
|
| 479 |
+
only_cross_attention=unet.config.only_cross_attention,
|
| 480 |
+
block_out_channels=unet.config.block_out_channels,
|
| 481 |
+
layers_per_block=unet.config.layers_per_block,
|
| 482 |
+
downsample_padding=unet.config.downsample_padding,
|
| 483 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
| 484 |
+
act_fn=unet.config.act_fn,
|
| 485 |
+
norm_num_groups=unet.config.norm_num_groups,
|
| 486 |
+
norm_eps=unet.config.norm_eps,
|
| 487 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 488 |
+
attention_head_dim=unet.config.attention_head_dim,
|
| 489 |
+
num_attention_heads=unet.config.num_attention_heads,
|
| 490 |
+
use_linear_projection=unet.config.use_linear_projection,
|
| 491 |
+
class_embed_type=unet.config.class_embed_type,
|
| 492 |
+
num_class_embeds=unet.config.num_class_embeds,
|
| 493 |
+
upcast_attention=unet.config.upcast_attention,
|
| 494 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
| 495 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
| 496 |
+
mid_block_type=unet.config.mid_block_type,
|
| 497 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
| 498 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 499 |
+
conditioning_channels=conditioning_channels,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
if load_weights_from_unet:
|
| 503 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
| 504 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
| 505 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
| 506 |
+
|
| 507 |
+
if controlnet.class_embedding:
|
| 508 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
| 509 |
+
|
| 510 |
+
if hasattr(controlnet, "add_embedding"):
|
| 511 |
+
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
| 512 |
+
|
| 513 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
| 514 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
| 515 |
+
|
| 516 |
+
return controlnet
|
| 517 |
+
|
| 518 |
+
@property
|
| 519 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 520 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 521 |
+
r"""
|
| 522 |
+
Returns:
|
| 523 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 524 |
+
indexed by its weight name.
|
| 525 |
+
"""
|
| 526 |
+
# set recursively
|
| 527 |
+
processors = {}
|
| 528 |
+
|
| 529 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 530 |
+
if hasattr(module, "get_processor"):
|
| 531 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 532 |
+
|
| 533 |
+
for sub_name, child in module.named_children():
|
| 534 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 535 |
+
|
| 536 |
+
return processors
|
| 537 |
+
|
| 538 |
+
for name, module in self.named_children():
|
| 539 |
+
fn_recursive_add_processors(name, module, processors)
|
| 540 |
+
|
| 541 |
+
return processors
|
| 542 |
+
|
| 543 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 544 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 545 |
+
r"""
|
| 546 |
+
Sets the attention processor to use to compute attention.
|
| 547 |
+
|
| 548 |
+
Parameters:
|
| 549 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 550 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 551 |
+
for **all** `Attention` layers.
|
| 552 |
+
|
| 553 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 554 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
count = len(self.attn_processors.keys())
|
| 558 |
+
|
| 559 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 560 |
+
raise ValueError(
|
| 561 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 562 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 566 |
+
if hasattr(module, "set_processor"):
|
| 567 |
+
if not isinstance(processor, dict):
|
| 568 |
+
module.set_processor(processor)
|
| 569 |
+
else:
|
| 570 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 571 |
+
|
| 572 |
+
for sub_name, child in module.named_children():
|
| 573 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 574 |
+
|
| 575 |
+
for name, module in self.named_children():
|
| 576 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 577 |
+
|
| 578 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 579 |
+
def set_default_attn_processor(self):
|
| 580 |
+
"""
|
| 581 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 582 |
+
"""
|
| 583 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 584 |
+
processor = AttnAddedKVProcessor()
|
| 585 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 586 |
+
processor = AttnProcessor()
|
| 587 |
+
else:
|
| 588 |
+
raise ValueError(
|
| 589 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
self.set_attn_processor(processor)
|
| 593 |
+
|
| 594 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
| 595 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
| 596 |
+
r"""
|
| 597 |
+
Enable sliced attention computation.
|
| 598 |
+
|
| 599 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 600 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 601 |
+
|
| 602 |
+
Args:
|
| 603 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 604 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 605 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 606 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 607 |
+
must be a multiple of `slice_size`.
|
| 608 |
+
"""
|
| 609 |
+
sliceable_head_dims = []
|
| 610 |
+
|
| 611 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 612 |
+
if hasattr(module, "set_attention_slice"):
|
| 613 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 614 |
+
|
| 615 |
+
for child in module.children():
|
| 616 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 617 |
+
|
| 618 |
+
# retrieve number of attention layers
|
| 619 |
+
for module in self.children():
|
| 620 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 621 |
+
|
| 622 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 623 |
+
|
| 624 |
+
if slice_size == "auto":
|
| 625 |
+
# half the attention head size is usually a good trade-off between
|
| 626 |
+
# speed and memory
|
| 627 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 628 |
+
elif slice_size == "max":
|
| 629 |
+
# make smallest slice possible
|
| 630 |
+
slice_size = num_sliceable_layers * [1]
|
| 631 |
+
|
| 632 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 633 |
+
|
| 634 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 635 |
+
raise ValueError(
|
| 636 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 637 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
+
for i in range(len(slice_size)):
|
| 641 |
+
size = slice_size[i]
|
| 642 |
+
dim = sliceable_head_dims[i]
|
| 643 |
+
if size is not None and size > dim:
|
| 644 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 645 |
+
|
| 646 |
+
# Recursively walk through all the children.
|
| 647 |
+
# Any children which exposes the set_attention_slice method
|
| 648 |
+
# gets the message
|
| 649 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 650 |
+
if hasattr(module, "set_attention_slice"):
|
| 651 |
+
module.set_attention_slice(slice_size.pop())
|
| 652 |
+
|
| 653 |
+
for child in module.children():
|
| 654 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 655 |
+
|
| 656 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 657 |
+
for module in self.children():
|
| 658 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 659 |
+
|
| 660 |
+
def forward(
|
| 661 |
+
self,
|
| 662 |
+
sample: torch.Tensor,
|
| 663 |
+
timestep: Union[torch.Tensor, float, int],
|
| 664 |
+
encoder_hidden_states: torch.Tensor,
|
| 665 |
+
controlnet_cond: torch.Tensor,
|
| 666 |
+
conditioning_scale: float = 1.0,
|
| 667 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 668 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 669 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 670 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 671 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 672 |
+
guess_mode: bool = False,
|
| 673 |
+
return_dict: bool = True,
|
| 674 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
| 675 |
+
"""
|
| 676 |
+
The [`ControlNetModel`] forward method.
|
| 677 |
+
|
| 678 |
+
Args:
|
| 679 |
+
sample (`torch.Tensor`):
|
| 680 |
+
The noisy input tensor.
|
| 681 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 682 |
+
The number of timesteps to denoise an input.
|
| 683 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 684 |
+
The encoder hidden states.
|
| 685 |
+
controlnet_cond (`torch.Tensor`):
|
| 686 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 687 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 688 |
+
The scale factor for ControlNet outputs.
|
| 689 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 690 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 691 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 692 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 693 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 694 |
+
embeddings.
|
| 695 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 696 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 697 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 698 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 699 |
+
added_cond_kwargs (`dict`):
|
| 700 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 701 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 702 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 703 |
+
guess_mode (`bool`, defaults to `False`):
|
| 704 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
| 705 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
| 706 |
+
return_dict (`bool`, defaults to `True`):
|
| 707 |
+
Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
|
| 708 |
+
tuple.
|
| 709 |
+
|
| 710 |
+
Returns:
|
| 711 |
+
[`~models.controlnets.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 712 |
+
If `return_dict` is `True`, a [`~models.controlnets.controlnet.ControlNetOutput`] is returned,
|
| 713 |
+
otherwise a tuple is returned where the first element is the sample tensor.
|
| 714 |
+
"""
|
| 715 |
+
# check channel order
|
| 716 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
| 717 |
+
|
| 718 |
+
if channel_order == "rgb":
|
| 719 |
+
# in rgb order by default
|
| 720 |
+
...
|
| 721 |
+
elif channel_order == "bgr":
|
| 722 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
| 723 |
+
else:
|
| 724 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
| 725 |
+
|
| 726 |
+
# prepare attention_mask
|
| 727 |
+
if attention_mask is not None:
|
| 728 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 729 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 730 |
+
|
| 731 |
+
# 1. time
|
| 732 |
+
timesteps = timestep
|
| 733 |
+
if not torch.is_tensor(timesteps):
|
| 734 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 735 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 736 |
+
is_mps = sample.device.type == "mps"
|
| 737 |
+
is_npu = sample.device.type == "npu"
|
| 738 |
+
if isinstance(timestep, float):
|
| 739 |
+
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
| 740 |
+
else:
|
| 741 |
+
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
|
| 742 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 743 |
+
elif len(timesteps.shape) == 0:
|
| 744 |
+
timesteps = timesteps[None].to(sample.device)
|
| 745 |
+
|
| 746 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 747 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 748 |
+
|
| 749 |
+
t_emb = self.time_proj(timesteps)
|
| 750 |
+
|
| 751 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 752 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 753 |
+
# there might be better ways to encapsulate this.
|
| 754 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 755 |
+
|
| 756 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 757 |
+
aug_emb = None
|
| 758 |
+
|
| 759 |
+
if self.class_embedding is not None:
|
| 760 |
+
if class_labels is None:
|
| 761 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 762 |
+
|
| 763 |
+
if self.config.class_embed_type == "timestep":
|
| 764 |
+
class_labels = self.time_proj(class_labels)
|
| 765 |
+
|
| 766 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 767 |
+
emb = emb + class_emb
|
| 768 |
+
|
| 769 |
+
if self.config.addition_embed_type is not None:
|
| 770 |
+
if self.config.addition_embed_type == "text":
|
| 771 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 772 |
+
|
| 773 |
+
elif self.config.addition_embed_type == "text_time":
|
| 774 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 775 |
+
raise ValueError(
|
| 776 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 777 |
+
)
|
| 778 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 779 |
+
if "time_ids" not in added_cond_kwargs:
|
| 780 |
+
raise ValueError(
|
| 781 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 782 |
+
)
|
| 783 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 784 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 785 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 786 |
+
|
| 787 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 788 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 789 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 790 |
+
|
| 791 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 792 |
+
|
| 793 |
+
# 2. pre-process
|
| 794 |
+
sample = self.conv_in(sample)
|
| 795 |
+
|
| 796 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
| 797 |
+
sample = sample + controlnet_cond
|
| 798 |
+
|
| 799 |
+
# 3. down
|
| 800 |
+
down_block_res_samples = (sample,)
|
| 801 |
+
for downsample_block in self.down_blocks:
|
| 802 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 803 |
+
sample, res_samples = downsample_block(
|
| 804 |
+
hidden_states=sample,
|
| 805 |
+
temb=emb,
|
| 806 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 807 |
+
attention_mask=attention_mask,
|
| 808 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 809 |
+
)
|
| 810 |
+
else:
|
| 811 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 812 |
+
|
| 813 |
+
down_block_res_samples += res_samples
|
| 814 |
+
|
| 815 |
+
# 4. mid
|
| 816 |
+
if self.mid_block is not None:
|
| 817 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
| 818 |
+
sample = self.mid_block(
|
| 819 |
+
sample,
|
| 820 |
+
emb,
|
| 821 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 822 |
+
attention_mask=attention_mask,
|
| 823 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 824 |
+
)
|
| 825 |
+
else:
|
| 826 |
+
sample = self.mid_block(sample, emb)
|
| 827 |
+
|
| 828 |
+
# 5. Control net blocks
|
| 829 |
+
|
| 830 |
+
controlnet_down_block_res_samples = ()
|
| 831 |
+
|
| 832 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
| 833 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
| 834 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
| 835 |
+
|
| 836 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
| 837 |
+
|
| 838 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
| 839 |
+
|
| 840 |
+
# 6. scaling
|
| 841 |
+
if guess_mode and not self.config.global_pool_conditions:
|
| 842 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
| 843 |
+
scales = scales * conditioning_scale
|
| 844 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
| 845 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
| 846 |
+
else:
|
| 847 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
| 848 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
| 849 |
+
|
| 850 |
+
if self.config.global_pool_conditions:
|
| 851 |
+
down_block_res_samples = [
|
| 852 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
| 853 |
+
]
|
| 854 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
| 855 |
+
|
| 856 |
+
if not return_dict:
|
| 857 |
+
return (down_block_res_samples, mid_block_res_sample)
|
| 858 |
+
|
| 859 |
+
return ControlNetOutput(
|
| 860 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
def zero_module(module):
|
| 865 |
+
for p in module.parameters():
|
| 866 |
+
nn.init.zeros_(p)
|
| 867 |
+
return module
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_flax.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Optional, Tuple, Union
|
| 15 |
+
|
| 16 |
+
import flax
|
| 17 |
+
import flax.linen as nn
|
| 18 |
+
import jax
|
| 19 |
+
import jax.numpy as jnp
|
| 20 |
+
from flax.core.frozen_dict import FrozenDict
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, flax_register_to_config
|
| 23 |
+
from ...utils import BaseOutput, logging
|
| 24 |
+
from ..embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
|
| 25 |
+
from ..modeling_flax_utils import FlaxModelMixin
|
| 26 |
+
from ..unets.unet_2d_blocks_flax import (
|
| 27 |
+
FlaxCrossAttnDownBlock2D,
|
| 28 |
+
FlaxDownBlock2D,
|
| 29 |
+
FlaxUNetMidBlock2DCrossAttn,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@flax.struct.dataclass
|
| 37 |
+
class FlaxControlNetOutput(BaseOutput):
|
| 38 |
+
"""
|
| 39 |
+
The output of [`FlaxControlNetModel`].
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
down_block_res_samples (`jnp.ndarray`):
|
| 43 |
+
mid_block_res_sample (`jnp.ndarray`):
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
down_block_res_samples: jnp.ndarray
|
| 47 |
+
mid_block_res_sample: jnp.ndarray
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class FlaxControlNetConditioningEmbedding(nn.Module):
|
| 51 |
+
conditioning_embedding_channels: int
|
| 52 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
|
| 53 |
+
dtype: jnp.dtype = jnp.float32
|
| 54 |
+
|
| 55 |
+
def setup(self) -> None:
|
| 56 |
+
logger.warning(
|
| 57 |
+
"Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
|
| 58 |
+
"recommend migrating to PyTorch classes or pinning your version of Diffusers."
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
self.conv_in = nn.Conv(
|
| 62 |
+
self.block_out_channels[0],
|
| 63 |
+
kernel_size=(3, 3),
|
| 64 |
+
padding=((1, 1), (1, 1)),
|
| 65 |
+
dtype=self.dtype,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
blocks = []
|
| 69 |
+
for i in range(len(self.block_out_channels) - 1):
|
| 70 |
+
channel_in = self.block_out_channels[i]
|
| 71 |
+
channel_out = self.block_out_channels[i + 1]
|
| 72 |
+
conv1 = nn.Conv(
|
| 73 |
+
channel_in,
|
| 74 |
+
kernel_size=(3, 3),
|
| 75 |
+
padding=((1, 1), (1, 1)),
|
| 76 |
+
dtype=self.dtype,
|
| 77 |
+
)
|
| 78 |
+
blocks.append(conv1)
|
| 79 |
+
conv2 = nn.Conv(
|
| 80 |
+
channel_out,
|
| 81 |
+
kernel_size=(3, 3),
|
| 82 |
+
strides=(2, 2),
|
| 83 |
+
padding=((1, 1), (1, 1)),
|
| 84 |
+
dtype=self.dtype,
|
| 85 |
+
)
|
| 86 |
+
blocks.append(conv2)
|
| 87 |
+
self.blocks = blocks
|
| 88 |
+
|
| 89 |
+
self.conv_out = nn.Conv(
|
| 90 |
+
self.conditioning_embedding_channels,
|
| 91 |
+
kernel_size=(3, 3),
|
| 92 |
+
padding=((1, 1), (1, 1)),
|
| 93 |
+
kernel_init=nn.initializers.zeros_init(),
|
| 94 |
+
bias_init=nn.initializers.zeros_init(),
|
| 95 |
+
dtype=self.dtype,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray:
|
| 99 |
+
embedding = self.conv_in(conditioning)
|
| 100 |
+
embedding = nn.silu(embedding)
|
| 101 |
+
|
| 102 |
+
for block in self.blocks:
|
| 103 |
+
embedding = block(embedding)
|
| 104 |
+
embedding = nn.silu(embedding)
|
| 105 |
+
|
| 106 |
+
embedding = self.conv_out(embedding)
|
| 107 |
+
|
| 108 |
+
return embedding
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@flax_register_to_config
|
| 112 |
+
class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
|
| 113 |
+
r"""
|
| 114 |
+
A ControlNet model.
|
| 115 |
+
|
| 116 |
+
This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods
|
| 117 |
+
implemented for all models (such as downloading or saving).
|
| 118 |
+
|
| 119 |
+
This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
|
| 120 |
+
subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
|
| 121 |
+
general usage and behavior.
|
| 122 |
+
|
| 123 |
+
Inherent JAX features such as the following are supported:
|
| 124 |
+
|
| 125 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
| 126 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
| 127 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
| 128 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
| 129 |
+
|
| 130 |
+
Parameters:
|
| 131 |
+
sample_size (`int`, *optional*):
|
| 132 |
+
The size of the input sample.
|
| 133 |
+
in_channels (`int`, *optional*, defaults to 4):
|
| 134 |
+
The number of channels in the input sample.
|
| 135 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
|
| 136 |
+
The tuple of downsample blocks to use.
|
| 137 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
| 138 |
+
The tuple of output channels for each block.
|
| 139 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
| 140 |
+
The number of layers per block.
|
| 141 |
+
attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
|
| 142 |
+
The dimension of the attention heads.
|
| 143 |
+
num_attention_heads (`int` or `Tuple[int]`, *optional*):
|
| 144 |
+
The number of attention heads.
|
| 145 |
+
cross_attention_dim (`int`, *optional*, defaults to 768):
|
| 146 |
+
The dimension of the cross attention features.
|
| 147 |
+
dropout (`float`, *optional*, defaults to 0):
|
| 148 |
+
Dropout probability for down, up and bottleneck blocks.
|
| 149 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
| 150 |
+
Whether to flip the sin to cos in the time embedding.
|
| 151 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
| 152 |
+
controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`):
|
| 153 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 154 |
+
conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`):
|
| 155 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
sample_size: int = 32
|
| 159 |
+
in_channels: int = 4
|
| 160 |
+
down_block_types: Tuple[str, ...] = (
|
| 161 |
+
"CrossAttnDownBlock2D",
|
| 162 |
+
"CrossAttnDownBlock2D",
|
| 163 |
+
"CrossAttnDownBlock2D",
|
| 164 |
+
"DownBlock2D",
|
| 165 |
+
)
|
| 166 |
+
only_cross_attention: Union[bool, Tuple[bool, ...]] = False
|
| 167 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
|
| 168 |
+
layers_per_block: int = 2
|
| 169 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8
|
| 170 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None
|
| 171 |
+
cross_attention_dim: int = 1280
|
| 172 |
+
dropout: float = 0.0
|
| 173 |
+
use_linear_projection: bool = False
|
| 174 |
+
dtype: jnp.dtype = jnp.float32
|
| 175 |
+
flip_sin_to_cos: bool = True
|
| 176 |
+
freq_shift: int = 0
|
| 177 |
+
controlnet_conditioning_channel_order: str = "rgb"
|
| 178 |
+
conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
|
| 179 |
+
|
| 180 |
+
def init_weights(self, rng: jax.Array) -> FrozenDict:
|
| 181 |
+
# init input tensors
|
| 182 |
+
sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
|
| 183 |
+
sample = jnp.zeros(sample_shape, dtype=jnp.float32)
|
| 184 |
+
timesteps = jnp.ones((1,), dtype=jnp.int32)
|
| 185 |
+
encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
|
| 186 |
+
controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
|
| 187 |
+
controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)
|
| 188 |
+
|
| 189 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
| 190 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 191 |
+
|
| 192 |
+
return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]
|
| 193 |
+
|
| 194 |
+
def setup(self) -> None:
|
| 195 |
+
logger.warning(
|
| 196 |
+
"Flax classes are deprecated and will be removed in Diffusers v1.0.0. We "
|
| 197 |
+
"recommend migrating to PyTorch classes or pinning your version of Diffusers."
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
block_out_channels = self.block_out_channels
|
| 201 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 202 |
+
|
| 203 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 204 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 205 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 206 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 207 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 208 |
+
# which is why we correct for the naming here.
|
| 209 |
+
num_attention_heads = self.num_attention_heads or self.attention_head_dim
|
| 210 |
+
|
| 211 |
+
# input
|
| 212 |
+
self.conv_in = nn.Conv(
|
| 213 |
+
block_out_channels[0],
|
| 214 |
+
kernel_size=(3, 3),
|
| 215 |
+
strides=(1, 1),
|
| 216 |
+
padding=((1, 1), (1, 1)),
|
| 217 |
+
dtype=self.dtype,
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# time
|
| 221 |
+
self.time_proj = FlaxTimesteps(
|
| 222 |
+
block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
|
| 223 |
+
)
|
| 224 |
+
self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
|
| 225 |
+
|
| 226 |
+
self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding(
|
| 227 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 228 |
+
block_out_channels=self.conditioning_embedding_out_channels,
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
only_cross_attention = self.only_cross_attention
|
| 232 |
+
if isinstance(only_cross_attention, bool):
|
| 233 |
+
only_cross_attention = (only_cross_attention,) * len(self.down_block_types)
|
| 234 |
+
|
| 235 |
+
if isinstance(num_attention_heads, int):
|
| 236 |
+
num_attention_heads = (num_attention_heads,) * len(self.down_block_types)
|
| 237 |
+
|
| 238 |
+
# down
|
| 239 |
+
down_blocks = []
|
| 240 |
+
controlnet_down_blocks = []
|
| 241 |
+
|
| 242 |
+
output_channel = block_out_channels[0]
|
| 243 |
+
|
| 244 |
+
controlnet_block = nn.Conv(
|
| 245 |
+
output_channel,
|
| 246 |
+
kernel_size=(1, 1),
|
| 247 |
+
padding="VALID",
|
| 248 |
+
kernel_init=nn.initializers.zeros_init(),
|
| 249 |
+
bias_init=nn.initializers.zeros_init(),
|
| 250 |
+
dtype=self.dtype,
|
| 251 |
+
)
|
| 252 |
+
controlnet_down_blocks.append(controlnet_block)
|
| 253 |
+
|
| 254 |
+
for i, down_block_type in enumerate(self.down_block_types):
|
| 255 |
+
input_channel = output_channel
|
| 256 |
+
output_channel = block_out_channels[i]
|
| 257 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 258 |
+
|
| 259 |
+
if down_block_type == "CrossAttnDownBlock2D":
|
| 260 |
+
down_block = FlaxCrossAttnDownBlock2D(
|
| 261 |
+
in_channels=input_channel,
|
| 262 |
+
out_channels=output_channel,
|
| 263 |
+
dropout=self.dropout,
|
| 264 |
+
num_layers=self.layers_per_block,
|
| 265 |
+
num_attention_heads=num_attention_heads[i],
|
| 266 |
+
add_downsample=not is_final_block,
|
| 267 |
+
use_linear_projection=self.use_linear_projection,
|
| 268 |
+
only_cross_attention=only_cross_attention[i],
|
| 269 |
+
dtype=self.dtype,
|
| 270 |
+
)
|
| 271 |
+
else:
|
| 272 |
+
down_block = FlaxDownBlock2D(
|
| 273 |
+
in_channels=input_channel,
|
| 274 |
+
out_channels=output_channel,
|
| 275 |
+
dropout=self.dropout,
|
| 276 |
+
num_layers=self.layers_per_block,
|
| 277 |
+
add_downsample=not is_final_block,
|
| 278 |
+
dtype=self.dtype,
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
down_blocks.append(down_block)
|
| 282 |
+
|
| 283 |
+
for _ in range(self.layers_per_block):
|
| 284 |
+
controlnet_block = nn.Conv(
|
| 285 |
+
output_channel,
|
| 286 |
+
kernel_size=(1, 1),
|
| 287 |
+
padding="VALID",
|
| 288 |
+
kernel_init=nn.initializers.zeros_init(),
|
| 289 |
+
bias_init=nn.initializers.zeros_init(),
|
| 290 |
+
dtype=self.dtype,
|
| 291 |
+
)
|
| 292 |
+
controlnet_down_blocks.append(controlnet_block)
|
| 293 |
+
|
| 294 |
+
if not is_final_block:
|
| 295 |
+
controlnet_block = nn.Conv(
|
| 296 |
+
output_channel,
|
| 297 |
+
kernel_size=(1, 1),
|
| 298 |
+
padding="VALID",
|
| 299 |
+
kernel_init=nn.initializers.zeros_init(),
|
| 300 |
+
bias_init=nn.initializers.zeros_init(),
|
| 301 |
+
dtype=self.dtype,
|
| 302 |
+
)
|
| 303 |
+
controlnet_down_blocks.append(controlnet_block)
|
| 304 |
+
|
| 305 |
+
self.down_blocks = down_blocks
|
| 306 |
+
self.controlnet_down_blocks = controlnet_down_blocks
|
| 307 |
+
|
| 308 |
+
# mid
|
| 309 |
+
mid_block_channel = block_out_channels[-1]
|
| 310 |
+
self.mid_block = FlaxUNetMidBlock2DCrossAttn(
|
| 311 |
+
in_channels=mid_block_channel,
|
| 312 |
+
dropout=self.dropout,
|
| 313 |
+
num_attention_heads=num_attention_heads[-1],
|
| 314 |
+
use_linear_projection=self.use_linear_projection,
|
| 315 |
+
dtype=self.dtype,
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
self.controlnet_mid_block = nn.Conv(
|
| 319 |
+
mid_block_channel,
|
| 320 |
+
kernel_size=(1, 1),
|
| 321 |
+
padding="VALID",
|
| 322 |
+
kernel_init=nn.initializers.zeros_init(),
|
| 323 |
+
bias_init=nn.initializers.zeros_init(),
|
| 324 |
+
dtype=self.dtype,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
def __call__(
|
| 328 |
+
self,
|
| 329 |
+
sample: jnp.ndarray,
|
| 330 |
+
timesteps: Union[jnp.ndarray, float, int],
|
| 331 |
+
encoder_hidden_states: jnp.ndarray,
|
| 332 |
+
controlnet_cond: jnp.ndarray,
|
| 333 |
+
conditioning_scale: float = 1.0,
|
| 334 |
+
return_dict: bool = True,
|
| 335 |
+
train: bool = False,
|
| 336 |
+
) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]:
|
| 337 |
+
r"""
|
| 338 |
+
Args:
|
| 339 |
+
sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
|
| 340 |
+
timestep (`jnp.ndarray` or `float` or `int`): timesteps
|
| 341 |
+
encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
|
| 342 |
+
controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor
|
| 343 |
+
conditioning_scale (`float`, *optional*, defaults to `1.0`): the scale factor for controlnet outputs
|
| 344 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 345 |
+
Whether or not to return a [`models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of
|
| 346 |
+
a plain tuple.
|
| 347 |
+
train (`bool`, *optional*, defaults to `False`):
|
| 348 |
+
Use deterministic functions and disable dropout when not training.
|
| 349 |
+
|
| 350 |
+
Returns:
|
| 351 |
+
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
|
| 352 |
+
[`~models.unets.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise
|
| 353 |
+
a `tuple`. When returning a tuple, the first element is the sample tensor.
|
| 354 |
+
"""
|
| 355 |
+
channel_order = self.controlnet_conditioning_channel_order
|
| 356 |
+
if channel_order == "bgr":
|
| 357 |
+
controlnet_cond = jnp.flip(controlnet_cond, axis=1)
|
| 358 |
+
|
| 359 |
+
# 1. time
|
| 360 |
+
if not isinstance(timesteps, jnp.ndarray):
|
| 361 |
+
timesteps = jnp.array([timesteps], dtype=jnp.int32)
|
| 362 |
+
elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
|
| 363 |
+
timesteps = timesteps.astype(dtype=jnp.float32)
|
| 364 |
+
timesteps = jnp.expand_dims(timesteps, 0)
|
| 365 |
+
|
| 366 |
+
t_emb = self.time_proj(timesteps)
|
| 367 |
+
t_emb = self.time_embedding(t_emb)
|
| 368 |
+
|
| 369 |
+
# 2. pre-process
|
| 370 |
+
sample = jnp.transpose(sample, (0, 2, 3, 1))
|
| 371 |
+
sample = self.conv_in(sample)
|
| 372 |
+
|
| 373 |
+
controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1))
|
| 374 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
| 375 |
+
sample += controlnet_cond
|
| 376 |
+
|
| 377 |
+
# 3. down
|
| 378 |
+
down_block_res_samples = (sample,)
|
| 379 |
+
for down_block in self.down_blocks:
|
| 380 |
+
if isinstance(down_block, FlaxCrossAttnDownBlock2D):
|
| 381 |
+
sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
|
| 382 |
+
else:
|
| 383 |
+
sample, res_samples = down_block(sample, t_emb, deterministic=not train)
|
| 384 |
+
down_block_res_samples += res_samples
|
| 385 |
+
|
| 386 |
+
# 4. mid
|
| 387 |
+
sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
|
| 388 |
+
|
| 389 |
+
# 5. contronet blocks
|
| 390 |
+
controlnet_down_block_res_samples = ()
|
| 391 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
| 392 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
| 393 |
+
controlnet_down_block_res_samples += (down_block_res_sample,)
|
| 394 |
+
|
| 395 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
| 396 |
+
|
| 397 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
| 398 |
+
|
| 399 |
+
# 6. scaling
|
| 400 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
| 401 |
+
mid_block_res_sample *= conditioning_scale
|
| 402 |
+
|
| 403 |
+
if not return_dict:
|
| 404 |
+
return (down_block_res_samples, mid_block_res_sample)
|
| 405 |
+
|
| 406 |
+
return FlaxControlNetOutput(
|
| 407 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
| 408 |
+
)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_flux.py
ADDED
|
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ..attention_processor import AttentionProcessor
|
| 25 |
+
from ..controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
|
| 26 |
+
from ..embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
| 27 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from ..transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@dataclass
|
| 36 |
+
class FluxControlNetOutput(BaseOutput):
|
| 37 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 38 |
+
controlnet_single_block_samples: Tuple[torch.Tensor]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class FluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
| 42 |
+
_supports_gradient_checkpointing = True
|
| 43 |
+
|
| 44 |
+
@register_to_config
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
patch_size: int = 1,
|
| 48 |
+
in_channels: int = 64,
|
| 49 |
+
num_layers: int = 19,
|
| 50 |
+
num_single_layers: int = 38,
|
| 51 |
+
attention_head_dim: int = 128,
|
| 52 |
+
num_attention_heads: int = 24,
|
| 53 |
+
joint_attention_dim: int = 4096,
|
| 54 |
+
pooled_projection_dim: int = 768,
|
| 55 |
+
guidance_embeds: bool = False,
|
| 56 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
| 57 |
+
num_mode: int = None,
|
| 58 |
+
conditioning_embedding_channels: int = None,
|
| 59 |
+
):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.out_channels = in_channels
|
| 62 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 63 |
+
|
| 64 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 65 |
+
text_time_guidance_cls = (
|
| 66 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 67 |
+
)
|
| 68 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 69 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 73 |
+
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
| 74 |
+
|
| 75 |
+
self.transformer_blocks = nn.ModuleList(
|
| 76 |
+
[
|
| 77 |
+
FluxTransformerBlock(
|
| 78 |
+
dim=self.inner_dim,
|
| 79 |
+
num_attention_heads=num_attention_heads,
|
| 80 |
+
attention_head_dim=attention_head_dim,
|
| 81 |
+
)
|
| 82 |
+
for i in range(num_layers)
|
| 83 |
+
]
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 87 |
+
[
|
| 88 |
+
FluxSingleTransformerBlock(
|
| 89 |
+
dim=self.inner_dim,
|
| 90 |
+
num_attention_heads=num_attention_heads,
|
| 91 |
+
attention_head_dim=attention_head_dim,
|
| 92 |
+
)
|
| 93 |
+
for i in range(num_single_layers)
|
| 94 |
+
]
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# controlnet_blocks
|
| 98 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 99 |
+
for _ in range(len(self.transformer_blocks)):
|
| 100 |
+
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
| 101 |
+
|
| 102 |
+
self.controlnet_single_blocks = nn.ModuleList([])
|
| 103 |
+
for _ in range(len(self.single_transformer_blocks)):
|
| 104 |
+
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
| 105 |
+
|
| 106 |
+
self.union = num_mode is not None
|
| 107 |
+
if self.union:
|
| 108 |
+
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
|
| 109 |
+
|
| 110 |
+
if conditioning_embedding_channels is not None:
|
| 111 |
+
self.input_hint_block = ControlNetConditioningEmbedding(
|
| 112 |
+
conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
|
| 113 |
+
)
|
| 114 |
+
self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
| 115 |
+
else:
|
| 116 |
+
self.input_hint_block = None
|
| 117 |
+
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
|
| 118 |
+
|
| 119 |
+
self.gradient_checkpointing = False
|
| 120 |
+
|
| 121 |
+
@property
|
| 122 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 123 |
+
def attn_processors(self):
|
| 124 |
+
r"""
|
| 125 |
+
Returns:
|
| 126 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 127 |
+
indexed by its weight name.
|
| 128 |
+
"""
|
| 129 |
+
# set recursively
|
| 130 |
+
processors = {}
|
| 131 |
+
|
| 132 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 133 |
+
if hasattr(module, "get_processor"):
|
| 134 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 135 |
+
|
| 136 |
+
for sub_name, child in module.named_children():
|
| 137 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 138 |
+
|
| 139 |
+
return processors
|
| 140 |
+
|
| 141 |
+
for name, module in self.named_children():
|
| 142 |
+
fn_recursive_add_processors(name, module, processors)
|
| 143 |
+
|
| 144 |
+
return processors
|
| 145 |
+
|
| 146 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 147 |
+
def set_attn_processor(self, processor):
|
| 148 |
+
r"""
|
| 149 |
+
Sets the attention processor to use to compute attention.
|
| 150 |
+
|
| 151 |
+
Parameters:
|
| 152 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 153 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 154 |
+
for **all** `Attention` layers.
|
| 155 |
+
|
| 156 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 157 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 158 |
+
|
| 159 |
+
"""
|
| 160 |
+
count = len(self.attn_processors.keys())
|
| 161 |
+
|
| 162 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 163 |
+
raise ValueError(
|
| 164 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 165 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 169 |
+
if hasattr(module, "set_processor"):
|
| 170 |
+
if not isinstance(processor, dict):
|
| 171 |
+
module.set_processor(processor)
|
| 172 |
+
else:
|
| 173 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 174 |
+
|
| 175 |
+
for sub_name, child in module.named_children():
|
| 176 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 177 |
+
|
| 178 |
+
for name, module in self.named_children():
|
| 179 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 180 |
+
|
| 181 |
+
@classmethod
|
| 182 |
+
def from_transformer(
|
| 183 |
+
cls,
|
| 184 |
+
transformer,
|
| 185 |
+
num_layers: int = 4,
|
| 186 |
+
num_single_layers: int = 10,
|
| 187 |
+
attention_head_dim: int = 128,
|
| 188 |
+
num_attention_heads: int = 24,
|
| 189 |
+
load_weights_from_transformer=True,
|
| 190 |
+
):
|
| 191 |
+
config = dict(transformer.config)
|
| 192 |
+
config["num_layers"] = num_layers
|
| 193 |
+
config["num_single_layers"] = num_single_layers
|
| 194 |
+
config["attention_head_dim"] = attention_head_dim
|
| 195 |
+
config["num_attention_heads"] = num_attention_heads
|
| 196 |
+
|
| 197 |
+
controlnet = cls.from_config(config)
|
| 198 |
+
|
| 199 |
+
if load_weights_from_transformer:
|
| 200 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
| 201 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
| 202 |
+
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
| 203 |
+
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
| 204 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
| 205 |
+
controlnet.single_transformer_blocks.load_state_dict(
|
| 206 |
+
transformer.single_transformer_blocks.state_dict(), strict=False
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
| 210 |
+
|
| 211 |
+
return controlnet
|
| 212 |
+
|
| 213 |
+
def forward(
|
| 214 |
+
self,
|
| 215 |
+
hidden_states: torch.Tensor,
|
| 216 |
+
controlnet_cond: torch.Tensor,
|
| 217 |
+
controlnet_mode: torch.Tensor = None,
|
| 218 |
+
conditioning_scale: float = 1.0,
|
| 219 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 220 |
+
pooled_projections: torch.Tensor = None,
|
| 221 |
+
timestep: torch.LongTensor = None,
|
| 222 |
+
img_ids: torch.Tensor = None,
|
| 223 |
+
txt_ids: torch.Tensor = None,
|
| 224 |
+
guidance: torch.Tensor = None,
|
| 225 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 226 |
+
return_dict: bool = True,
|
| 227 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 228 |
+
"""
|
| 229 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 233 |
+
Input `hidden_states`.
|
| 234 |
+
controlnet_cond (`torch.Tensor`):
|
| 235 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 236 |
+
controlnet_mode (`torch.Tensor`):
|
| 237 |
+
The mode tensor of shape `(batch_size, 1)`.
|
| 238 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 239 |
+
The scale factor for ControlNet outputs.
|
| 240 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 241 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 242 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 243 |
+
from the embeddings of input conditions.
|
| 244 |
+
timestep ( `torch.LongTensor`):
|
| 245 |
+
Used to indicate denoising step.
|
| 246 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 247 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 248 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 249 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 250 |
+
`self.processor` in
|
| 251 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 252 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 253 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 254 |
+
tuple.
|
| 255 |
+
|
| 256 |
+
Returns:
|
| 257 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 258 |
+
`tuple` where the first element is the sample tensor.
|
| 259 |
+
"""
|
| 260 |
+
if joint_attention_kwargs is not None:
|
| 261 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 262 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 263 |
+
else:
|
| 264 |
+
lora_scale = 1.0
|
| 265 |
+
|
| 266 |
+
if USE_PEFT_BACKEND:
|
| 267 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 268 |
+
scale_lora_layers(self, lora_scale)
|
| 269 |
+
else:
|
| 270 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 271 |
+
logger.warning(
|
| 272 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 273 |
+
)
|
| 274 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 275 |
+
|
| 276 |
+
if self.input_hint_block is not None:
|
| 277 |
+
controlnet_cond = self.input_hint_block(controlnet_cond)
|
| 278 |
+
batch_size, channels, height_pw, width_pw = controlnet_cond.shape
|
| 279 |
+
height = height_pw // self.config.patch_size
|
| 280 |
+
width = width_pw // self.config.patch_size
|
| 281 |
+
controlnet_cond = controlnet_cond.reshape(
|
| 282 |
+
batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
|
| 283 |
+
)
|
| 284 |
+
controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
|
| 285 |
+
controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
|
| 286 |
+
# add
|
| 287 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
| 288 |
+
|
| 289 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 290 |
+
if guidance is not None:
|
| 291 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 292 |
+
else:
|
| 293 |
+
guidance = None
|
| 294 |
+
temb = (
|
| 295 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 296 |
+
if guidance is None
|
| 297 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 298 |
+
)
|
| 299 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 300 |
+
|
| 301 |
+
if txt_ids.ndim == 3:
|
| 302 |
+
logger.warning(
|
| 303 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 304 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 305 |
+
)
|
| 306 |
+
txt_ids = txt_ids[0]
|
| 307 |
+
if img_ids.ndim == 3:
|
| 308 |
+
logger.warning(
|
| 309 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 310 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 311 |
+
)
|
| 312 |
+
img_ids = img_ids[0]
|
| 313 |
+
|
| 314 |
+
if self.union:
|
| 315 |
+
# union mode
|
| 316 |
+
if controlnet_mode is None:
|
| 317 |
+
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
|
| 318 |
+
# union mode emb
|
| 319 |
+
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
|
| 320 |
+
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
|
| 321 |
+
txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)
|
| 322 |
+
|
| 323 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 324 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 325 |
+
|
| 326 |
+
block_samples = ()
|
| 327 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 328 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 329 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 330 |
+
block,
|
| 331 |
+
hidden_states,
|
| 332 |
+
encoder_hidden_states,
|
| 333 |
+
temb,
|
| 334 |
+
image_rotary_emb,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
else:
|
| 338 |
+
encoder_hidden_states, hidden_states = block(
|
| 339 |
+
hidden_states=hidden_states,
|
| 340 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 341 |
+
temb=temb,
|
| 342 |
+
image_rotary_emb=image_rotary_emb,
|
| 343 |
+
)
|
| 344 |
+
block_samples = block_samples + (hidden_states,)
|
| 345 |
+
|
| 346 |
+
single_block_samples = ()
|
| 347 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 348 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 349 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 350 |
+
block,
|
| 351 |
+
hidden_states,
|
| 352 |
+
encoder_hidden_states,
|
| 353 |
+
temb,
|
| 354 |
+
image_rotary_emb,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
else:
|
| 358 |
+
encoder_hidden_states, hidden_states = block(
|
| 359 |
+
hidden_states=hidden_states,
|
| 360 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 361 |
+
temb=temb,
|
| 362 |
+
image_rotary_emb=image_rotary_emb,
|
| 363 |
+
)
|
| 364 |
+
single_block_samples = single_block_samples + (hidden_states,)
|
| 365 |
+
|
| 366 |
+
# controlnet block
|
| 367 |
+
controlnet_block_samples = ()
|
| 368 |
+
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
| 369 |
+
block_sample = controlnet_block(block_sample)
|
| 370 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
| 371 |
+
|
| 372 |
+
controlnet_single_block_samples = ()
|
| 373 |
+
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
|
| 374 |
+
single_block_sample = controlnet_block(single_block_sample)
|
| 375 |
+
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
|
| 376 |
+
|
| 377 |
+
# scaling
|
| 378 |
+
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
| 379 |
+
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
|
| 380 |
+
|
| 381 |
+
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
| 382 |
+
controlnet_single_block_samples = (
|
| 383 |
+
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
if USE_PEFT_BACKEND:
|
| 387 |
+
# remove `lora_scale` from each PEFT layer
|
| 388 |
+
unscale_lora_layers(self, lora_scale)
|
| 389 |
+
|
| 390 |
+
if not return_dict:
|
| 391 |
+
return (controlnet_block_samples, controlnet_single_block_samples)
|
| 392 |
+
|
| 393 |
+
return FluxControlNetOutput(
|
| 394 |
+
controlnet_block_samples=controlnet_block_samples,
|
| 395 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
class FluxMultiControlNetModel(ModelMixin):
|
| 400 |
+
r"""
|
| 401 |
+
`FluxMultiControlNetModel` wrapper class for Multi-FluxControlNetModel
|
| 402 |
+
|
| 403 |
+
This module is a wrapper for multiple instances of the `FluxControlNetModel`. The `forward()` API is designed to be
|
| 404 |
+
compatible with `FluxControlNetModel`.
|
| 405 |
+
|
| 406 |
+
Args:
|
| 407 |
+
controlnets (`List[FluxControlNetModel]`):
|
| 408 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 409 |
+
`FluxControlNetModel` as a list.
|
| 410 |
+
"""
|
| 411 |
+
|
| 412 |
+
def __init__(self, controlnets):
|
| 413 |
+
super().__init__()
|
| 414 |
+
self.nets = nn.ModuleList(controlnets)
|
| 415 |
+
|
| 416 |
+
def forward(
|
| 417 |
+
self,
|
| 418 |
+
hidden_states: torch.FloatTensor,
|
| 419 |
+
controlnet_cond: List[torch.tensor],
|
| 420 |
+
controlnet_mode: List[torch.tensor],
|
| 421 |
+
conditioning_scale: List[float],
|
| 422 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 423 |
+
pooled_projections: torch.Tensor = None,
|
| 424 |
+
timestep: torch.LongTensor = None,
|
| 425 |
+
img_ids: torch.Tensor = None,
|
| 426 |
+
txt_ids: torch.Tensor = None,
|
| 427 |
+
guidance: torch.Tensor = None,
|
| 428 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 429 |
+
return_dict: bool = True,
|
| 430 |
+
) -> Union[FluxControlNetOutput, Tuple]:
|
| 431 |
+
# ControlNet-Union with multiple conditions
|
| 432 |
+
# only load one ControlNet for saving memories
|
| 433 |
+
if len(self.nets) == 1:
|
| 434 |
+
controlnet = self.nets[0]
|
| 435 |
+
|
| 436 |
+
for i, (image, mode, scale) in enumerate(zip(controlnet_cond, controlnet_mode, conditioning_scale)):
|
| 437 |
+
block_samples, single_block_samples = controlnet(
|
| 438 |
+
hidden_states=hidden_states,
|
| 439 |
+
controlnet_cond=image,
|
| 440 |
+
controlnet_mode=mode[:, None],
|
| 441 |
+
conditioning_scale=scale,
|
| 442 |
+
timestep=timestep,
|
| 443 |
+
guidance=guidance,
|
| 444 |
+
pooled_projections=pooled_projections,
|
| 445 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 446 |
+
txt_ids=txt_ids,
|
| 447 |
+
img_ids=img_ids,
|
| 448 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 449 |
+
return_dict=return_dict,
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# merge samples
|
| 453 |
+
if i == 0:
|
| 454 |
+
control_block_samples = block_samples
|
| 455 |
+
control_single_block_samples = single_block_samples
|
| 456 |
+
else:
|
| 457 |
+
if block_samples is not None and control_block_samples is not None:
|
| 458 |
+
control_block_samples = [
|
| 459 |
+
control_block_sample + block_sample
|
| 460 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
| 461 |
+
]
|
| 462 |
+
if single_block_samples is not None and control_single_block_samples is not None:
|
| 463 |
+
control_single_block_samples = [
|
| 464 |
+
control_single_block_sample + block_sample
|
| 465 |
+
for control_single_block_sample, block_sample in zip(
|
| 466 |
+
control_single_block_samples, single_block_samples
|
| 467 |
+
)
|
| 468 |
+
]
|
| 469 |
+
|
| 470 |
+
# Regular Multi-ControlNets
|
| 471 |
+
# load all ControlNets into memories
|
| 472 |
+
else:
|
| 473 |
+
for i, (image, mode, scale, controlnet) in enumerate(
|
| 474 |
+
zip(controlnet_cond, controlnet_mode, conditioning_scale, self.nets)
|
| 475 |
+
):
|
| 476 |
+
block_samples, single_block_samples = controlnet(
|
| 477 |
+
hidden_states=hidden_states,
|
| 478 |
+
controlnet_cond=image,
|
| 479 |
+
controlnet_mode=mode[:, None],
|
| 480 |
+
conditioning_scale=scale,
|
| 481 |
+
timestep=timestep,
|
| 482 |
+
guidance=guidance,
|
| 483 |
+
pooled_projections=pooled_projections,
|
| 484 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 485 |
+
txt_ids=txt_ids,
|
| 486 |
+
img_ids=img_ids,
|
| 487 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 488 |
+
return_dict=return_dict,
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
# merge samples
|
| 492 |
+
if i == 0:
|
| 493 |
+
control_block_samples = block_samples
|
| 494 |
+
control_single_block_samples = single_block_samples
|
| 495 |
+
else:
|
| 496 |
+
if block_samples is not None and control_block_samples is not None:
|
| 497 |
+
control_block_samples = [
|
| 498 |
+
control_block_sample + block_sample
|
| 499 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
| 500 |
+
]
|
| 501 |
+
if single_block_samples is not None and control_single_block_samples is not None:
|
| 502 |
+
control_single_block_samples = [
|
| 503 |
+
control_single_block_sample + block_sample
|
| 504 |
+
for control_single_block_sample, block_sample in zip(
|
| 505 |
+
control_single_block_samples, single_block_samples
|
| 506 |
+
)
|
| 507 |
+
]
|
| 508 |
+
|
| 509 |
+
return control_block_samples, control_single_block_samples
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_hunyuan.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from typing import Dict, Optional, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ...utils import BaseOutput, logging
|
| 22 |
+
from ..attention_processor import AttentionProcessor
|
| 23 |
+
from ..embeddings import (
|
| 24 |
+
HunyuanCombinedTimestepTextSizeStyleEmbedding,
|
| 25 |
+
PatchEmbed,
|
| 26 |
+
PixArtAlphaTextProjection,
|
| 27 |
+
)
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from ..transformers.hunyuan_transformer_2d import HunyuanDiTBlock
|
| 30 |
+
from .controlnet import Tuple, zero_module
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class HunyuanControlNetOutput(BaseOutput):
|
| 38 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class HunyuanDiT2DControlNetModel(ModelMixin, ConfigMixin):
|
| 42 |
+
@register_to_config
|
| 43 |
+
def __init__(
|
| 44 |
+
self,
|
| 45 |
+
conditioning_channels: int = 3,
|
| 46 |
+
num_attention_heads: int = 16,
|
| 47 |
+
attention_head_dim: int = 88,
|
| 48 |
+
in_channels: Optional[int] = None,
|
| 49 |
+
patch_size: Optional[int] = None,
|
| 50 |
+
activation_fn: str = "gelu-approximate",
|
| 51 |
+
sample_size=32,
|
| 52 |
+
hidden_size=1152,
|
| 53 |
+
transformer_num_layers: int = 40,
|
| 54 |
+
mlp_ratio: float = 4.0,
|
| 55 |
+
cross_attention_dim: int = 1024,
|
| 56 |
+
cross_attention_dim_t5: int = 2048,
|
| 57 |
+
pooled_projection_dim: int = 1024,
|
| 58 |
+
text_len: int = 77,
|
| 59 |
+
text_len_t5: int = 256,
|
| 60 |
+
use_style_cond_and_image_meta_size: bool = True,
|
| 61 |
+
):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.num_heads = num_attention_heads
|
| 64 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 65 |
+
|
| 66 |
+
self.text_embedder = PixArtAlphaTextProjection(
|
| 67 |
+
in_features=cross_attention_dim_t5,
|
| 68 |
+
hidden_size=cross_attention_dim_t5 * 4,
|
| 69 |
+
out_features=cross_attention_dim,
|
| 70 |
+
act_fn="silu_fp32",
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
self.text_embedding_padding = nn.Parameter(
|
| 74 |
+
torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32)
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
self.pos_embed = PatchEmbed(
|
| 78 |
+
height=sample_size,
|
| 79 |
+
width=sample_size,
|
| 80 |
+
in_channels=in_channels,
|
| 81 |
+
embed_dim=hidden_size,
|
| 82 |
+
patch_size=patch_size,
|
| 83 |
+
pos_embed_type=None,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(
|
| 87 |
+
hidden_size,
|
| 88 |
+
pooled_projection_dim=pooled_projection_dim,
|
| 89 |
+
seq_len=text_len_t5,
|
| 90 |
+
cross_attention_dim=cross_attention_dim_t5,
|
| 91 |
+
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# controlnet_blocks
|
| 95 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 96 |
+
|
| 97 |
+
# HunyuanDiT Blocks
|
| 98 |
+
self.blocks = nn.ModuleList(
|
| 99 |
+
[
|
| 100 |
+
HunyuanDiTBlock(
|
| 101 |
+
dim=self.inner_dim,
|
| 102 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 103 |
+
activation_fn=activation_fn,
|
| 104 |
+
ff_inner_dim=int(self.inner_dim * mlp_ratio),
|
| 105 |
+
cross_attention_dim=cross_attention_dim,
|
| 106 |
+
qk_norm=True, # See https://huggingface.co/papers/2302.05442 for details.
|
| 107 |
+
skip=False, # always False as it is the first half of the model
|
| 108 |
+
)
|
| 109 |
+
for layer in range(transformer_num_layers // 2 - 1)
|
| 110 |
+
]
|
| 111 |
+
)
|
| 112 |
+
self.input_block = zero_module(nn.Linear(hidden_size, hidden_size))
|
| 113 |
+
for _ in range(len(self.blocks)):
|
| 114 |
+
controlnet_block = nn.Linear(hidden_size, hidden_size)
|
| 115 |
+
controlnet_block = zero_module(controlnet_block)
|
| 116 |
+
self.controlnet_blocks.append(controlnet_block)
|
| 117 |
+
|
| 118 |
+
@property
|
| 119 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 120 |
+
r"""
|
| 121 |
+
Returns:
|
| 122 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 123 |
+
indexed by its weight name.
|
| 124 |
+
"""
|
| 125 |
+
# set recursively
|
| 126 |
+
processors = {}
|
| 127 |
+
|
| 128 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 129 |
+
if hasattr(module, "get_processor"):
|
| 130 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
| 131 |
+
|
| 132 |
+
for sub_name, child in module.named_children():
|
| 133 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 134 |
+
|
| 135 |
+
return processors
|
| 136 |
+
|
| 137 |
+
for name, module in self.named_children():
|
| 138 |
+
fn_recursive_add_processors(name, module, processors)
|
| 139 |
+
|
| 140 |
+
return processors
|
| 141 |
+
|
| 142 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 143 |
+
r"""
|
| 144 |
+
Sets the attention processor to use to compute attention.
|
| 145 |
+
|
| 146 |
+
Parameters:
|
| 147 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 148 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 149 |
+
for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the
|
| 150 |
+
corresponding cross attention processor. This is strongly recommended when setting trainable attention
|
| 151 |
+
processors.
|
| 152 |
+
"""
|
| 153 |
+
count = len(self.attn_processors.keys())
|
| 154 |
+
|
| 155 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 156 |
+
raise ValueError(
|
| 157 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 158 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 162 |
+
if hasattr(module, "set_processor"):
|
| 163 |
+
if not isinstance(processor, dict):
|
| 164 |
+
module.set_processor(processor)
|
| 165 |
+
else:
|
| 166 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 167 |
+
|
| 168 |
+
for sub_name, child in module.named_children():
|
| 169 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 170 |
+
|
| 171 |
+
for name, module in self.named_children():
|
| 172 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 173 |
+
|
| 174 |
+
@classmethod
|
| 175 |
+
def from_transformer(
|
| 176 |
+
cls, transformer, conditioning_channels=3, transformer_num_layers=None, load_weights_from_transformer=True
|
| 177 |
+
):
|
| 178 |
+
config = transformer.config
|
| 179 |
+
activation_fn = config.activation_fn
|
| 180 |
+
attention_head_dim = config.attention_head_dim
|
| 181 |
+
cross_attention_dim = config.cross_attention_dim
|
| 182 |
+
cross_attention_dim_t5 = config.cross_attention_dim_t5
|
| 183 |
+
hidden_size = config.hidden_size
|
| 184 |
+
in_channels = config.in_channels
|
| 185 |
+
mlp_ratio = config.mlp_ratio
|
| 186 |
+
num_attention_heads = config.num_attention_heads
|
| 187 |
+
patch_size = config.patch_size
|
| 188 |
+
sample_size = config.sample_size
|
| 189 |
+
text_len = config.text_len
|
| 190 |
+
text_len_t5 = config.text_len_t5
|
| 191 |
+
|
| 192 |
+
conditioning_channels = conditioning_channels
|
| 193 |
+
transformer_num_layers = transformer_num_layers or config.transformer_num_layers
|
| 194 |
+
|
| 195 |
+
controlnet = cls(
|
| 196 |
+
conditioning_channels=conditioning_channels,
|
| 197 |
+
transformer_num_layers=transformer_num_layers,
|
| 198 |
+
activation_fn=activation_fn,
|
| 199 |
+
attention_head_dim=attention_head_dim,
|
| 200 |
+
cross_attention_dim=cross_attention_dim,
|
| 201 |
+
cross_attention_dim_t5=cross_attention_dim_t5,
|
| 202 |
+
hidden_size=hidden_size,
|
| 203 |
+
in_channels=in_channels,
|
| 204 |
+
mlp_ratio=mlp_ratio,
|
| 205 |
+
num_attention_heads=num_attention_heads,
|
| 206 |
+
patch_size=patch_size,
|
| 207 |
+
sample_size=sample_size,
|
| 208 |
+
text_len=text_len,
|
| 209 |
+
text_len_t5=text_len_t5,
|
| 210 |
+
)
|
| 211 |
+
if load_weights_from_transformer:
|
| 212 |
+
key = controlnet.load_state_dict(transformer.state_dict(), strict=False)
|
| 213 |
+
logger.warning(f"controlnet load from Hunyuan-DiT. missing_keys: {key[0]}")
|
| 214 |
+
return controlnet
|
| 215 |
+
|
| 216 |
+
def forward(
|
| 217 |
+
self,
|
| 218 |
+
hidden_states,
|
| 219 |
+
timestep,
|
| 220 |
+
controlnet_cond: torch.Tensor,
|
| 221 |
+
conditioning_scale: float = 1.0,
|
| 222 |
+
encoder_hidden_states=None,
|
| 223 |
+
text_embedding_mask=None,
|
| 224 |
+
encoder_hidden_states_t5=None,
|
| 225 |
+
text_embedding_mask_t5=None,
|
| 226 |
+
image_meta_size=None,
|
| 227 |
+
style=None,
|
| 228 |
+
image_rotary_emb=None,
|
| 229 |
+
return_dict=True,
|
| 230 |
+
):
|
| 231 |
+
"""
|
| 232 |
+
The [`HunyuanDiT2DControlNetModel`] forward method.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
|
| 236 |
+
The input tensor.
|
| 237 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 238 |
+
Used to indicate denoising step.
|
| 239 |
+
controlnet_cond ( `torch.Tensor` ):
|
| 240 |
+
The conditioning input to ControlNet.
|
| 241 |
+
conditioning_scale ( `float` ):
|
| 242 |
+
Indicate the conditioning scale.
|
| 243 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 244 |
+
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
|
| 245 |
+
text_embedding_mask: torch.Tensor
|
| 246 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
| 247 |
+
of `BertModel`.
|
| 248 |
+
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 249 |
+
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
|
| 250 |
+
text_embedding_mask_t5: torch.Tensor
|
| 251 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
| 252 |
+
of T5 Text Encoder.
|
| 253 |
+
image_meta_size (torch.Tensor):
|
| 254 |
+
Conditional embedding indicate the image sizes
|
| 255 |
+
style: torch.Tensor:
|
| 256 |
+
Conditional embedding indicate the style
|
| 257 |
+
image_rotary_emb (`torch.Tensor`):
|
| 258 |
+
The image rotary embeddings to apply on query and key tensors during attention calculation.
|
| 259 |
+
return_dict: bool
|
| 260 |
+
Whether to return a dictionary.
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
height, width = hidden_states.shape[-2:]
|
| 264 |
+
|
| 265 |
+
hidden_states = self.pos_embed(hidden_states) # b,c,H,W -> b, N, C
|
| 266 |
+
|
| 267 |
+
# 2. pre-process
|
| 268 |
+
hidden_states = hidden_states + self.input_block(self.pos_embed(controlnet_cond))
|
| 269 |
+
|
| 270 |
+
temb = self.time_extra_emb(
|
| 271 |
+
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype
|
| 272 |
+
) # [B, D]
|
| 273 |
+
|
| 274 |
+
# text projection
|
| 275 |
+
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape
|
| 276 |
+
encoder_hidden_states_t5 = self.text_embedder(
|
| 277 |
+
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])
|
| 278 |
+
)
|
| 279 |
+
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1)
|
| 280 |
+
|
| 281 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1)
|
| 282 |
+
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1)
|
| 283 |
+
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool()
|
| 284 |
+
|
| 285 |
+
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding)
|
| 286 |
+
|
| 287 |
+
block_res_samples = ()
|
| 288 |
+
for layer, block in enumerate(self.blocks):
|
| 289 |
+
hidden_states = block(
|
| 290 |
+
hidden_states,
|
| 291 |
+
temb=temb,
|
| 292 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 293 |
+
image_rotary_emb=image_rotary_emb,
|
| 294 |
+
) # (N, L, D)
|
| 295 |
+
|
| 296 |
+
block_res_samples = block_res_samples + (hidden_states,)
|
| 297 |
+
|
| 298 |
+
controlnet_block_res_samples = ()
|
| 299 |
+
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
| 300 |
+
block_res_sample = controlnet_block(block_res_sample)
|
| 301 |
+
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
| 302 |
+
|
| 303 |
+
# 6. scaling
|
| 304 |
+
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
|
| 305 |
+
|
| 306 |
+
if not return_dict:
|
| 307 |
+
return (controlnet_block_res_samples,)
|
| 308 |
+
|
| 309 |
+
return HunyuanControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
class HunyuanDiT2DMultiControlNetModel(ModelMixin):
|
| 313 |
+
r"""
|
| 314 |
+
`HunyuanDiT2DMultiControlNetModel` wrapper class for Multi-HunyuanDiT2DControlNetModel
|
| 315 |
+
|
| 316 |
+
This module is a wrapper for multiple instances of the `HunyuanDiT2DControlNetModel`. The `forward()` API is
|
| 317 |
+
designed to be compatible with `HunyuanDiT2DControlNetModel`.
|
| 318 |
+
|
| 319 |
+
Args:
|
| 320 |
+
controlnets (`List[HunyuanDiT2DControlNetModel]`):
|
| 321 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 322 |
+
`HunyuanDiT2DControlNetModel` as a list.
|
| 323 |
+
"""
|
| 324 |
+
|
| 325 |
+
def __init__(self, controlnets):
|
| 326 |
+
super().__init__()
|
| 327 |
+
self.nets = nn.ModuleList(controlnets)
|
| 328 |
+
|
| 329 |
+
def forward(
|
| 330 |
+
self,
|
| 331 |
+
hidden_states,
|
| 332 |
+
timestep,
|
| 333 |
+
controlnet_cond: torch.Tensor,
|
| 334 |
+
conditioning_scale: float = 1.0,
|
| 335 |
+
encoder_hidden_states=None,
|
| 336 |
+
text_embedding_mask=None,
|
| 337 |
+
encoder_hidden_states_t5=None,
|
| 338 |
+
text_embedding_mask_t5=None,
|
| 339 |
+
image_meta_size=None,
|
| 340 |
+
style=None,
|
| 341 |
+
image_rotary_emb=None,
|
| 342 |
+
return_dict=True,
|
| 343 |
+
):
|
| 344 |
+
"""
|
| 345 |
+
The [`HunyuanDiT2DControlNetModel`] forward method.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
|
| 349 |
+
The input tensor.
|
| 350 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 351 |
+
Used to indicate denoising step.
|
| 352 |
+
controlnet_cond ( `torch.Tensor` ):
|
| 353 |
+
The conditioning input to ControlNet.
|
| 354 |
+
conditioning_scale ( `float` ):
|
| 355 |
+
Indicate the conditioning scale.
|
| 356 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 357 |
+
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
|
| 358 |
+
text_embedding_mask: torch.Tensor
|
| 359 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
| 360 |
+
of `BertModel`.
|
| 361 |
+
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 362 |
+
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
|
| 363 |
+
text_embedding_mask_t5: torch.Tensor
|
| 364 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
| 365 |
+
of T5 Text Encoder.
|
| 366 |
+
image_meta_size (torch.Tensor):
|
| 367 |
+
Conditional embedding indicate the image sizes
|
| 368 |
+
style: torch.Tensor:
|
| 369 |
+
Conditional embedding indicate the style
|
| 370 |
+
image_rotary_emb (`torch.Tensor`):
|
| 371 |
+
The image rotary embeddings to apply on query and key tensors during attention calculation.
|
| 372 |
+
return_dict: bool
|
| 373 |
+
Whether to return a dictionary.
|
| 374 |
+
"""
|
| 375 |
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
| 376 |
+
block_samples = controlnet(
|
| 377 |
+
hidden_states=hidden_states,
|
| 378 |
+
timestep=timestep,
|
| 379 |
+
controlnet_cond=image,
|
| 380 |
+
conditioning_scale=scale,
|
| 381 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 382 |
+
text_embedding_mask=text_embedding_mask,
|
| 383 |
+
encoder_hidden_states_t5=encoder_hidden_states_t5,
|
| 384 |
+
text_embedding_mask_t5=text_embedding_mask_t5,
|
| 385 |
+
image_meta_size=image_meta_size,
|
| 386 |
+
style=style,
|
| 387 |
+
image_rotary_emb=image_rotary_emb,
|
| 388 |
+
return_dict=return_dict,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# merge samples
|
| 392 |
+
if i == 0:
|
| 393 |
+
control_block_samples = block_samples
|
| 394 |
+
else:
|
| 395 |
+
control_block_samples = [
|
| 396 |
+
control_block_sample + block_sample
|
| 397 |
+
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
|
| 398 |
+
]
|
| 399 |
+
control_block_samples = (control_block_samples,)
|
| 400 |
+
|
| 401 |
+
return control_block_samples
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_qwenimage.py
ADDED
|
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ..attention_processor import AttentionProcessor
|
| 25 |
+
from ..cache_utils import CacheMixin
|
| 26 |
+
from ..controlnets.controlnet import zero_module
|
| 27 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from ..transformers.transformer_qwenimage import (
|
| 30 |
+
QwenEmbedRope,
|
| 31 |
+
QwenImageTransformerBlock,
|
| 32 |
+
QwenTimestepProjEmbeddings,
|
| 33 |
+
RMSNorm,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@dataclass
|
| 41 |
+
class QwenImageControlNetOutput(BaseOutput):
|
| 42 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class QwenImageControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
| 46 |
+
_supports_gradient_checkpointing = True
|
| 47 |
+
|
| 48 |
+
@register_to_config
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
patch_size: int = 2,
|
| 52 |
+
in_channels: int = 64,
|
| 53 |
+
out_channels: Optional[int] = 16,
|
| 54 |
+
num_layers: int = 60,
|
| 55 |
+
attention_head_dim: int = 128,
|
| 56 |
+
num_attention_heads: int = 24,
|
| 57 |
+
joint_attention_dim: int = 3584,
|
| 58 |
+
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
| 59 |
+
extra_condition_channels: int = 0, # for controlnet-inpainting
|
| 60 |
+
):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.out_channels = out_channels or in_channels
|
| 63 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 64 |
+
|
| 65 |
+
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
| 66 |
+
|
| 67 |
+
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
| 68 |
+
|
| 69 |
+
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
| 70 |
+
|
| 71 |
+
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
| 72 |
+
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 73 |
+
|
| 74 |
+
self.transformer_blocks = nn.ModuleList(
|
| 75 |
+
[
|
| 76 |
+
QwenImageTransformerBlock(
|
| 77 |
+
dim=self.inner_dim,
|
| 78 |
+
num_attention_heads=num_attention_heads,
|
| 79 |
+
attention_head_dim=attention_head_dim,
|
| 80 |
+
)
|
| 81 |
+
for _ in range(num_layers)
|
| 82 |
+
]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# controlnet_blocks
|
| 86 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 87 |
+
for _ in range(len(self.transformer_blocks)):
|
| 88 |
+
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
| 89 |
+
self.controlnet_x_embedder = zero_module(
|
| 90 |
+
torch.nn.Linear(in_channels + extra_condition_channels, self.inner_dim)
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
self.gradient_checkpointing = False
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 97 |
+
def attn_processors(self):
|
| 98 |
+
r"""
|
| 99 |
+
Returns:
|
| 100 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 101 |
+
indexed by its weight name.
|
| 102 |
+
"""
|
| 103 |
+
# set recursively
|
| 104 |
+
processors = {}
|
| 105 |
+
|
| 106 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 107 |
+
if hasattr(module, "get_processor"):
|
| 108 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 109 |
+
|
| 110 |
+
for sub_name, child in module.named_children():
|
| 111 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 112 |
+
|
| 113 |
+
return processors
|
| 114 |
+
|
| 115 |
+
for name, module in self.named_children():
|
| 116 |
+
fn_recursive_add_processors(name, module, processors)
|
| 117 |
+
|
| 118 |
+
return processors
|
| 119 |
+
|
| 120 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 121 |
+
def set_attn_processor(self, processor):
|
| 122 |
+
r"""
|
| 123 |
+
Sets the attention processor to use to compute attention.
|
| 124 |
+
|
| 125 |
+
Parameters:
|
| 126 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 127 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 128 |
+
for **all** `Attention` layers.
|
| 129 |
+
|
| 130 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 131 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 132 |
+
|
| 133 |
+
"""
|
| 134 |
+
count = len(self.attn_processors.keys())
|
| 135 |
+
|
| 136 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 137 |
+
raise ValueError(
|
| 138 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 139 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 143 |
+
if hasattr(module, "set_processor"):
|
| 144 |
+
if not isinstance(processor, dict):
|
| 145 |
+
module.set_processor(processor)
|
| 146 |
+
else:
|
| 147 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 148 |
+
|
| 149 |
+
for sub_name, child in module.named_children():
|
| 150 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 151 |
+
|
| 152 |
+
for name, module in self.named_children():
|
| 153 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 154 |
+
|
| 155 |
+
@classmethod
|
| 156 |
+
def from_transformer(
|
| 157 |
+
cls,
|
| 158 |
+
transformer,
|
| 159 |
+
num_layers: int = 5,
|
| 160 |
+
attention_head_dim: int = 128,
|
| 161 |
+
num_attention_heads: int = 24,
|
| 162 |
+
load_weights_from_transformer=True,
|
| 163 |
+
extra_condition_channels: int = 0,
|
| 164 |
+
):
|
| 165 |
+
config = dict(transformer.config)
|
| 166 |
+
config["num_layers"] = num_layers
|
| 167 |
+
config["attention_head_dim"] = attention_head_dim
|
| 168 |
+
config["num_attention_heads"] = num_attention_heads
|
| 169 |
+
config["extra_condition_channels"] = extra_condition_channels
|
| 170 |
+
|
| 171 |
+
controlnet = cls.from_config(config)
|
| 172 |
+
|
| 173 |
+
if load_weights_from_transformer:
|
| 174 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
| 175 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
| 176 |
+
controlnet.img_in.load_state_dict(transformer.img_in.state_dict())
|
| 177 |
+
controlnet.txt_in.load_state_dict(transformer.txt_in.state_dict())
|
| 178 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
| 179 |
+
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
| 180 |
+
|
| 181 |
+
return controlnet
|
| 182 |
+
|
| 183 |
+
def forward(
|
| 184 |
+
self,
|
| 185 |
+
hidden_states: torch.Tensor,
|
| 186 |
+
controlnet_cond: torch.Tensor,
|
| 187 |
+
conditioning_scale: float = 1.0,
|
| 188 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 189 |
+
encoder_hidden_states_mask: torch.Tensor = None,
|
| 190 |
+
timestep: torch.LongTensor = None,
|
| 191 |
+
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
| 192 |
+
txt_seq_lens: Optional[List[int]] = None,
|
| 193 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 194 |
+
return_dict: bool = True,
|
| 195 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 196 |
+
"""
|
| 197 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 201 |
+
Input `hidden_states`.
|
| 202 |
+
controlnet_cond (`torch.Tensor`):
|
| 203 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 204 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 205 |
+
The scale factor for ControlNet outputs.
|
| 206 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 207 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 208 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 209 |
+
from the embeddings of input conditions.
|
| 210 |
+
timestep ( `torch.LongTensor`):
|
| 211 |
+
Used to indicate denoising step.
|
| 212 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 213 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 214 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 215 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 216 |
+
`self.processor` in
|
| 217 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 218 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 219 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 220 |
+
tuple.
|
| 221 |
+
|
| 222 |
+
Returns:
|
| 223 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 224 |
+
`tuple` where the first element is the sample tensor.
|
| 225 |
+
"""
|
| 226 |
+
if joint_attention_kwargs is not None:
|
| 227 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 228 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 229 |
+
else:
|
| 230 |
+
lora_scale = 1.0
|
| 231 |
+
|
| 232 |
+
if USE_PEFT_BACKEND:
|
| 233 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 234 |
+
scale_lora_layers(self, lora_scale)
|
| 235 |
+
else:
|
| 236 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 237 |
+
logger.warning(
|
| 238 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 239 |
+
)
|
| 240 |
+
hidden_states = self.img_in(hidden_states)
|
| 241 |
+
|
| 242 |
+
# add
|
| 243 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
| 244 |
+
|
| 245 |
+
temb = self.time_text_embed(timestep, hidden_states)
|
| 246 |
+
|
| 247 |
+
image_rotary_emb = self.pos_embed(img_shapes, txt_seq_lens, device=hidden_states.device)
|
| 248 |
+
|
| 249 |
+
timestep = timestep.to(hidden_states.dtype)
|
| 250 |
+
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
| 251 |
+
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
| 252 |
+
|
| 253 |
+
block_samples = ()
|
| 254 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 255 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 256 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 257 |
+
block,
|
| 258 |
+
hidden_states,
|
| 259 |
+
encoder_hidden_states,
|
| 260 |
+
encoder_hidden_states_mask,
|
| 261 |
+
temb,
|
| 262 |
+
image_rotary_emb,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
else:
|
| 266 |
+
encoder_hidden_states, hidden_states = block(
|
| 267 |
+
hidden_states=hidden_states,
|
| 268 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 269 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
| 270 |
+
temb=temb,
|
| 271 |
+
image_rotary_emb=image_rotary_emb,
|
| 272 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 273 |
+
)
|
| 274 |
+
block_samples = block_samples + (hidden_states,)
|
| 275 |
+
|
| 276 |
+
# controlnet block
|
| 277 |
+
controlnet_block_samples = ()
|
| 278 |
+
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
| 279 |
+
block_sample = controlnet_block(block_sample)
|
| 280 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
| 281 |
+
|
| 282 |
+
# scaling
|
| 283 |
+
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
| 284 |
+
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
| 285 |
+
|
| 286 |
+
if USE_PEFT_BACKEND:
|
| 287 |
+
# remove `lora_scale` from each PEFT layer
|
| 288 |
+
unscale_lora_layers(self, lora_scale)
|
| 289 |
+
|
| 290 |
+
if not return_dict:
|
| 291 |
+
return controlnet_block_samples
|
| 292 |
+
|
| 293 |
+
return QwenImageControlNetOutput(
|
| 294 |
+
controlnet_block_samples=controlnet_block_samples,
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
class QwenImageMultiControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
| 299 |
+
r"""
|
| 300 |
+
`QwenImageMultiControlNetModel` wrapper class for Multi-QwenImageControlNetModel
|
| 301 |
+
|
| 302 |
+
This module is a wrapper for multiple instances of the `QwenImageControlNetModel`. The `forward()` API is designed
|
| 303 |
+
to be compatible with `QwenImageControlNetModel`.
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
controlnets (`List[QwenImageControlNetModel]`):
|
| 307 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 308 |
+
`QwenImageControlNetModel` as a list.
|
| 309 |
+
"""
|
| 310 |
+
|
| 311 |
+
def __init__(self, controlnets):
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.nets = nn.ModuleList(controlnets)
|
| 314 |
+
|
| 315 |
+
def forward(
|
| 316 |
+
self,
|
| 317 |
+
hidden_states: torch.FloatTensor,
|
| 318 |
+
controlnet_cond: List[torch.tensor],
|
| 319 |
+
conditioning_scale: List[float],
|
| 320 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 321 |
+
encoder_hidden_states_mask: torch.Tensor = None,
|
| 322 |
+
timestep: torch.LongTensor = None,
|
| 323 |
+
img_shapes: Optional[List[Tuple[int, int, int]]] = None,
|
| 324 |
+
txt_seq_lens: Optional[List[int]] = None,
|
| 325 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 326 |
+
return_dict: bool = True,
|
| 327 |
+
) -> Union[QwenImageControlNetOutput, Tuple]:
|
| 328 |
+
# ControlNet-Union with multiple conditions
|
| 329 |
+
# only load one ControlNet for saving memories
|
| 330 |
+
if len(self.nets) == 1:
|
| 331 |
+
controlnet = self.nets[0]
|
| 332 |
+
|
| 333 |
+
for i, (image, scale) in enumerate(zip(controlnet_cond, conditioning_scale)):
|
| 334 |
+
block_samples = controlnet(
|
| 335 |
+
hidden_states=hidden_states,
|
| 336 |
+
controlnet_cond=image,
|
| 337 |
+
conditioning_scale=scale,
|
| 338 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 339 |
+
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
| 340 |
+
timestep=timestep,
|
| 341 |
+
img_shapes=img_shapes,
|
| 342 |
+
txt_seq_lens=txt_seq_lens,
|
| 343 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 344 |
+
return_dict=return_dict,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# merge samples
|
| 348 |
+
if i == 0:
|
| 349 |
+
control_block_samples = block_samples
|
| 350 |
+
else:
|
| 351 |
+
if block_samples is not None and control_block_samples is not None:
|
| 352 |
+
control_block_samples = [
|
| 353 |
+
control_block_sample + block_sample
|
| 354 |
+
for control_block_sample, block_sample in zip(control_block_samples, block_samples)
|
| 355 |
+
]
|
| 356 |
+
else:
|
| 357 |
+
raise ValueError("QwenImageMultiControlNetModel only supports a single controlnet-union now.")
|
| 358 |
+
|
| 359 |
+
return control_block_samples
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_sana.py
ADDED
|
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, BaseOutput, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ..attention_processor import AttentionProcessor
|
| 25 |
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
| 26 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 27 |
+
from ..modeling_utils import ModelMixin
|
| 28 |
+
from ..normalization import AdaLayerNormSingle, RMSNorm
|
| 29 |
+
from ..transformers.sana_transformer import SanaTransformerBlock
|
| 30 |
+
from .controlnet import zero_module
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@dataclass
|
| 37 |
+
class SanaControlNetOutput(BaseOutput):
|
| 38 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class SanaControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
| 42 |
+
_supports_gradient_checkpointing = True
|
| 43 |
+
_no_split_modules = ["SanaTransformerBlock", "PatchEmbed"]
|
| 44 |
+
_skip_layerwise_casting_patterns = ["patch_embed", "norm"]
|
| 45 |
+
|
| 46 |
+
@register_to_config
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
in_channels: int = 32,
|
| 50 |
+
out_channels: Optional[int] = 32,
|
| 51 |
+
num_attention_heads: int = 70,
|
| 52 |
+
attention_head_dim: int = 32,
|
| 53 |
+
num_layers: int = 7,
|
| 54 |
+
num_cross_attention_heads: Optional[int] = 20,
|
| 55 |
+
cross_attention_head_dim: Optional[int] = 112,
|
| 56 |
+
cross_attention_dim: Optional[int] = 2240,
|
| 57 |
+
caption_channels: int = 2304,
|
| 58 |
+
mlp_ratio: float = 2.5,
|
| 59 |
+
dropout: float = 0.0,
|
| 60 |
+
attention_bias: bool = False,
|
| 61 |
+
sample_size: int = 32,
|
| 62 |
+
patch_size: int = 1,
|
| 63 |
+
norm_elementwise_affine: bool = False,
|
| 64 |
+
norm_eps: float = 1e-6,
|
| 65 |
+
interpolation_scale: Optional[int] = None,
|
| 66 |
+
) -> None:
|
| 67 |
+
super().__init__()
|
| 68 |
+
|
| 69 |
+
out_channels = out_channels or in_channels
|
| 70 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 71 |
+
|
| 72 |
+
# 1. Patch Embedding
|
| 73 |
+
self.patch_embed = PatchEmbed(
|
| 74 |
+
height=sample_size,
|
| 75 |
+
width=sample_size,
|
| 76 |
+
patch_size=patch_size,
|
| 77 |
+
in_channels=in_channels,
|
| 78 |
+
embed_dim=inner_dim,
|
| 79 |
+
interpolation_scale=interpolation_scale,
|
| 80 |
+
pos_embed_type="sincos" if interpolation_scale is not None else None,
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# 2. Additional condition embeddings
|
| 84 |
+
self.time_embed = AdaLayerNormSingle(inner_dim)
|
| 85 |
+
|
| 86 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
| 87 |
+
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
|
| 88 |
+
|
| 89 |
+
# 3. Transformer blocks
|
| 90 |
+
self.transformer_blocks = nn.ModuleList(
|
| 91 |
+
[
|
| 92 |
+
SanaTransformerBlock(
|
| 93 |
+
inner_dim,
|
| 94 |
+
num_attention_heads,
|
| 95 |
+
attention_head_dim,
|
| 96 |
+
dropout=dropout,
|
| 97 |
+
num_cross_attention_heads=num_cross_attention_heads,
|
| 98 |
+
cross_attention_head_dim=cross_attention_head_dim,
|
| 99 |
+
cross_attention_dim=cross_attention_dim,
|
| 100 |
+
attention_bias=attention_bias,
|
| 101 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 102 |
+
norm_eps=norm_eps,
|
| 103 |
+
mlp_ratio=mlp_ratio,
|
| 104 |
+
)
|
| 105 |
+
for _ in range(num_layers)
|
| 106 |
+
]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# controlnet_blocks
|
| 110 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 111 |
+
|
| 112 |
+
self.input_block = zero_module(nn.Linear(inner_dim, inner_dim))
|
| 113 |
+
for _ in range(len(self.transformer_blocks)):
|
| 114 |
+
controlnet_block = nn.Linear(inner_dim, inner_dim)
|
| 115 |
+
controlnet_block = zero_module(controlnet_block)
|
| 116 |
+
self.controlnet_blocks.append(controlnet_block)
|
| 117 |
+
|
| 118 |
+
self.gradient_checkpointing = False
|
| 119 |
+
|
| 120 |
+
@property
|
| 121 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 122 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 123 |
+
r"""
|
| 124 |
+
Returns:
|
| 125 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 126 |
+
indexed by its weight name.
|
| 127 |
+
"""
|
| 128 |
+
# set recursively
|
| 129 |
+
processors = {}
|
| 130 |
+
|
| 131 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 132 |
+
if hasattr(module, "get_processor"):
|
| 133 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 134 |
+
|
| 135 |
+
for sub_name, child in module.named_children():
|
| 136 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 137 |
+
|
| 138 |
+
return processors
|
| 139 |
+
|
| 140 |
+
for name, module in self.named_children():
|
| 141 |
+
fn_recursive_add_processors(name, module, processors)
|
| 142 |
+
|
| 143 |
+
return processors
|
| 144 |
+
|
| 145 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 146 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 147 |
+
r"""
|
| 148 |
+
Sets the attention processor to use to compute attention.
|
| 149 |
+
|
| 150 |
+
Parameters:
|
| 151 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 152 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 153 |
+
for **all** `Attention` layers.
|
| 154 |
+
|
| 155 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 156 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 157 |
+
|
| 158 |
+
"""
|
| 159 |
+
count = len(self.attn_processors.keys())
|
| 160 |
+
|
| 161 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 162 |
+
raise ValueError(
|
| 163 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 164 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 168 |
+
if hasattr(module, "set_processor"):
|
| 169 |
+
if not isinstance(processor, dict):
|
| 170 |
+
module.set_processor(processor)
|
| 171 |
+
else:
|
| 172 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 173 |
+
|
| 174 |
+
for sub_name, child in module.named_children():
|
| 175 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 176 |
+
|
| 177 |
+
for name, module in self.named_children():
|
| 178 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 179 |
+
|
| 180 |
+
def forward(
|
| 181 |
+
self,
|
| 182 |
+
hidden_states: torch.Tensor,
|
| 183 |
+
encoder_hidden_states: torch.Tensor,
|
| 184 |
+
timestep: torch.LongTensor,
|
| 185 |
+
controlnet_cond: torch.Tensor,
|
| 186 |
+
conditioning_scale: float = 1.0,
|
| 187 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 188 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 189 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 190 |
+
return_dict: bool = True,
|
| 191 |
+
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
|
| 192 |
+
if attention_kwargs is not None:
|
| 193 |
+
attention_kwargs = attention_kwargs.copy()
|
| 194 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 195 |
+
else:
|
| 196 |
+
lora_scale = 1.0
|
| 197 |
+
|
| 198 |
+
if USE_PEFT_BACKEND:
|
| 199 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 200 |
+
scale_lora_layers(self, lora_scale)
|
| 201 |
+
else:
|
| 202 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 203 |
+
logger.warning(
|
| 204 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 208 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 209 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 210 |
+
# expects mask of shape:
|
| 211 |
+
# [batch, key_tokens]
|
| 212 |
+
# adds singleton query_tokens dimension:
|
| 213 |
+
# [batch, 1, key_tokens]
|
| 214 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 215 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 216 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 217 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 218 |
+
# assume that mask is expressed as:
|
| 219 |
+
# (1 = keep, 0 = discard)
|
| 220 |
+
# convert mask into a bias that can be added to attention scores:
|
| 221 |
+
# (keep = +0, discard = -10000.0)
|
| 222 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 223 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 224 |
+
|
| 225 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 226 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 227 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 228 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 229 |
+
|
| 230 |
+
# 1. Input
|
| 231 |
+
batch_size, num_channels, height, width = hidden_states.shape
|
| 232 |
+
p = self.config.patch_size
|
| 233 |
+
post_patch_height, post_patch_width = height // p, width // p
|
| 234 |
+
|
| 235 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 236 |
+
hidden_states = hidden_states + self.input_block(self.patch_embed(controlnet_cond.to(hidden_states.dtype)))
|
| 237 |
+
|
| 238 |
+
timestep, embedded_timestep = self.time_embed(
|
| 239 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 243 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 244 |
+
|
| 245 |
+
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
|
| 246 |
+
|
| 247 |
+
# 2. Transformer blocks
|
| 248 |
+
block_res_samples = ()
|
| 249 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 250 |
+
for block in self.transformer_blocks:
|
| 251 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 252 |
+
block,
|
| 253 |
+
hidden_states,
|
| 254 |
+
attention_mask,
|
| 255 |
+
encoder_hidden_states,
|
| 256 |
+
encoder_attention_mask,
|
| 257 |
+
timestep,
|
| 258 |
+
post_patch_height,
|
| 259 |
+
post_patch_width,
|
| 260 |
+
)
|
| 261 |
+
block_res_samples = block_res_samples + (hidden_states,)
|
| 262 |
+
else:
|
| 263 |
+
for block in self.transformer_blocks:
|
| 264 |
+
hidden_states = block(
|
| 265 |
+
hidden_states,
|
| 266 |
+
attention_mask,
|
| 267 |
+
encoder_hidden_states,
|
| 268 |
+
encoder_attention_mask,
|
| 269 |
+
timestep,
|
| 270 |
+
post_patch_height,
|
| 271 |
+
post_patch_width,
|
| 272 |
+
)
|
| 273 |
+
block_res_samples = block_res_samples + (hidden_states,)
|
| 274 |
+
|
| 275 |
+
# 3. ControlNet blocks
|
| 276 |
+
controlnet_block_res_samples = ()
|
| 277 |
+
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
| 278 |
+
block_res_sample = controlnet_block(block_res_sample)
|
| 279 |
+
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
| 280 |
+
|
| 281 |
+
if USE_PEFT_BACKEND:
|
| 282 |
+
# remove `lora_scale` from each PEFT layer
|
| 283 |
+
unscale_lora_layers(self, lora_scale)
|
| 284 |
+
|
| 285 |
+
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
|
| 286 |
+
|
| 287 |
+
if not return_dict:
|
| 288 |
+
return (controlnet_block_res_samples,)
|
| 289 |
+
|
| 290 |
+
return SanaControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_sd3.py
ADDED
|
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 24 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 25 |
+
from ..attention import JointTransformerBlock
|
| 26 |
+
from ..attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
| 27 |
+
from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
| 28 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 29 |
+
from ..modeling_utils import ModelMixin
|
| 30 |
+
from ..transformers.transformer_sd3 import SD3SingleTransformerBlock
|
| 31 |
+
from .controlnet import BaseOutput, zero_module
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class SD3ControlNetOutput(BaseOutput):
|
| 39 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 43 |
+
r"""
|
| 44 |
+
ControlNet model for [Stable Diffusion 3](https://huggingface.co/papers/2403.03206).
|
| 45 |
+
|
| 46 |
+
Parameters:
|
| 47 |
+
sample_size (`int`, defaults to `128`):
|
| 48 |
+
The width/height of the latents. This is fixed during training since it is used to learn a number of
|
| 49 |
+
position embeddings.
|
| 50 |
+
patch_size (`int`, defaults to `2`):
|
| 51 |
+
Patch size to turn the input data into small patches.
|
| 52 |
+
in_channels (`int`, defaults to `16`):
|
| 53 |
+
The number of latent channels in the input.
|
| 54 |
+
num_layers (`int`, defaults to `18`):
|
| 55 |
+
The number of layers of transformer blocks to use.
|
| 56 |
+
attention_head_dim (`int`, defaults to `64`):
|
| 57 |
+
The number of channels in each head.
|
| 58 |
+
num_attention_heads (`int`, defaults to `18`):
|
| 59 |
+
The number of heads to use for multi-head attention.
|
| 60 |
+
joint_attention_dim (`int`, defaults to `4096`):
|
| 61 |
+
The embedding dimension to use for joint text-image attention.
|
| 62 |
+
caption_projection_dim (`int`, defaults to `1152`):
|
| 63 |
+
The embedding dimension of caption embeddings.
|
| 64 |
+
pooled_projection_dim (`int`, defaults to `2048`):
|
| 65 |
+
The embedding dimension of pooled text projections.
|
| 66 |
+
out_channels (`int`, defaults to `16`):
|
| 67 |
+
The number of latent channels in the output.
|
| 68 |
+
pos_embed_max_size (`int`, defaults to `96`):
|
| 69 |
+
The maximum latent height/width of positional embeddings.
|
| 70 |
+
extra_conditioning_channels (`int`, defaults to `0`):
|
| 71 |
+
The number of extra channels to use for conditioning for patch embedding.
|
| 72 |
+
dual_attention_layers (`Tuple[int, ...]`, defaults to `()`):
|
| 73 |
+
The number of dual-stream transformer blocks to use.
|
| 74 |
+
qk_norm (`str`, *optional*, defaults to `None`):
|
| 75 |
+
The normalization to use for query and key in the attention layer. If `None`, no normalization is used.
|
| 76 |
+
pos_embed_type (`str`, defaults to `"sincos"`):
|
| 77 |
+
The type of positional embedding to use. Choose between `"sincos"` and `None`.
|
| 78 |
+
use_pos_embed (`bool`, defaults to `True`):
|
| 79 |
+
Whether to use positional embeddings.
|
| 80 |
+
force_zeros_for_pooled_projection (`bool`, defaults to `True`):
|
| 81 |
+
Whether to force zeros for pooled projection embeddings. This is handled in the pipelines by reading the
|
| 82 |
+
config value of the ControlNet model.
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
_supports_gradient_checkpointing = True
|
| 86 |
+
|
| 87 |
+
@register_to_config
|
| 88 |
+
def __init__(
|
| 89 |
+
self,
|
| 90 |
+
sample_size: int = 128,
|
| 91 |
+
patch_size: int = 2,
|
| 92 |
+
in_channels: int = 16,
|
| 93 |
+
num_layers: int = 18,
|
| 94 |
+
attention_head_dim: int = 64,
|
| 95 |
+
num_attention_heads: int = 18,
|
| 96 |
+
joint_attention_dim: int = 4096,
|
| 97 |
+
caption_projection_dim: int = 1152,
|
| 98 |
+
pooled_projection_dim: int = 2048,
|
| 99 |
+
out_channels: int = 16,
|
| 100 |
+
pos_embed_max_size: int = 96,
|
| 101 |
+
extra_conditioning_channels: int = 0,
|
| 102 |
+
dual_attention_layers: Tuple[int, ...] = (),
|
| 103 |
+
qk_norm: Optional[str] = None,
|
| 104 |
+
pos_embed_type: Optional[str] = "sincos",
|
| 105 |
+
use_pos_embed: bool = True,
|
| 106 |
+
force_zeros_for_pooled_projection: bool = True,
|
| 107 |
+
):
|
| 108 |
+
super().__init__()
|
| 109 |
+
default_out_channels = in_channels
|
| 110 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
| 111 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 112 |
+
|
| 113 |
+
if use_pos_embed:
|
| 114 |
+
self.pos_embed = PatchEmbed(
|
| 115 |
+
height=sample_size,
|
| 116 |
+
width=sample_size,
|
| 117 |
+
patch_size=patch_size,
|
| 118 |
+
in_channels=in_channels,
|
| 119 |
+
embed_dim=self.inner_dim,
|
| 120 |
+
pos_embed_max_size=pos_embed_max_size,
|
| 121 |
+
pos_embed_type=pos_embed_type,
|
| 122 |
+
)
|
| 123 |
+
else:
|
| 124 |
+
self.pos_embed = None
|
| 125 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 126 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 127 |
+
)
|
| 128 |
+
if joint_attention_dim is not None:
|
| 129 |
+
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
|
| 130 |
+
|
| 131 |
+
# `attention_head_dim` is doubled to account for the mixing.
|
| 132 |
+
# It needs to crafted when we get the actual checkpoints.
|
| 133 |
+
self.transformer_blocks = nn.ModuleList(
|
| 134 |
+
[
|
| 135 |
+
JointTransformerBlock(
|
| 136 |
+
dim=self.inner_dim,
|
| 137 |
+
num_attention_heads=num_attention_heads,
|
| 138 |
+
attention_head_dim=attention_head_dim,
|
| 139 |
+
context_pre_only=False,
|
| 140 |
+
qk_norm=qk_norm,
|
| 141 |
+
use_dual_attention=True if i in dual_attention_layers else False,
|
| 142 |
+
)
|
| 143 |
+
for i in range(num_layers)
|
| 144 |
+
]
|
| 145 |
+
)
|
| 146 |
+
else:
|
| 147 |
+
self.context_embedder = None
|
| 148 |
+
self.transformer_blocks = nn.ModuleList(
|
| 149 |
+
[
|
| 150 |
+
SD3SingleTransformerBlock(
|
| 151 |
+
dim=self.inner_dim,
|
| 152 |
+
num_attention_heads=num_attention_heads,
|
| 153 |
+
attention_head_dim=attention_head_dim,
|
| 154 |
+
)
|
| 155 |
+
for _ in range(num_layers)
|
| 156 |
+
]
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# controlnet_blocks
|
| 160 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 161 |
+
for _ in range(len(self.transformer_blocks)):
|
| 162 |
+
controlnet_block = nn.Linear(self.inner_dim, self.inner_dim)
|
| 163 |
+
controlnet_block = zero_module(controlnet_block)
|
| 164 |
+
self.controlnet_blocks.append(controlnet_block)
|
| 165 |
+
pos_embed_input = PatchEmbed(
|
| 166 |
+
height=sample_size,
|
| 167 |
+
width=sample_size,
|
| 168 |
+
patch_size=patch_size,
|
| 169 |
+
in_channels=in_channels + extra_conditioning_channels,
|
| 170 |
+
embed_dim=self.inner_dim,
|
| 171 |
+
pos_embed_type=None,
|
| 172 |
+
)
|
| 173 |
+
self.pos_embed_input = zero_module(pos_embed_input)
|
| 174 |
+
|
| 175 |
+
self.gradient_checkpointing = False
|
| 176 |
+
|
| 177 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
| 178 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
| 179 |
+
"""
|
| 180 |
+
Sets the attention processor to use [feed forward
|
| 181 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
| 182 |
+
|
| 183 |
+
Parameters:
|
| 184 |
+
chunk_size (`int`, *optional*):
|
| 185 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
| 186 |
+
over each tensor of dim=`dim`.
|
| 187 |
+
dim (`int`, *optional*, defaults to `0`):
|
| 188 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
| 189 |
+
or dim=1 (sequence length).
|
| 190 |
+
"""
|
| 191 |
+
if dim not in [0, 1]:
|
| 192 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
| 193 |
+
|
| 194 |
+
# By default chunk size is 1
|
| 195 |
+
chunk_size = chunk_size or 1
|
| 196 |
+
|
| 197 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 198 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 199 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 200 |
+
|
| 201 |
+
for child in module.children():
|
| 202 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 203 |
+
|
| 204 |
+
for module in self.children():
|
| 205 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
| 206 |
+
|
| 207 |
+
@property
|
| 208 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 209 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 210 |
+
r"""
|
| 211 |
+
Returns:
|
| 212 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 213 |
+
indexed by its weight name.
|
| 214 |
+
"""
|
| 215 |
+
# set recursively
|
| 216 |
+
processors = {}
|
| 217 |
+
|
| 218 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 219 |
+
if hasattr(module, "get_processor"):
|
| 220 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 221 |
+
|
| 222 |
+
for sub_name, child in module.named_children():
|
| 223 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 224 |
+
|
| 225 |
+
return processors
|
| 226 |
+
|
| 227 |
+
for name, module in self.named_children():
|
| 228 |
+
fn_recursive_add_processors(name, module, processors)
|
| 229 |
+
|
| 230 |
+
return processors
|
| 231 |
+
|
| 232 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 233 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 234 |
+
r"""
|
| 235 |
+
Sets the attention processor to use to compute attention.
|
| 236 |
+
|
| 237 |
+
Parameters:
|
| 238 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 239 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 240 |
+
for **all** `Attention` layers.
|
| 241 |
+
|
| 242 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 243 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 244 |
+
|
| 245 |
+
"""
|
| 246 |
+
count = len(self.attn_processors.keys())
|
| 247 |
+
|
| 248 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 249 |
+
raise ValueError(
|
| 250 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 251 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 255 |
+
if hasattr(module, "set_processor"):
|
| 256 |
+
if not isinstance(processor, dict):
|
| 257 |
+
module.set_processor(processor)
|
| 258 |
+
else:
|
| 259 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 260 |
+
|
| 261 |
+
for sub_name, child in module.named_children():
|
| 262 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 263 |
+
|
| 264 |
+
for name, module in self.named_children():
|
| 265 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 266 |
+
|
| 267 |
+
# Copied from diffusers.models.transformers.transformer_sd3.SD3Transformer2DModel.fuse_qkv_projections
|
| 268 |
+
def fuse_qkv_projections(self):
|
| 269 |
+
"""
|
| 270 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 271 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 272 |
+
|
| 273 |
+
<Tip warning={true}>
|
| 274 |
+
|
| 275 |
+
This API is 🧪 experimental.
|
| 276 |
+
|
| 277 |
+
</Tip>
|
| 278 |
+
"""
|
| 279 |
+
self.original_attn_processors = None
|
| 280 |
+
|
| 281 |
+
for _, attn_processor in self.attn_processors.items():
|
| 282 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 283 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 284 |
+
|
| 285 |
+
self.original_attn_processors = self.attn_processors
|
| 286 |
+
|
| 287 |
+
for module in self.modules():
|
| 288 |
+
if isinstance(module, Attention):
|
| 289 |
+
module.fuse_projections(fuse=True)
|
| 290 |
+
|
| 291 |
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
| 292 |
+
|
| 293 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 294 |
+
def unfuse_qkv_projections(self):
|
| 295 |
+
"""Disables the fused QKV projection if enabled.
|
| 296 |
+
|
| 297 |
+
<Tip warning={true}>
|
| 298 |
+
|
| 299 |
+
This API is 🧪 experimental.
|
| 300 |
+
|
| 301 |
+
</Tip>
|
| 302 |
+
|
| 303 |
+
"""
|
| 304 |
+
if self.original_attn_processors is not None:
|
| 305 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 306 |
+
|
| 307 |
+
# Notes: This is for SD3.5 8b controlnet, which shares the pos_embed with the transformer
|
| 308 |
+
# we should have handled this in conversion script
|
| 309 |
+
def _get_pos_embed_from_transformer(self, transformer):
|
| 310 |
+
pos_embed = PatchEmbed(
|
| 311 |
+
height=transformer.config.sample_size,
|
| 312 |
+
width=transformer.config.sample_size,
|
| 313 |
+
patch_size=transformer.config.patch_size,
|
| 314 |
+
in_channels=transformer.config.in_channels,
|
| 315 |
+
embed_dim=transformer.inner_dim,
|
| 316 |
+
pos_embed_max_size=transformer.config.pos_embed_max_size,
|
| 317 |
+
)
|
| 318 |
+
pos_embed.load_state_dict(transformer.pos_embed.state_dict(), strict=True)
|
| 319 |
+
return pos_embed
|
| 320 |
+
|
| 321 |
+
@classmethod
|
| 322 |
+
def from_transformer(
|
| 323 |
+
cls, transformer, num_layers=12, num_extra_conditioning_channels=1, load_weights_from_transformer=True
|
| 324 |
+
):
|
| 325 |
+
config = transformer.config
|
| 326 |
+
config["num_layers"] = num_layers or config.num_layers
|
| 327 |
+
config["extra_conditioning_channels"] = num_extra_conditioning_channels
|
| 328 |
+
controlnet = cls.from_config(config)
|
| 329 |
+
|
| 330 |
+
if load_weights_from_transformer:
|
| 331 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
| 332 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
| 333 |
+
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
| 334 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
| 335 |
+
|
| 336 |
+
controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input)
|
| 337 |
+
|
| 338 |
+
return controlnet
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
hidden_states: torch.Tensor,
|
| 343 |
+
controlnet_cond: torch.Tensor,
|
| 344 |
+
conditioning_scale: float = 1.0,
|
| 345 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 346 |
+
pooled_projections: torch.Tensor = None,
|
| 347 |
+
timestep: torch.LongTensor = None,
|
| 348 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 349 |
+
return_dict: bool = True,
|
| 350 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 351 |
+
"""
|
| 352 |
+
The [`SD3Transformer2DModel`] forward method.
|
| 353 |
+
|
| 354 |
+
Args:
|
| 355 |
+
hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`):
|
| 356 |
+
Input `hidden_states`.
|
| 357 |
+
controlnet_cond (`torch.Tensor`):
|
| 358 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 359 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 360 |
+
The scale factor for ControlNet outputs.
|
| 361 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 362 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 363 |
+
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 364 |
+
from the embeddings of input conditions.
|
| 365 |
+
timestep ( `torch.LongTensor`):
|
| 366 |
+
Used to indicate denoising step.
|
| 367 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 368 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 369 |
+
`self.processor` in
|
| 370 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 371 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 372 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 373 |
+
tuple.
|
| 374 |
+
|
| 375 |
+
Returns:
|
| 376 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 377 |
+
`tuple` where the first element is the sample tensor.
|
| 378 |
+
"""
|
| 379 |
+
if joint_attention_kwargs is not None:
|
| 380 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 381 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 382 |
+
else:
|
| 383 |
+
lora_scale = 1.0
|
| 384 |
+
|
| 385 |
+
if USE_PEFT_BACKEND:
|
| 386 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 387 |
+
scale_lora_layers(self, lora_scale)
|
| 388 |
+
else:
|
| 389 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 390 |
+
logger.warning(
|
| 391 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
if self.pos_embed is not None and hidden_states.ndim != 4:
|
| 395 |
+
raise ValueError("hidden_states must be 4D when pos_embed is used")
|
| 396 |
+
|
| 397 |
+
# SD3.5 8b controlnet does not have a `pos_embed`,
|
| 398 |
+
# it use the `pos_embed` from the transformer to process input before passing to controlnet
|
| 399 |
+
elif self.pos_embed is None and hidden_states.ndim != 3:
|
| 400 |
+
raise ValueError("hidden_states must be 3D when pos_embed is not used")
|
| 401 |
+
|
| 402 |
+
if self.context_embedder is not None and encoder_hidden_states is None:
|
| 403 |
+
raise ValueError("encoder_hidden_states must be provided when context_embedder is used")
|
| 404 |
+
# SD3.5 8b controlnet does not have a `context_embedder`, it does not use `encoder_hidden_states`
|
| 405 |
+
elif self.context_embedder is None and encoder_hidden_states is not None:
|
| 406 |
+
raise ValueError("encoder_hidden_states should not be provided when context_embedder is not used")
|
| 407 |
+
|
| 408 |
+
if self.pos_embed is not None:
|
| 409 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
| 410 |
+
|
| 411 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
| 412 |
+
|
| 413 |
+
if self.context_embedder is not None:
|
| 414 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 415 |
+
|
| 416 |
+
# add
|
| 417 |
+
hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)
|
| 418 |
+
|
| 419 |
+
block_res_samples = ()
|
| 420 |
+
|
| 421 |
+
for block in self.transformer_blocks:
|
| 422 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 423 |
+
if self.context_embedder is not None:
|
| 424 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 425 |
+
block,
|
| 426 |
+
hidden_states,
|
| 427 |
+
encoder_hidden_states,
|
| 428 |
+
temb,
|
| 429 |
+
)
|
| 430 |
+
else:
|
| 431 |
+
# SD3.5 8b controlnet use single transformer block, which does not use `encoder_hidden_states`
|
| 432 |
+
hidden_states = self._gradient_checkpointing_func(block, hidden_states, temb)
|
| 433 |
+
|
| 434 |
+
else:
|
| 435 |
+
if self.context_embedder is not None:
|
| 436 |
+
encoder_hidden_states, hidden_states = block(
|
| 437 |
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
|
| 438 |
+
)
|
| 439 |
+
else:
|
| 440 |
+
# SD3.5 8b controlnet use single transformer block, which does not use `encoder_hidden_states`
|
| 441 |
+
hidden_states = block(hidden_states, temb)
|
| 442 |
+
|
| 443 |
+
block_res_samples = block_res_samples + (hidden_states,)
|
| 444 |
+
|
| 445 |
+
controlnet_block_res_samples = ()
|
| 446 |
+
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
| 447 |
+
block_res_sample = controlnet_block(block_res_sample)
|
| 448 |
+
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
| 449 |
+
|
| 450 |
+
# 6. scaling
|
| 451 |
+
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
|
| 452 |
+
|
| 453 |
+
if USE_PEFT_BACKEND:
|
| 454 |
+
# remove `lora_scale` from each PEFT layer
|
| 455 |
+
unscale_lora_layers(self, lora_scale)
|
| 456 |
+
|
| 457 |
+
if not return_dict:
|
| 458 |
+
return (controlnet_block_res_samples,)
|
| 459 |
+
|
| 460 |
+
return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
class SD3MultiControlNetModel(ModelMixin):
|
| 464 |
+
r"""
|
| 465 |
+
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
|
| 466 |
+
|
| 467 |
+
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
|
| 468 |
+
compatible with `SD3ControlNetModel`.
|
| 469 |
+
|
| 470 |
+
Args:
|
| 471 |
+
controlnets (`List[SD3ControlNetModel]`):
|
| 472 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 473 |
+
`SD3ControlNetModel` as a list.
|
| 474 |
+
"""
|
| 475 |
+
|
| 476 |
+
def __init__(self, controlnets):
|
| 477 |
+
super().__init__()
|
| 478 |
+
self.nets = nn.ModuleList(controlnets)
|
| 479 |
+
|
| 480 |
+
def forward(
|
| 481 |
+
self,
|
| 482 |
+
hidden_states: torch.Tensor,
|
| 483 |
+
controlnet_cond: List[torch.tensor],
|
| 484 |
+
conditioning_scale: List[float],
|
| 485 |
+
pooled_projections: torch.Tensor,
|
| 486 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 487 |
+
timestep: torch.LongTensor = None,
|
| 488 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 489 |
+
return_dict: bool = True,
|
| 490 |
+
) -> Union[SD3ControlNetOutput, Tuple]:
|
| 491 |
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
| 492 |
+
block_samples = controlnet(
|
| 493 |
+
hidden_states=hidden_states,
|
| 494 |
+
timestep=timestep,
|
| 495 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 496 |
+
pooled_projections=pooled_projections,
|
| 497 |
+
controlnet_cond=image,
|
| 498 |
+
conditioning_scale=scale,
|
| 499 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 500 |
+
return_dict=return_dict,
|
| 501 |
+
)
|
| 502 |
+
|
| 503 |
+
# merge samples
|
| 504 |
+
if i == 0:
|
| 505 |
+
control_block_samples = block_samples
|
| 506 |
+
else:
|
| 507 |
+
control_block_samples = [
|
| 508 |
+
control_block_sample + block_sample
|
| 509 |
+
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
|
| 510 |
+
]
|
| 511 |
+
control_block_samples = (tuple(control_block_samples),)
|
| 512 |
+
|
| 513 |
+
return control_block_samples
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_sparsectrl.py
ADDED
|
@@ -0,0 +1,785 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from dataclasses import dataclass
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
from torch.nn import functional as F
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...loaders import FromOriginalModelMixin
|
| 24 |
+
from ...utils import BaseOutput, logging
|
| 25 |
+
from ..attention_processor import (
|
| 26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 27 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 28 |
+
AttentionProcessor,
|
| 29 |
+
AttnAddedKVProcessor,
|
| 30 |
+
AttnProcessor,
|
| 31 |
+
)
|
| 32 |
+
from ..embeddings import TimestepEmbedding, Timesteps
|
| 33 |
+
from ..modeling_utils import ModelMixin
|
| 34 |
+
from ..unets.unet_2d_blocks import UNetMidBlock2DCrossAttn
|
| 35 |
+
from ..unets.unet_2d_condition import UNet2DConditionModel
|
| 36 |
+
from ..unets.unet_motion_model import CrossAttnDownBlockMotion, DownBlockMotion
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class SparseControlNetOutput(BaseOutput):
|
| 44 |
+
"""
|
| 45 |
+
The output of [`SparseControlNetModel`].
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
| 49 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
| 50 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
| 51 |
+
used to condition the original UNet's downsampling activations.
|
| 52 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
| 53 |
+
The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
|
| 54 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
| 55 |
+
Output can be used to condition the original UNet's middle block activation.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
| 59 |
+
mid_block_res_sample: torch.Tensor
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SparseControlNetConditioningEmbedding(nn.Module):
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
conditioning_embedding_channels: int,
|
| 66 |
+
conditioning_channels: int = 3,
|
| 67 |
+
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 68 |
+
):
|
| 69 |
+
super().__init__()
|
| 70 |
+
|
| 71 |
+
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 72 |
+
self.blocks = nn.ModuleList([])
|
| 73 |
+
|
| 74 |
+
for i in range(len(block_out_channels) - 1):
|
| 75 |
+
channel_in = block_out_channels[i]
|
| 76 |
+
channel_out = block_out_channels[i + 1]
|
| 77 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
| 78 |
+
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
| 79 |
+
|
| 80 |
+
self.conv_out = zero_module(
|
| 81 |
+
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def forward(self, conditioning: torch.Tensor) -> torch.Tensor:
|
| 85 |
+
embedding = self.conv_in(conditioning)
|
| 86 |
+
embedding = F.silu(embedding)
|
| 87 |
+
|
| 88 |
+
for block in self.blocks:
|
| 89 |
+
embedding = block(embedding)
|
| 90 |
+
embedding = F.silu(embedding)
|
| 91 |
+
|
| 92 |
+
embedding = self.conv_out(embedding)
|
| 93 |
+
return embedding
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class SparseControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 97 |
+
"""
|
| 98 |
+
A SparseControlNet model as described in [SparseCtrl: Adding Sparse Controls to Text-to-Video Diffusion
|
| 99 |
+
Models](https://huggingface.co/papers/2311.16933).
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
in_channels (`int`, defaults to 4):
|
| 103 |
+
The number of channels in the input sample.
|
| 104 |
+
conditioning_channels (`int`, defaults to 4):
|
| 105 |
+
The number of input channels in the controlnet conditional embedding module. If
|
| 106 |
+
`concat_condition_embedding` is True, the value provided here is incremented by 1.
|
| 107 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 108 |
+
Whether to flip the sin to cos in the time embedding.
|
| 109 |
+
freq_shift (`int`, defaults to 0):
|
| 110 |
+
The frequency shift to apply to the time embedding.
|
| 111 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 112 |
+
The tuple of downsample blocks to use.
|
| 113 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
| 114 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
| 115 |
+
The tuple of output channels for each block.
|
| 116 |
+
layers_per_block (`int`, defaults to 2):
|
| 117 |
+
The number of layers per block.
|
| 118 |
+
downsample_padding (`int`, defaults to 1):
|
| 119 |
+
The padding to use for the downsampling convolution.
|
| 120 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
| 121 |
+
The scale factor to use for the mid block.
|
| 122 |
+
act_fn (`str`, defaults to "silu"):
|
| 123 |
+
The activation function to use.
|
| 124 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 125 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
| 126 |
+
in post-processing.
|
| 127 |
+
norm_eps (`float`, defaults to 1e-5):
|
| 128 |
+
The epsilon to use for the normalization.
|
| 129 |
+
cross_attention_dim (`int`, defaults to 1280):
|
| 130 |
+
The dimension of the cross attention features.
|
| 131 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 132 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 133 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 134 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 135 |
+
transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 136 |
+
The number of transformer layers to use in each layer in the middle block.
|
| 137 |
+
attention_head_dim (`int` or `Tuple[int]`, defaults to 8):
|
| 138 |
+
The dimension of the attention heads.
|
| 139 |
+
num_attention_heads (`int` or `Tuple[int]`, *optional*):
|
| 140 |
+
The number of heads to use for multi-head attention.
|
| 141 |
+
use_linear_projection (`bool`, defaults to `False`):
|
| 142 |
+
upcast_attention (`bool`, defaults to `False`):
|
| 143 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
| 144 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
| 145 |
+
conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
| 146 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
| 147 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
| 148 |
+
TODO(Patrick) - unused parameter
|
| 149 |
+
controlnet_conditioning_channel_order (`str`, defaults to `rgb`):
|
| 150 |
+
motion_max_seq_length (`int`, defaults to `32`):
|
| 151 |
+
The maximum sequence length to use in the motion module.
|
| 152 |
+
motion_num_attention_heads (`int` or `Tuple[int]`, defaults to `8`):
|
| 153 |
+
The number of heads to use in each attention layer of the motion module.
|
| 154 |
+
concat_conditioning_mask (`bool`, defaults to `True`):
|
| 155 |
+
use_simplified_condition_embedding (`bool`, defaults to `True`):
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
_supports_gradient_checkpointing = True
|
| 159 |
+
|
| 160 |
+
@register_to_config
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
in_channels: int = 4,
|
| 164 |
+
conditioning_channels: int = 4,
|
| 165 |
+
flip_sin_to_cos: bool = True,
|
| 166 |
+
freq_shift: int = 0,
|
| 167 |
+
down_block_types: Tuple[str, ...] = (
|
| 168 |
+
"CrossAttnDownBlockMotion",
|
| 169 |
+
"CrossAttnDownBlockMotion",
|
| 170 |
+
"CrossAttnDownBlockMotion",
|
| 171 |
+
"DownBlockMotion",
|
| 172 |
+
),
|
| 173 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 174 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 175 |
+
layers_per_block: int = 2,
|
| 176 |
+
downsample_padding: int = 1,
|
| 177 |
+
mid_block_scale_factor: float = 1,
|
| 178 |
+
act_fn: str = "silu",
|
| 179 |
+
norm_num_groups: Optional[int] = 32,
|
| 180 |
+
norm_eps: float = 1e-5,
|
| 181 |
+
cross_attention_dim: int = 768,
|
| 182 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
| 183 |
+
transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None,
|
| 184 |
+
temporal_transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
| 185 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
| 186 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
| 187 |
+
use_linear_projection: bool = False,
|
| 188 |
+
upcast_attention: bool = False,
|
| 189 |
+
resnet_time_scale_shift: str = "default",
|
| 190 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 191 |
+
global_pool_conditions: bool = False,
|
| 192 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 193 |
+
motion_max_seq_length: int = 32,
|
| 194 |
+
motion_num_attention_heads: int = 8,
|
| 195 |
+
concat_conditioning_mask: bool = True,
|
| 196 |
+
use_simplified_condition_embedding: bool = True,
|
| 197 |
+
):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.use_simplified_condition_embedding = use_simplified_condition_embedding
|
| 200 |
+
|
| 201 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 202 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 203 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 204 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 205 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 206 |
+
# which is why we correct for the naming here.
|
| 207 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 208 |
+
|
| 209 |
+
# Check inputs
|
| 210 |
+
if len(block_out_channels) != len(down_block_types):
|
| 211 |
+
raise ValueError(
|
| 212 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 216 |
+
raise ValueError(
|
| 217 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 221 |
+
raise ValueError(
|
| 222 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
if isinstance(transformer_layers_per_block, int):
|
| 226 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 227 |
+
if isinstance(temporal_transformer_layers_per_block, int):
|
| 228 |
+
temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types)
|
| 229 |
+
|
| 230 |
+
# input
|
| 231 |
+
conv_in_kernel = 3
|
| 232 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 233 |
+
self.conv_in = nn.Conv2d(
|
| 234 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
if concat_conditioning_mask:
|
| 238 |
+
conditioning_channels = conditioning_channels + 1
|
| 239 |
+
|
| 240 |
+
self.concat_conditioning_mask = concat_conditioning_mask
|
| 241 |
+
|
| 242 |
+
# control net conditioning embedding
|
| 243 |
+
if use_simplified_condition_embedding:
|
| 244 |
+
self.controlnet_cond_embedding = zero_module(
|
| 245 |
+
nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
| 246 |
+
)
|
| 247 |
+
else:
|
| 248 |
+
self.controlnet_cond_embedding = SparseControlNetConditioningEmbedding(
|
| 249 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 250 |
+
block_out_channels=conditioning_embedding_out_channels,
|
| 251 |
+
conditioning_channels=conditioning_channels,
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
# time
|
| 255 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 256 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 257 |
+
timestep_input_dim = block_out_channels[0]
|
| 258 |
+
|
| 259 |
+
self.time_embedding = TimestepEmbedding(
|
| 260 |
+
timestep_input_dim,
|
| 261 |
+
time_embed_dim,
|
| 262 |
+
act_fn=act_fn,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
self.down_blocks = nn.ModuleList([])
|
| 266 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
| 267 |
+
|
| 268 |
+
if isinstance(cross_attention_dim, int):
|
| 269 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
| 270 |
+
|
| 271 |
+
if isinstance(only_cross_attention, bool):
|
| 272 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 273 |
+
|
| 274 |
+
if isinstance(attention_head_dim, int):
|
| 275 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 276 |
+
|
| 277 |
+
if isinstance(num_attention_heads, int):
|
| 278 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 279 |
+
|
| 280 |
+
if isinstance(motion_num_attention_heads, int):
|
| 281 |
+
motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types)
|
| 282 |
+
|
| 283 |
+
# down
|
| 284 |
+
output_channel = block_out_channels[0]
|
| 285 |
+
|
| 286 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 287 |
+
controlnet_block = zero_module(controlnet_block)
|
| 288 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 289 |
+
|
| 290 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 291 |
+
input_channel = output_channel
|
| 292 |
+
output_channel = block_out_channels[i]
|
| 293 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 294 |
+
|
| 295 |
+
if down_block_type == "CrossAttnDownBlockMotion":
|
| 296 |
+
down_block = CrossAttnDownBlockMotion(
|
| 297 |
+
in_channels=input_channel,
|
| 298 |
+
out_channels=output_channel,
|
| 299 |
+
temb_channels=time_embed_dim,
|
| 300 |
+
dropout=0,
|
| 301 |
+
num_layers=layers_per_block,
|
| 302 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 303 |
+
resnet_eps=norm_eps,
|
| 304 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 305 |
+
resnet_act_fn=act_fn,
|
| 306 |
+
resnet_groups=norm_num_groups,
|
| 307 |
+
resnet_pre_norm=True,
|
| 308 |
+
num_attention_heads=num_attention_heads[i],
|
| 309 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 310 |
+
add_downsample=not is_final_block,
|
| 311 |
+
dual_cross_attention=False,
|
| 312 |
+
use_linear_projection=use_linear_projection,
|
| 313 |
+
only_cross_attention=only_cross_attention[i],
|
| 314 |
+
upcast_attention=upcast_attention,
|
| 315 |
+
temporal_num_attention_heads=motion_num_attention_heads[i],
|
| 316 |
+
temporal_max_seq_length=motion_max_seq_length,
|
| 317 |
+
temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
|
| 318 |
+
temporal_double_self_attention=False,
|
| 319 |
+
)
|
| 320 |
+
elif down_block_type == "DownBlockMotion":
|
| 321 |
+
down_block = DownBlockMotion(
|
| 322 |
+
in_channels=input_channel,
|
| 323 |
+
out_channels=output_channel,
|
| 324 |
+
temb_channels=time_embed_dim,
|
| 325 |
+
dropout=0,
|
| 326 |
+
num_layers=layers_per_block,
|
| 327 |
+
resnet_eps=norm_eps,
|
| 328 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 329 |
+
resnet_act_fn=act_fn,
|
| 330 |
+
resnet_groups=norm_num_groups,
|
| 331 |
+
resnet_pre_norm=True,
|
| 332 |
+
add_downsample=not is_final_block,
|
| 333 |
+
temporal_num_attention_heads=motion_num_attention_heads[i],
|
| 334 |
+
temporal_max_seq_length=motion_max_seq_length,
|
| 335 |
+
temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
|
| 336 |
+
temporal_double_self_attention=False,
|
| 337 |
+
)
|
| 338 |
+
else:
|
| 339 |
+
raise ValueError(
|
| 340 |
+
"Invalid `block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`"
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
self.down_blocks.append(down_block)
|
| 344 |
+
|
| 345 |
+
for _ in range(layers_per_block):
|
| 346 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 347 |
+
controlnet_block = zero_module(controlnet_block)
|
| 348 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 349 |
+
|
| 350 |
+
if not is_final_block:
|
| 351 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 352 |
+
controlnet_block = zero_module(controlnet_block)
|
| 353 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 354 |
+
|
| 355 |
+
# mid
|
| 356 |
+
mid_block_channels = block_out_channels[-1]
|
| 357 |
+
|
| 358 |
+
controlnet_block = nn.Conv2d(mid_block_channels, mid_block_channels, kernel_size=1)
|
| 359 |
+
controlnet_block = zero_module(controlnet_block)
|
| 360 |
+
self.controlnet_mid_block = controlnet_block
|
| 361 |
+
|
| 362 |
+
if transformer_layers_per_mid_block is None:
|
| 363 |
+
transformer_layers_per_mid_block = (
|
| 364 |
+
transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 368 |
+
in_channels=mid_block_channels,
|
| 369 |
+
temb_channels=time_embed_dim,
|
| 370 |
+
dropout=0,
|
| 371 |
+
num_layers=1,
|
| 372 |
+
transformer_layers_per_block=transformer_layers_per_mid_block,
|
| 373 |
+
resnet_eps=norm_eps,
|
| 374 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 375 |
+
resnet_act_fn=act_fn,
|
| 376 |
+
resnet_groups=norm_num_groups,
|
| 377 |
+
resnet_pre_norm=True,
|
| 378 |
+
num_attention_heads=num_attention_heads[-1],
|
| 379 |
+
output_scale_factor=mid_block_scale_factor,
|
| 380 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 381 |
+
dual_cross_attention=False,
|
| 382 |
+
use_linear_projection=use_linear_projection,
|
| 383 |
+
upcast_attention=upcast_attention,
|
| 384 |
+
attention_type="default",
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
@classmethod
|
| 388 |
+
def from_unet(
|
| 389 |
+
cls,
|
| 390 |
+
unet: UNet2DConditionModel,
|
| 391 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 392 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 393 |
+
load_weights_from_unet: bool = True,
|
| 394 |
+
conditioning_channels: int = 3,
|
| 395 |
+
) -> "SparseControlNetModel":
|
| 396 |
+
r"""
|
| 397 |
+
Instantiate a [`SparseControlNetModel`] from [`UNet2DConditionModel`].
|
| 398 |
+
|
| 399 |
+
Parameters:
|
| 400 |
+
unet (`UNet2DConditionModel`):
|
| 401 |
+
The UNet model weights to copy to the [`SparseControlNetModel`]. All configuration options are also
|
| 402 |
+
copied where applicable.
|
| 403 |
+
"""
|
| 404 |
+
transformer_layers_per_block = (
|
| 405 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
| 406 |
+
)
|
| 407 |
+
down_block_types = unet.config.down_block_types
|
| 408 |
+
|
| 409 |
+
for i in range(len(down_block_types)):
|
| 410 |
+
if "CrossAttn" in down_block_types[i]:
|
| 411 |
+
down_block_types[i] = "CrossAttnDownBlockMotion"
|
| 412 |
+
elif "Down" in down_block_types[i]:
|
| 413 |
+
down_block_types[i] = "DownBlockMotion"
|
| 414 |
+
else:
|
| 415 |
+
raise ValueError("Invalid `block_type` encountered. Must be a cross-attention or down block")
|
| 416 |
+
|
| 417 |
+
controlnet = cls(
|
| 418 |
+
in_channels=unet.config.in_channels,
|
| 419 |
+
conditioning_channels=conditioning_channels,
|
| 420 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
| 421 |
+
freq_shift=unet.config.freq_shift,
|
| 422 |
+
down_block_types=unet.config.down_block_types,
|
| 423 |
+
only_cross_attention=unet.config.only_cross_attention,
|
| 424 |
+
block_out_channels=unet.config.block_out_channels,
|
| 425 |
+
layers_per_block=unet.config.layers_per_block,
|
| 426 |
+
downsample_padding=unet.config.downsample_padding,
|
| 427 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
| 428 |
+
act_fn=unet.config.act_fn,
|
| 429 |
+
norm_num_groups=unet.config.norm_num_groups,
|
| 430 |
+
norm_eps=unet.config.norm_eps,
|
| 431 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 432 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 433 |
+
attention_head_dim=unet.config.attention_head_dim,
|
| 434 |
+
num_attention_heads=unet.config.num_attention_heads,
|
| 435 |
+
use_linear_projection=unet.config.use_linear_projection,
|
| 436 |
+
upcast_attention=unet.config.upcast_attention,
|
| 437 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
| 438 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 439 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
if load_weights_from_unet:
|
| 443 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict(), strict=False)
|
| 444 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict(), strict=False)
|
| 445 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict(), strict=False)
|
| 446 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
|
| 447 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
|
| 448 |
+
|
| 449 |
+
return controlnet
|
| 450 |
+
|
| 451 |
+
@property
|
| 452 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 453 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 454 |
+
r"""
|
| 455 |
+
Returns:
|
| 456 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 457 |
+
indexed by its weight name.
|
| 458 |
+
"""
|
| 459 |
+
# set recursively
|
| 460 |
+
processors = {}
|
| 461 |
+
|
| 462 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 463 |
+
if hasattr(module, "get_processor"):
|
| 464 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 465 |
+
|
| 466 |
+
for sub_name, child in module.named_children():
|
| 467 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 468 |
+
|
| 469 |
+
return processors
|
| 470 |
+
|
| 471 |
+
for name, module in self.named_children():
|
| 472 |
+
fn_recursive_add_processors(name, module, processors)
|
| 473 |
+
|
| 474 |
+
return processors
|
| 475 |
+
|
| 476 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 477 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 478 |
+
r"""
|
| 479 |
+
Sets the attention processor to use to compute attention.
|
| 480 |
+
|
| 481 |
+
Parameters:
|
| 482 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 483 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 484 |
+
for **all** `Attention` layers.
|
| 485 |
+
|
| 486 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 487 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 488 |
+
|
| 489 |
+
"""
|
| 490 |
+
count = len(self.attn_processors.keys())
|
| 491 |
+
|
| 492 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 493 |
+
raise ValueError(
|
| 494 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 495 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 499 |
+
if hasattr(module, "set_processor"):
|
| 500 |
+
if not isinstance(processor, dict):
|
| 501 |
+
module.set_processor(processor)
|
| 502 |
+
else:
|
| 503 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 504 |
+
|
| 505 |
+
for sub_name, child in module.named_children():
|
| 506 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 507 |
+
|
| 508 |
+
for name, module in self.named_children():
|
| 509 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 510 |
+
|
| 511 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 512 |
+
def set_default_attn_processor(self):
|
| 513 |
+
"""
|
| 514 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 515 |
+
"""
|
| 516 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 517 |
+
processor = AttnAddedKVProcessor()
|
| 518 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 519 |
+
processor = AttnProcessor()
|
| 520 |
+
else:
|
| 521 |
+
raise ValueError(
|
| 522 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
self.set_attn_processor(processor)
|
| 526 |
+
|
| 527 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
| 528 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
| 529 |
+
r"""
|
| 530 |
+
Enable sliced attention computation.
|
| 531 |
+
|
| 532 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 533 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 534 |
+
|
| 535 |
+
Args:
|
| 536 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 537 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 538 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 539 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 540 |
+
must be a multiple of `slice_size`.
|
| 541 |
+
"""
|
| 542 |
+
sliceable_head_dims = []
|
| 543 |
+
|
| 544 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 545 |
+
if hasattr(module, "set_attention_slice"):
|
| 546 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 547 |
+
|
| 548 |
+
for child in module.children():
|
| 549 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 550 |
+
|
| 551 |
+
# retrieve number of attention layers
|
| 552 |
+
for module in self.children():
|
| 553 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 554 |
+
|
| 555 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 556 |
+
|
| 557 |
+
if slice_size == "auto":
|
| 558 |
+
# half the attention head size is usually a good trade-off between
|
| 559 |
+
# speed and memory
|
| 560 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 561 |
+
elif slice_size == "max":
|
| 562 |
+
# make smallest slice possible
|
| 563 |
+
slice_size = num_sliceable_layers * [1]
|
| 564 |
+
|
| 565 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 566 |
+
|
| 567 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 568 |
+
raise ValueError(
|
| 569 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 570 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
for i in range(len(slice_size)):
|
| 574 |
+
size = slice_size[i]
|
| 575 |
+
dim = sliceable_head_dims[i]
|
| 576 |
+
if size is not None and size > dim:
|
| 577 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 578 |
+
|
| 579 |
+
# Recursively walk through all the children.
|
| 580 |
+
# Any children which exposes the set_attention_slice method
|
| 581 |
+
# gets the message
|
| 582 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 583 |
+
if hasattr(module, "set_attention_slice"):
|
| 584 |
+
module.set_attention_slice(slice_size.pop())
|
| 585 |
+
|
| 586 |
+
for child in module.children():
|
| 587 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 588 |
+
|
| 589 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 590 |
+
for module in self.children():
|
| 591 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 592 |
+
|
| 593 |
+
def forward(
|
| 594 |
+
self,
|
| 595 |
+
sample: torch.Tensor,
|
| 596 |
+
timestep: Union[torch.Tensor, float, int],
|
| 597 |
+
encoder_hidden_states: torch.Tensor,
|
| 598 |
+
controlnet_cond: torch.Tensor,
|
| 599 |
+
conditioning_scale: float = 1.0,
|
| 600 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 601 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 602 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 603 |
+
conditioning_mask: Optional[torch.Tensor] = None,
|
| 604 |
+
guess_mode: bool = False,
|
| 605 |
+
return_dict: bool = True,
|
| 606 |
+
) -> Union[SparseControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
| 607 |
+
"""
|
| 608 |
+
The [`SparseControlNetModel`] forward method.
|
| 609 |
+
|
| 610 |
+
Args:
|
| 611 |
+
sample (`torch.Tensor`):
|
| 612 |
+
The noisy input tensor.
|
| 613 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 614 |
+
The number of timesteps to denoise an input.
|
| 615 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 616 |
+
The encoder hidden states.
|
| 617 |
+
controlnet_cond (`torch.Tensor`):
|
| 618 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 619 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 620 |
+
The scale factor for ControlNet outputs.
|
| 621 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 622 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 623 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 624 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 625 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 626 |
+
embeddings.
|
| 627 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 628 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 629 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 630 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 631 |
+
added_cond_kwargs (`dict`):
|
| 632 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 633 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 634 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 635 |
+
guess_mode (`bool`, defaults to `False`):
|
| 636 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
| 637 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
| 638 |
+
return_dict (`bool`, defaults to `True`):
|
| 639 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
| 640 |
+
Returns:
|
| 641 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 642 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
| 643 |
+
returned where the first element is the sample tensor.
|
| 644 |
+
"""
|
| 645 |
+
sample_batch_size, sample_channels, sample_num_frames, sample_height, sample_width = sample.shape
|
| 646 |
+
sample = torch.zeros_like(sample)
|
| 647 |
+
|
| 648 |
+
# check channel order
|
| 649 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
| 650 |
+
|
| 651 |
+
if channel_order == "rgb":
|
| 652 |
+
# in rgb order by default
|
| 653 |
+
...
|
| 654 |
+
elif channel_order == "bgr":
|
| 655 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
| 656 |
+
else:
|
| 657 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
| 658 |
+
|
| 659 |
+
# prepare attention_mask
|
| 660 |
+
if attention_mask is not None:
|
| 661 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 662 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 663 |
+
|
| 664 |
+
# 1. time
|
| 665 |
+
timesteps = timestep
|
| 666 |
+
if not torch.is_tensor(timesteps):
|
| 667 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 668 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 669 |
+
is_mps = sample.device.type == "mps"
|
| 670 |
+
is_npu = sample.device.type == "npu"
|
| 671 |
+
if isinstance(timestep, float):
|
| 672 |
+
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
| 673 |
+
else:
|
| 674 |
+
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
|
| 675 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 676 |
+
elif len(timesteps.shape) == 0:
|
| 677 |
+
timesteps = timesteps[None].to(sample.device)
|
| 678 |
+
|
| 679 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 680 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 681 |
+
|
| 682 |
+
t_emb = self.time_proj(timesteps)
|
| 683 |
+
|
| 684 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 685 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 686 |
+
# there might be better ways to encapsulate this.
|
| 687 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 688 |
+
|
| 689 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 690 |
+
emb = emb.repeat_interleave(sample_num_frames, dim=0, output_size=emb.shape[0] * sample_num_frames)
|
| 691 |
+
|
| 692 |
+
# 2. pre-process
|
| 693 |
+
batch_size, channels, num_frames, height, width = sample.shape
|
| 694 |
+
|
| 695 |
+
sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
| 696 |
+
sample = self.conv_in(sample)
|
| 697 |
+
|
| 698 |
+
batch_frames, channels, height, width = sample.shape
|
| 699 |
+
sample = sample[:, None].reshape(sample_batch_size, sample_num_frames, channels, height, width)
|
| 700 |
+
|
| 701 |
+
if self.concat_conditioning_mask:
|
| 702 |
+
controlnet_cond = torch.cat([controlnet_cond, conditioning_mask], dim=1)
|
| 703 |
+
|
| 704 |
+
batch_size, channels, num_frames, height, width = controlnet_cond.shape
|
| 705 |
+
controlnet_cond = controlnet_cond.permute(0, 2, 1, 3, 4).reshape(
|
| 706 |
+
batch_size * num_frames, channels, height, width
|
| 707 |
+
)
|
| 708 |
+
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
| 709 |
+
batch_frames, channels, height, width = controlnet_cond.shape
|
| 710 |
+
controlnet_cond = controlnet_cond[:, None].reshape(batch_size, num_frames, channels, height, width)
|
| 711 |
+
|
| 712 |
+
sample = sample + controlnet_cond
|
| 713 |
+
|
| 714 |
+
batch_size, num_frames, channels, height, width = sample.shape
|
| 715 |
+
sample = sample.reshape(sample_batch_size * sample_num_frames, channels, height, width)
|
| 716 |
+
|
| 717 |
+
# 3. down
|
| 718 |
+
down_block_res_samples = (sample,)
|
| 719 |
+
for downsample_block in self.down_blocks:
|
| 720 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 721 |
+
sample, res_samples = downsample_block(
|
| 722 |
+
hidden_states=sample,
|
| 723 |
+
temb=emb,
|
| 724 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 725 |
+
attention_mask=attention_mask,
|
| 726 |
+
num_frames=num_frames,
|
| 727 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 728 |
+
)
|
| 729 |
+
else:
|
| 730 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
|
| 731 |
+
|
| 732 |
+
down_block_res_samples += res_samples
|
| 733 |
+
|
| 734 |
+
# 4. mid
|
| 735 |
+
if self.mid_block is not None:
|
| 736 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
| 737 |
+
sample = self.mid_block(
|
| 738 |
+
sample,
|
| 739 |
+
emb,
|
| 740 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 741 |
+
attention_mask=attention_mask,
|
| 742 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 743 |
+
)
|
| 744 |
+
else:
|
| 745 |
+
sample = self.mid_block(sample, emb)
|
| 746 |
+
|
| 747 |
+
# 5. Control net blocks
|
| 748 |
+
controlnet_down_block_res_samples = ()
|
| 749 |
+
|
| 750 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
| 751 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
| 752 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
| 753 |
+
|
| 754 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
| 755 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
| 756 |
+
|
| 757 |
+
# 6. scaling
|
| 758 |
+
if guess_mode and not self.config.global_pool_conditions:
|
| 759 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
| 760 |
+
scales = scales * conditioning_scale
|
| 761 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
| 762 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
| 763 |
+
else:
|
| 764 |
+
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
| 765 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
| 766 |
+
|
| 767 |
+
if self.config.global_pool_conditions:
|
| 768 |
+
down_block_res_samples = [
|
| 769 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
| 770 |
+
]
|
| 771 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
| 772 |
+
|
| 773 |
+
if not return_dict:
|
| 774 |
+
return (down_block_res_samples, mid_block_res_sample)
|
| 775 |
+
|
| 776 |
+
return SparseControlNetOutput(
|
| 777 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
| 778 |
+
)
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
# Copied from diffusers.models.controlnets.controlnet.zero_module
|
| 782 |
+
def zero_module(module: nn.Module) -> nn.Module:
|
| 783 |
+
for p in module.parameters():
|
| 784 |
+
nn.init.zeros_(p)
|
| 785 |
+
return module
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_union.py
ADDED
|
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
from torch import nn
|
| 18 |
+
|
| 19 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 20 |
+
from ...loaders.single_file_model import FromOriginalModelMixin
|
| 21 |
+
from ...utils import logging
|
| 22 |
+
from ..attention_processor import (
|
| 23 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 24 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 25 |
+
AttentionProcessor,
|
| 26 |
+
AttnAddedKVProcessor,
|
| 27 |
+
AttnProcessor,
|
| 28 |
+
)
|
| 29 |
+
from ..embeddings import TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
| 30 |
+
from ..modeling_utils import ModelMixin
|
| 31 |
+
from ..unets.unet_2d_blocks import (
|
| 32 |
+
UNetMidBlock2DCrossAttn,
|
| 33 |
+
get_down_block,
|
| 34 |
+
)
|
| 35 |
+
from ..unets.unet_2d_condition import UNet2DConditionModel
|
| 36 |
+
from .controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class QuickGELU(nn.Module):
|
| 43 |
+
"""
|
| 44 |
+
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 48 |
+
return input * torch.sigmoid(1.702 * input)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class ResidualAttentionMlp(nn.Module):
|
| 52 |
+
def __init__(self, d_model: int):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.c_fc = nn.Linear(d_model, d_model * 4)
|
| 55 |
+
self.gelu = QuickGELU()
|
| 56 |
+
self.c_proj = nn.Linear(d_model * 4, d_model)
|
| 57 |
+
|
| 58 |
+
def forward(self, x: torch.Tensor):
|
| 59 |
+
x = self.c_fc(x)
|
| 60 |
+
x = self.gelu(x)
|
| 61 |
+
x = self.c_proj(x)
|
| 62 |
+
return x
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class ResidualAttentionBlock(nn.Module):
|
| 66 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
| 69 |
+
self.ln_1 = nn.LayerNorm(d_model)
|
| 70 |
+
self.mlp = ResidualAttentionMlp(d_model)
|
| 71 |
+
self.ln_2 = nn.LayerNorm(d_model)
|
| 72 |
+
self.attn_mask = attn_mask
|
| 73 |
+
|
| 74 |
+
def attention(self, x: torch.Tensor):
|
| 75 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
| 76 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
| 77 |
+
|
| 78 |
+
def forward(self, x: torch.Tensor):
|
| 79 |
+
x = x + self.attention(self.ln_1(x))
|
| 80 |
+
x = x + self.mlp(self.ln_2(x))
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class ControlNetUnionModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 85 |
+
"""
|
| 86 |
+
A ControlNetUnion model.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
in_channels (`int`, defaults to 4):
|
| 90 |
+
The number of channels in the input sample.
|
| 91 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 92 |
+
Whether to flip the sin to cos in the time embedding.
|
| 93 |
+
freq_shift (`int`, defaults to 0):
|
| 94 |
+
The frequency shift to apply to the time embedding.
|
| 95 |
+
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
| 96 |
+
The tuple of downsample blocks to use.
|
| 97 |
+
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
| 98 |
+
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
| 99 |
+
The tuple of output channels for each block.
|
| 100 |
+
layers_per_block (`int`, defaults to 2):
|
| 101 |
+
The number of layers per block.
|
| 102 |
+
downsample_padding (`int`, defaults to 1):
|
| 103 |
+
The padding to use for the downsampling convolution.
|
| 104 |
+
mid_block_scale_factor (`float`, defaults to 1):
|
| 105 |
+
The scale factor to use for the mid block.
|
| 106 |
+
act_fn (`str`, defaults to "silu"):
|
| 107 |
+
The activation function to use.
|
| 108 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
| 109 |
+
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
| 110 |
+
in post-processing.
|
| 111 |
+
norm_eps (`float`, defaults to 1e-5):
|
| 112 |
+
The epsilon to use for the normalization.
|
| 113 |
+
cross_attention_dim (`int`, defaults to 1280):
|
| 114 |
+
The dimension of the cross attention features.
|
| 115 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
| 116 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 117 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
| 118 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 119 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
| 120 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
| 121 |
+
dimension to `cross_attention_dim`.
|
| 122 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
| 123 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
| 124 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
| 125 |
+
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
| 126 |
+
The dimension of the attention heads.
|
| 127 |
+
use_linear_projection (`bool`, defaults to `False`):
|
| 128 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
| 129 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
| 130 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
| 131 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
| 132 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
| 133 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
| 134 |
+
num_class_embeds (`int`, *optional*, defaults to 0):
|
| 135 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
| 136 |
+
class conditioning with `class_embed_type` equal to `None`.
|
| 137 |
+
upcast_attention (`bool`, defaults to `False`):
|
| 138 |
+
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
| 139 |
+
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
| 140 |
+
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
| 141 |
+
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
| 142 |
+
`class_embed_type="projection"`.
|
| 143 |
+
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 144 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 145 |
+
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(48, 96, 192, 384)`):
|
| 146 |
+
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
| 147 |
+
global_pool_conditions (`bool`, defaults to `False`):
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
_supports_gradient_checkpointing = True
|
| 151 |
+
|
| 152 |
+
@register_to_config
|
| 153 |
+
def __init__(
|
| 154 |
+
self,
|
| 155 |
+
in_channels: int = 4,
|
| 156 |
+
conditioning_channels: int = 3,
|
| 157 |
+
flip_sin_to_cos: bool = True,
|
| 158 |
+
freq_shift: int = 0,
|
| 159 |
+
down_block_types: Tuple[str, ...] = (
|
| 160 |
+
"CrossAttnDownBlock2D",
|
| 161 |
+
"CrossAttnDownBlock2D",
|
| 162 |
+
"CrossAttnDownBlock2D",
|
| 163 |
+
"DownBlock2D",
|
| 164 |
+
),
|
| 165 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
| 166 |
+
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
| 167 |
+
layers_per_block: int = 2,
|
| 168 |
+
downsample_padding: int = 1,
|
| 169 |
+
mid_block_scale_factor: float = 1,
|
| 170 |
+
act_fn: str = "silu",
|
| 171 |
+
norm_num_groups: Optional[int] = 32,
|
| 172 |
+
norm_eps: float = 1e-5,
|
| 173 |
+
cross_attention_dim: int = 1280,
|
| 174 |
+
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
| 175 |
+
encoder_hid_dim: Optional[int] = None,
|
| 176 |
+
encoder_hid_dim_type: Optional[str] = None,
|
| 177 |
+
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
| 178 |
+
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
| 179 |
+
use_linear_projection: bool = False,
|
| 180 |
+
class_embed_type: Optional[str] = None,
|
| 181 |
+
addition_embed_type: Optional[str] = None,
|
| 182 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 183 |
+
num_class_embeds: Optional[int] = None,
|
| 184 |
+
upcast_attention: bool = False,
|
| 185 |
+
resnet_time_scale_shift: str = "default",
|
| 186 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 187 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 188 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (48, 96, 192, 384),
|
| 189 |
+
global_pool_conditions: bool = False,
|
| 190 |
+
addition_embed_type_num_heads: int = 64,
|
| 191 |
+
num_control_type: int = 6,
|
| 192 |
+
num_trans_channel: int = 320,
|
| 193 |
+
num_trans_head: int = 8,
|
| 194 |
+
num_trans_layer: int = 1,
|
| 195 |
+
num_proj_channel: int = 320,
|
| 196 |
+
):
|
| 197 |
+
super().__init__()
|
| 198 |
+
|
| 199 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
| 200 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
| 201 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
| 202 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
| 203 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
| 204 |
+
# which is why we correct for the naming here.
|
| 205 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
| 206 |
+
|
| 207 |
+
# Check inputs
|
| 208 |
+
if len(block_out_channels) != len(down_block_types):
|
| 209 |
+
raise ValueError(
|
| 210 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
| 214 |
+
raise ValueError(
|
| 215 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
| 219 |
+
raise ValueError(
|
| 220 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
if isinstance(transformer_layers_per_block, int):
|
| 224 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 225 |
+
|
| 226 |
+
# input
|
| 227 |
+
conv_in_kernel = 3
|
| 228 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
| 229 |
+
self.conv_in = nn.Conv2d(
|
| 230 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
# time
|
| 234 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 235 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
| 236 |
+
timestep_input_dim = block_out_channels[0]
|
| 237 |
+
self.time_embedding = TimestepEmbedding(
|
| 238 |
+
timestep_input_dim,
|
| 239 |
+
time_embed_dim,
|
| 240 |
+
act_fn=act_fn,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
if encoder_hid_dim_type is not None:
|
| 244 |
+
raise ValueError(f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None.")
|
| 245 |
+
else:
|
| 246 |
+
self.encoder_hid_proj = None
|
| 247 |
+
|
| 248 |
+
# class embedding
|
| 249 |
+
if class_embed_type is None and num_class_embeds is not None:
|
| 250 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
| 251 |
+
elif class_embed_type == "timestep":
|
| 252 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
| 253 |
+
elif class_embed_type == "identity":
|
| 254 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
| 255 |
+
elif class_embed_type == "projection":
|
| 256 |
+
if projection_class_embeddings_input_dim is None:
|
| 257 |
+
raise ValueError(
|
| 258 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
| 259 |
+
)
|
| 260 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
| 261 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
| 262 |
+
# 2. it projects from an arbitrary input dimension.
|
| 263 |
+
#
|
| 264 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
| 265 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
| 266 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
| 267 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 268 |
+
else:
|
| 269 |
+
self.class_embedding = None
|
| 270 |
+
|
| 271 |
+
if addition_embed_type == "text":
|
| 272 |
+
if encoder_hid_dim is not None:
|
| 273 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
| 274 |
+
else:
|
| 275 |
+
text_time_embedding_from_dim = cross_attention_dim
|
| 276 |
+
|
| 277 |
+
self.add_embedding = TextTimeEmbedding(
|
| 278 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
| 279 |
+
)
|
| 280 |
+
elif addition_embed_type == "text_image":
|
| 281 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
| 282 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
| 283 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
| 284 |
+
self.add_embedding = TextImageTimeEmbedding(
|
| 285 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
| 286 |
+
)
|
| 287 |
+
elif addition_embed_type == "text_time":
|
| 288 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 289 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 290 |
+
|
| 291 |
+
elif addition_embed_type is not None:
|
| 292 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
| 293 |
+
|
| 294 |
+
# control net conditioning embedding
|
| 295 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 296 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 297 |
+
block_out_channels=conditioning_embedding_out_channels,
|
| 298 |
+
conditioning_channels=conditioning_channels,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
task_scale_factor = num_trans_channel**0.5
|
| 302 |
+
self.task_embedding = nn.Parameter(task_scale_factor * torch.randn(num_control_type, num_trans_channel))
|
| 303 |
+
self.transformer_layes = nn.ModuleList(
|
| 304 |
+
[ResidualAttentionBlock(num_trans_channel, num_trans_head) for _ in range(num_trans_layer)]
|
| 305 |
+
)
|
| 306 |
+
self.spatial_ch_projs = zero_module(nn.Linear(num_trans_channel, num_proj_channel))
|
| 307 |
+
self.control_type_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
| 308 |
+
self.control_add_embedding = TimestepEmbedding(addition_time_embed_dim * num_control_type, time_embed_dim)
|
| 309 |
+
|
| 310 |
+
self.down_blocks = nn.ModuleList([])
|
| 311 |
+
self.controlnet_down_blocks = nn.ModuleList([])
|
| 312 |
+
|
| 313 |
+
if isinstance(only_cross_attention, bool):
|
| 314 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
| 315 |
+
|
| 316 |
+
if isinstance(attention_head_dim, int):
|
| 317 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
| 318 |
+
|
| 319 |
+
if isinstance(num_attention_heads, int):
|
| 320 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
| 321 |
+
|
| 322 |
+
# down
|
| 323 |
+
output_channel = block_out_channels[0]
|
| 324 |
+
|
| 325 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 326 |
+
controlnet_block = zero_module(controlnet_block)
|
| 327 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 328 |
+
|
| 329 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 330 |
+
input_channel = output_channel
|
| 331 |
+
output_channel = block_out_channels[i]
|
| 332 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 333 |
+
|
| 334 |
+
down_block = get_down_block(
|
| 335 |
+
down_block_type,
|
| 336 |
+
num_layers=layers_per_block,
|
| 337 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 338 |
+
in_channels=input_channel,
|
| 339 |
+
out_channels=output_channel,
|
| 340 |
+
temb_channels=time_embed_dim,
|
| 341 |
+
add_downsample=not is_final_block,
|
| 342 |
+
resnet_eps=norm_eps,
|
| 343 |
+
resnet_act_fn=act_fn,
|
| 344 |
+
resnet_groups=norm_num_groups,
|
| 345 |
+
cross_attention_dim=cross_attention_dim,
|
| 346 |
+
num_attention_heads=num_attention_heads[i],
|
| 347 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
| 348 |
+
downsample_padding=downsample_padding,
|
| 349 |
+
use_linear_projection=use_linear_projection,
|
| 350 |
+
only_cross_attention=only_cross_attention[i],
|
| 351 |
+
upcast_attention=upcast_attention,
|
| 352 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 353 |
+
)
|
| 354 |
+
self.down_blocks.append(down_block)
|
| 355 |
+
|
| 356 |
+
for _ in range(layers_per_block):
|
| 357 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 358 |
+
controlnet_block = zero_module(controlnet_block)
|
| 359 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 360 |
+
|
| 361 |
+
if not is_final_block:
|
| 362 |
+
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
|
| 363 |
+
controlnet_block = zero_module(controlnet_block)
|
| 364 |
+
self.controlnet_down_blocks.append(controlnet_block)
|
| 365 |
+
|
| 366 |
+
# mid
|
| 367 |
+
mid_block_channel = block_out_channels[-1]
|
| 368 |
+
|
| 369 |
+
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
|
| 370 |
+
controlnet_block = zero_module(controlnet_block)
|
| 371 |
+
self.controlnet_mid_block = controlnet_block
|
| 372 |
+
|
| 373 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
| 374 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 375 |
+
in_channels=mid_block_channel,
|
| 376 |
+
temb_channels=time_embed_dim,
|
| 377 |
+
resnet_eps=norm_eps,
|
| 378 |
+
resnet_act_fn=act_fn,
|
| 379 |
+
output_scale_factor=mid_block_scale_factor,
|
| 380 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
| 381 |
+
cross_attention_dim=cross_attention_dim,
|
| 382 |
+
num_attention_heads=num_attention_heads[-1],
|
| 383 |
+
resnet_groups=norm_num_groups,
|
| 384 |
+
use_linear_projection=use_linear_projection,
|
| 385 |
+
upcast_attention=upcast_attention,
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
@classmethod
|
| 389 |
+
def from_unet(
|
| 390 |
+
cls,
|
| 391 |
+
unet: UNet2DConditionModel,
|
| 392 |
+
controlnet_conditioning_channel_order: str = "rgb",
|
| 393 |
+
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
| 394 |
+
load_weights_from_unet: bool = True,
|
| 395 |
+
):
|
| 396 |
+
r"""
|
| 397 |
+
Instantiate a [`ControlNetUnionModel`] from [`UNet2DConditionModel`].
|
| 398 |
+
|
| 399 |
+
Parameters:
|
| 400 |
+
unet (`UNet2DConditionModel`):
|
| 401 |
+
The UNet model weights to copy to the [`ControlNetUnionModel`]. All configuration options are also
|
| 402 |
+
copied where applicable.
|
| 403 |
+
"""
|
| 404 |
+
transformer_layers_per_block = (
|
| 405 |
+
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
| 406 |
+
)
|
| 407 |
+
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
| 408 |
+
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
| 409 |
+
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
| 410 |
+
addition_time_embed_dim = (
|
| 411 |
+
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
controlnet = cls(
|
| 415 |
+
encoder_hid_dim=encoder_hid_dim,
|
| 416 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
| 417 |
+
addition_embed_type=addition_embed_type,
|
| 418 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
| 419 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 420 |
+
in_channels=unet.config.in_channels,
|
| 421 |
+
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
| 422 |
+
freq_shift=unet.config.freq_shift,
|
| 423 |
+
down_block_types=unet.config.down_block_types,
|
| 424 |
+
only_cross_attention=unet.config.only_cross_attention,
|
| 425 |
+
block_out_channels=unet.config.block_out_channels,
|
| 426 |
+
layers_per_block=unet.config.layers_per_block,
|
| 427 |
+
downsample_padding=unet.config.downsample_padding,
|
| 428 |
+
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
| 429 |
+
act_fn=unet.config.act_fn,
|
| 430 |
+
norm_num_groups=unet.config.norm_num_groups,
|
| 431 |
+
norm_eps=unet.config.norm_eps,
|
| 432 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 433 |
+
attention_head_dim=unet.config.attention_head_dim,
|
| 434 |
+
num_attention_heads=unet.config.num_attention_heads,
|
| 435 |
+
use_linear_projection=unet.config.use_linear_projection,
|
| 436 |
+
class_embed_type=unet.config.class_embed_type,
|
| 437 |
+
num_class_embeds=unet.config.num_class_embeds,
|
| 438 |
+
upcast_attention=unet.config.upcast_attention,
|
| 439 |
+
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
| 440 |
+
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
| 441 |
+
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
| 442 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
if load_weights_from_unet:
|
| 446 |
+
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
| 447 |
+
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
| 448 |
+
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
| 449 |
+
|
| 450 |
+
if controlnet.class_embedding:
|
| 451 |
+
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
| 452 |
+
|
| 453 |
+
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
|
| 454 |
+
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
|
| 455 |
+
|
| 456 |
+
return controlnet
|
| 457 |
+
|
| 458 |
+
@property
|
| 459 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 460 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 461 |
+
r"""
|
| 462 |
+
Returns:
|
| 463 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 464 |
+
indexed by its weight name.
|
| 465 |
+
"""
|
| 466 |
+
# set recursively
|
| 467 |
+
processors = {}
|
| 468 |
+
|
| 469 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 470 |
+
if hasattr(module, "get_processor"):
|
| 471 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 472 |
+
|
| 473 |
+
for sub_name, child in module.named_children():
|
| 474 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 475 |
+
|
| 476 |
+
return processors
|
| 477 |
+
|
| 478 |
+
for name, module in self.named_children():
|
| 479 |
+
fn_recursive_add_processors(name, module, processors)
|
| 480 |
+
|
| 481 |
+
return processors
|
| 482 |
+
|
| 483 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 484 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 485 |
+
r"""
|
| 486 |
+
Sets the attention processor to use to compute attention.
|
| 487 |
+
|
| 488 |
+
Parameters:
|
| 489 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 490 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 491 |
+
for **all** `Attention` layers.
|
| 492 |
+
|
| 493 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 494 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 495 |
+
|
| 496 |
+
"""
|
| 497 |
+
count = len(self.attn_processors.keys())
|
| 498 |
+
|
| 499 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 500 |
+
raise ValueError(
|
| 501 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 502 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 506 |
+
if hasattr(module, "set_processor"):
|
| 507 |
+
if not isinstance(processor, dict):
|
| 508 |
+
module.set_processor(processor)
|
| 509 |
+
else:
|
| 510 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 511 |
+
|
| 512 |
+
for sub_name, child in module.named_children():
|
| 513 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 514 |
+
|
| 515 |
+
for name, module in self.named_children():
|
| 516 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 517 |
+
|
| 518 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 519 |
+
def set_default_attn_processor(self):
|
| 520 |
+
"""
|
| 521 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 522 |
+
"""
|
| 523 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 524 |
+
processor = AttnAddedKVProcessor()
|
| 525 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 526 |
+
processor = AttnProcessor()
|
| 527 |
+
else:
|
| 528 |
+
raise ValueError(
|
| 529 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
self.set_attn_processor(processor)
|
| 533 |
+
|
| 534 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
| 535 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
| 536 |
+
r"""
|
| 537 |
+
Enable sliced attention computation.
|
| 538 |
+
|
| 539 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
| 540 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
| 544 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
| 545 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
| 546 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
| 547 |
+
must be a multiple of `slice_size`.
|
| 548 |
+
"""
|
| 549 |
+
sliceable_head_dims = []
|
| 550 |
+
|
| 551 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
| 552 |
+
if hasattr(module, "set_attention_slice"):
|
| 553 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
| 554 |
+
|
| 555 |
+
for child in module.children():
|
| 556 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
| 557 |
+
|
| 558 |
+
# retrieve number of attention layers
|
| 559 |
+
for module in self.children():
|
| 560 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
| 561 |
+
|
| 562 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
| 563 |
+
|
| 564 |
+
if slice_size == "auto":
|
| 565 |
+
# half the attention head size is usually a good trade-off between
|
| 566 |
+
# speed and memory
|
| 567 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
| 568 |
+
elif slice_size == "max":
|
| 569 |
+
# make smallest slice possible
|
| 570 |
+
slice_size = num_sliceable_layers * [1]
|
| 571 |
+
|
| 572 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
| 573 |
+
|
| 574 |
+
if len(slice_size) != len(sliceable_head_dims):
|
| 575 |
+
raise ValueError(
|
| 576 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
| 577 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
| 578 |
+
)
|
| 579 |
+
|
| 580 |
+
for i in range(len(slice_size)):
|
| 581 |
+
size = slice_size[i]
|
| 582 |
+
dim = sliceable_head_dims[i]
|
| 583 |
+
if size is not None and size > dim:
|
| 584 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
| 585 |
+
|
| 586 |
+
# Recursively walk through all the children.
|
| 587 |
+
# Any children which exposes the set_attention_slice method
|
| 588 |
+
# gets the message
|
| 589 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
| 590 |
+
if hasattr(module, "set_attention_slice"):
|
| 591 |
+
module.set_attention_slice(slice_size.pop())
|
| 592 |
+
|
| 593 |
+
for child in module.children():
|
| 594 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
| 595 |
+
|
| 596 |
+
reversed_slice_size = list(reversed(slice_size))
|
| 597 |
+
for module in self.children():
|
| 598 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
| 599 |
+
|
| 600 |
+
def forward(
|
| 601 |
+
self,
|
| 602 |
+
sample: torch.Tensor,
|
| 603 |
+
timestep: Union[torch.Tensor, float, int],
|
| 604 |
+
encoder_hidden_states: torch.Tensor,
|
| 605 |
+
controlnet_cond: List[torch.Tensor],
|
| 606 |
+
control_type: torch.Tensor,
|
| 607 |
+
control_type_idx: List[int],
|
| 608 |
+
conditioning_scale: Union[float, List[float]] = 1.0,
|
| 609 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 610 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 611 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 612 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 613 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 614 |
+
from_multi: bool = False,
|
| 615 |
+
guess_mode: bool = False,
|
| 616 |
+
return_dict: bool = True,
|
| 617 |
+
) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
|
| 618 |
+
"""
|
| 619 |
+
The [`ControlNetUnionModel`] forward method.
|
| 620 |
+
|
| 621 |
+
Args:
|
| 622 |
+
sample (`torch.Tensor`):
|
| 623 |
+
The noisy input tensor.
|
| 624 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 625 |
+
The number of timesteps to denoise an input.
|
| 626 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 627 |
+
The encoder hidden states.
|
| 628 |
+
controlnet_cond (`List[torch.Tensor]`):
|
| 629 |
+
The conditional input tensors.
|
| 630 |
+
control_type (`torch.Tensor`):
|
| 631 |
+
A tensor of shape `(batch, num_control_type)` with values `0` or `1` depending on whether the control
|
| 632 |
+
type is used.
|
| 633 |
+
control_type_idx (`List[int]`):
|
| 634 |
+
The indices of `control_type`.
|
| 635 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 636 |
+
The scale factor for ControlNet outputs.
|
| 637 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 638 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 639 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 640 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 641 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 642 |
+
embeddings.
|
| 643 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 644 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 645 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 646 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 647 |
+
added_cond_kwargs (`dict`):
|
| 648 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 649 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 650 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 651 |
+
from_multi (`bool`, defaults to `False`):
|
| 652 |
+
Use standard scaling when called from `MultiControlNetUnionModel`.
|
| 653 |
+
guess_mode (`bool`, defaults to `False`):
|
| 654 |
+
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
|
| 655 |
+
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
|
| 656 |
+
return_dict (`bool`, defaults to `True`):
|
| 657 |
+
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
| 658 |
+
|
| 659 |
+
Returns:
|
| 660 |
+
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
| 661 |
+
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
| 662 |
+
returned where the first element is the sample tensor.
|
| 663 |
+
"""
|
| 664 |
+
if isinstance(conditioning_scale, float):
|
| 665 |
+
conditioning_scale = [conditioning_scale] * len(controlnet_cond)
|
| 666 |
+
|
| 667 |
+
# check channel order
|
| 668 |
+
channel_order = self.config.controlnet_conditioning_channel_order
|
| 669 |
+
|
| 670 |
+
if channel_order != "rgb":
|
| 671 |
+
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
| 672 |
+
|
| 673 |
+
# prepare attention_mask
|
| 674 |
+
if attention_mask is not None:
|
| 675 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 676 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 677 |
+
|
| 678 |
+
# 1. time
|
| 679 |
+
timesteps = timestep
|
| 680 |
+
if not torch.is_tensor(timesteps):
|
| 681 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 682 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 683 |
+
is_mps = sample.device.type == "mps"
|
| 684 |
+
is_npu = sample.device.type == "npu"
|
| 685 |
+
if isinstance(timestep, float):
|
| 686 |
+
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
| 687 |
+
else:
|
| 688 |
+
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
|
| 689 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 690 |
+
elif len(timesteps.shape) == 0:
|
| 691 |
+
timesteps = timesteps[None].to(sample.device)
|
| 692 |
+
|
| 693 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 694 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 695 |
+
|
| 696 |
+
t_emb = self.time_proj(timesteps)
|
| 697 |
+
|
| 698 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 699 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 700 |
+
# there might be better ways to encapsulate this.
|
| 701 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 702 |
+
|
| 703 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 704 |
+
aug_emb = None
|
| 705 |
+
|
| 706 |
+
if self.class_embedding is not None:
|
| 707 |
+
if class_labels is None:
|
| 708 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 709 |
+
|
| 710 |
+
if self.config.class_embed_type == "timestep":
|
| 711 |
+
class_labels = self.time_proj(class_labels)
|
| 712 |
+
|
| 713 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 714 |
+
emb = emb + class_emb
|
| 715 |
+
|
| 716 |
+
if self.config.addition_embed_type is not None:
|
| 717 |
+
if self.config.addition_embed_type == "text":
|
| 718 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 719 |
+
|
| 720 |
+
elif self.config.addition_embed_type == "text_time":
|
| 721 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 722 |
+
raise ValueError(
|
| 723 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 724 |
+
)
|
| 725 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 726 |
+
if "time_ids" not in added_cond_kwargs:
|
| 727 |
+
raise ValueError(
|
| 728 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 729 |
+
)
|
| 730 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 731 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
| 732 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 733 |
+
|
| 734 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 735 |
+
add_embeds = add_embeds.to(emb.dtype)
|
| 736 |
+
aug_emb = self.add_embedding(add_embeds)
|
| 737 |
+
|
| 738 |
+
control_embeds = self.control_type_proj(control_type.flatten())
|
| 739 |
+
control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
|
| 740 |
+
control_embeds = control_embeds.to(emb.dtype)
|
| 741 |
+
control_emb = self.control_add_embedding(control_embeds)
|
| 742 |
+
emb = emb + control_emb
|
| 743 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
| 744 |
+
|
| 745 |
+
# 2. pre-process
|
| 746 |
+
sample = self.conv_in(sample)
|
| 747 |
+
|
| 748 |
+
inputs = []
|
| 749 |
+
condition_list = []
|
| 750 |
+
|
| 751 |
+
for cond, control_idx, scale in zip(controlnet_cond, control_type_idx, conditioning_scale):
|
| 752 |
+
condition = self.controlnet_cond_embedding(cond)
|
| 753 |
+
feat_seq = torch.mean(condition, dim=(2, 3))
|
| 754 |
+
feat_seq = feat_seq + self.task_embedding[control_idx]
|
| 755 |
+
if from_multi or len(control_type_idx) == 1:
|
| 756 |
+
inputs.append(feat_seq.unsqueeze(1))
|
| 757 |
+
condition_list.append(condition)
|
| 758 |
+
else:
|
| 759 |
+
inputs.append(feat_seq.unsqueeze(1) * scale)
|
| 760 |
+
condition_list.append(condition * scale)
|
| 761 |
+
|
| 762 |
+
condition = sample
|
| 763 |
+
feat_seq = torch.mean(condition, dim=(2, 3))
|
| 764 |
+
inputs.append(feat_seq.unsqueeze(1))
|
| 765 |
+
condition_list.append(condition)
|
| 766 |
+
|
| 767 |
+
x = torch.cat(inputs, dim=1)
|
| 768 |
+
for layer in self.transformer_layes:
|
| 769 |
+
x = layer(x)
|
| 770 |
+
|
| 771 |
+
controlnet_cond_fuser = sample * 0.0
|
| 772 |
+
for (idx, condition), scale in zip(enumerate(condition_list[:-1]), conditioning_scale):
|
| 773 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
| 774 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
| 775 |
+
if from_multi or len(control_type_idx) == 1:
|
| 776 |
+
controlnet_cond_fuser += condition + alpha
|
| 777 |
+
else:
|
| 778 |
+
controlnet_cond_fuser += condition + alpha * scale
|
| 779 |
+
|
| 780 |
+
sample = sample + controlnet_cond_fuser
|
| 781 |
+
|
| 782 |
+
# 3. down
|
| 783 |
+
down_block_res_samples = (sample,)
|
| 784 |
+
for downsample_block in self.down_blocks:
|
| 785 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 786 |
+
sample, res_samples = downsample_block(
|
| 787 |
+
hidden_states=sample,
|
| 788 |
+
temb=emb,
|
| 789 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 790 |
+
attention_mask=attention_mask,
|
| 791 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 792 |
+
)
|
| 793 |
+
else:
|
| 794 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 795 |
+
|
| 796 |
+
down_block_res_samples += res_samples
|
| 797 |
+
|
| 798 |
+
# 4. mid
|
| 799 |
+
if self.mid_block is not None:
|
| 800 |
+
sample = self.mid_block(
|
| 801 |
+
sample,
|
| 802 |
+
emb,
|
| 803 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 804 |
+
attention_mask=attention_mask,
|
| 805 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
# 5. Control net blocks
|
| 809 |
+
controlnet_down_block_res_samples = ()
|
| 810 |
+
|
| 811 |
+
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
| 812 |
+
down_block_res_sample = controlnet_block(down_block_res_sample)
|
| 813 |
+
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
| 814 |
+
|
| 815 |
+
down_block_res_samples = controlnet_down_block_res_samples
|
| 816 |
+
|
| 817 |
+
mid_block_res_sample = self.controlnet_mid_block(sample)
|
| 818 |
+
|
| 819 |
+
# 6. scaling
|
| 820 |
+
if guess_mode and not self.config.global_pool_conditions:
|
| 821 |
+
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
| 822 |
+
if from_multi or len(control_type_idx) == 1:
|
| 823 |
+
scales = scales * conditioning_scale[0]
|
| 824 |
+
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
| 825 |
+
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
| 826 |
+
elif from_multi or len(control_type_idx) == 1:
|
| 827 |
+
down_block_res_samples = [sample * conditioning_scale[0] for sample in down_block_res_samples]
|
| 828 |
+
mid_block_res_sample = mid_block_res_sample * conditioning_scale[0]
|
| 829 |
+
|
| 830 |
+
if self.config.global_pool_conditions:
|
| 831 |
+
down_block_res_samples = [
|
| 832 |
+
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
| 833 |
+
]
|
| 834 |
+
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
| 835 |
+
|
| 836 |
+
if not return_dict:
|
| 837 |
+
return (down_block_res_samples, mid_block_res_sample)
|
| 838 |
+
|
| 839 |
+
return ControlNetOutput(
|
| 840 |
+
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
| 841 |
+
)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/controlnet_xs.py
ADDED
|
@@ -0,0 +1,1907 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from dataclasses import dataclass
|
| 15 |
+
from math import gcd
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.utils.checkpoint
|
| 20 |
+
from torch import Tensor, nn
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...utils import BaseOutput, logging
|
| 24 |
+
from ...utils.torch_utils import apply_freeu
|
| 25 |
+
from ..attention_processor import (
|
| 26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 27 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 28 |
+
Attention,
|
| 29 |
+
AttentionProcessor,
|
| 30 |
+
AttnAddedKVProcessor,
|
| 31 |
+
AttnProcessor,
|
| 32 |
+
FusedAttnProcessor2_0,
|
| 33 |
+
)
|
| 34 |
+
from ..embeddings import TimestepEmbedding, Timesteps
|
| 35 |
+
from ..modeling_utils import ModelMixin
|
| 36 |
+
from ..unets.unet_2d_blocks import (
|
| 37 |
+
CrossAttnDownBlock2D,
|
| 38 |
+
CrossAttnUpBlock2D,
|
| 39 |
+
Downsample2D,
|
| 40 |
+
ResnetBlock2D,
|
| 41 |
+
Transformer2DModel,
|
| 42 |
+
UNetMidBlock2DCrossAttn,
|
| 43 |
+
Upsample2D,
|
| 44 |
+
)
|
| 45 |
+
from ..unets.unet_2d_condition import UNet2DConditionModel
|
| 46 |
+
from .controlnet import ControlNetConditioningEmbedding
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
@dataclass
|
| 53 |
+
class ControlNetXSOutput(BaseOutput):
|
| 54 |
+
"""
|
| 55 |
+
The output of [`UNetControlNetXSModel`].
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
sample (`Tensor` of shape `(batch_size, num_channels, height, width)`):
|
| 59 |
+
The output of the `UNetControlNetXSModel`. Unlike `ControlNetOutput` this is NOT to be added to the base
|
| 60 |
+
model output, but is already the final output.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
sample: Tensor = None
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class DownBlockControlNetXSAdapter(nn.Module):
|
| 67 |
+
"""Components that together with corresponding components from the base model will form a
|
| 68 |
+
`ControlNetXSCrossAttnDownBlock2D`"""
|
| 69 |
+
|
| 70 |
+
def __init__(
|
| 71 |
+
self,
|
| 72 |
+
resnets: nn.ModuleList,
|
| 73 |
+
base_to_ctrl: nn.ModuleList,
|
| 74 |
+
ctrl_to_base: nn.ModuleList,
|
| 75 |
+
attentions: Optional[nn.ModuleList] = None,
|
| 76 |
+
downsampler: Optional[nn.Conv2d] = None,
|
| 77 |
+
):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.resnets = resnets
|
| 80 |
+
self.base_to_ctrl = base_to_ctrl
|
| 81 |
+
self.ctrl_to_base = ctrl_to_base
|
| 82 |
+
self.attentions = attentions
|
| 83 |
+
self.downsamplers = downsampler
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class MidBlockControlNetXSAdapter(nn.Module):
|
| 87 |
+
"""Components that together with corresponding components from the base model will form a
|
| 88 |
+
`ControlNetXSCrossAttnMidBlock2D`"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, midblock: UNetMidBlock2DCrossAttn, base_to_ctrl: nn.ModuleList, ctrl_to_base: nn.ModuleList):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.midblock = midblock
|
| 93 |
+
self.base_to_ctrl = base_to_ctrl
|
| 94 |
+
self.ctrl_to_base = ctrl_to_base
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class UpBlockControlNetXSAdapter(nn.Module):
|
| 98 |
+
"""Components that together with corresponding components from the base model will form a `ControlNetXSCrossAttnUpBlock2D`"""
|
| 99 |
+
|
| 100 |
+
def __init__(self, ctrl_to_base: nn.ModuleList):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.ctrl_to_base = ctrl_to_base
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def get_down_block_adapter(
|
| 106 |
+
base_in_channels: int,
|
| 107 |
+
base_out_channels: int,
|
| 108 |
+
ctrl_in_channels: int,
|
| 109 |
+
ctrl_out_channels: int,
|
| 110 |
+
temb_channels: int,
|
| 111 |
+
max_norm_num_groups: Optional[int] = 32,
|
| 112 |
+
has_crossattn=True,
|
| 113 |
+
transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
|
| 114 |
+
num_attention_heads: Optional[int] = 1,
|
| 115 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 116 |
+
add_downsample: bool = True,
|
| 117 |
+
upcast_attention: Optional[bool] = False,
|
| 118 |
+
use_linear_projection: Optional[bool] = True,
|
| 119 |
+
):
|
| 120 |
+
num_layers = 2 # only support sd + sdxl
|
| 121 |
+
|
| 122 |
+
resnets = []
|
| 123 |
+
attentions = []
|
| 124 |
+
ctrl_to_base = []
|
| 125 |
+
base_to_ctrl = []
|
| 126 |
+
|
| 127 |
+
if isinstance(transformer_layers_per_block, int):
|
| 128 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 129 |
+
|
| 130 |
+
for i in range(num_layers):
|
| 131 |
+
base_in_channels = base_in_channels if i == 0 else base_out_channels
|
| 132 |
+
ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
|
| 133 |
+
|
| 134 |
+
# Before the resnet/attention application, information is concatted from base to control.
|
| 135 |
+
# Concat doesn't require change in number of channels
|
| 136 |
+
base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
|
| 137 |
+
|
| 138 |
+
resnets.append(
|
| 139 |
+
ResnetBlock2D(
|
| 140 |
+
in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
|
| 141 |
+
out_channels=ctrl_out_channels,
|
| 142 |
+
temb_channels=temb_channels,
|
| 143 |
+
groups=find_largest_factor(ctrl_in_channels + base_in_channels, max_factor=max_norm_num_groups),
|
| 144 |
+
groups_out=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
|
| 145 |
+
eps=1e-5,
|
| 146 |
+
)
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
if has_crossattn:
|
| 150 |
+
attentions.append(
|
| 151 |
+
Transformer2DModel(
|
| 152 |
+
num_attention_heads,
|
| 153 |
+
ctrl_out_channels // num_attention_heads,
|
| 154 |
+
in_channels=ctrl_out_channels,
|
| 155 |
+
num_layers=transformer_layers_per_block[i],
|
| 156 |
+
cross_attention_dim=cross_attention_dim,
|
| 157 |
+
use_linear_projection=use_linear_projection,
|
| 158 |
+
upcast_attention=upcast_attention,
|
| 159 |
+
norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=max_norm_num_groups),
|
| 160 |
+
)
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# After the resnet/attention application, information is added from control to base
|
| 164 |
+
# Addition requires change in number of channels
|
| 165 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 166 |
+
|
| 167 |
+
if add_downsample:
|
| 168 |
+
# Before the downsampler application, information is concatted from base to control
|
| 169 |
+
# Concat doesn't require change in number of channels
|
| 170 |
+
base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
|
| 171 |
+
|
| 172 |
+
downsamplers = Downsample2D(
|
| 173 |
+
ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# After the downsampler application, information is added from control to base
|
| 177 |
+
# Addition requires change in number of channels
|
| 178 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 179 |
+
else:
|
| 180 |
+
downsamplers = None
|
| 181 |
+
|
| 182 |
+
down_block_components = DownBlockControlNetXSAdapter(
|
| 183 |
+
resnets=nn.ModuleList(resnets),
|
| 184 |
+
base_to_ctrl=nn.ModuleList(base_to_ctrl),
|
| 185 |
+
ctrl_to_base=nn.ModuleList(ctrl_to_base),
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
if has_crossattn:
|
| 189 |
+
down_block_components.attentions = nn.ModuleList(attentions)
|
| 190 |
+
if downsamplers is not None:
|
| 191 |
+
down_block_components.downsamplers = downsamplers
|
| 192 |
+
|
| 193 |
+
return down_block_components
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def get_mid_block_adapter(
|
| 197 |
+
base_channels: int,
|
| 198 |
+
ctrl_channels: int,
|
| 199 |
+
temb_channels: Optional[int] = None,
|
| 200 |
+
max_norm_num_groups: Optional[int] = 32,
|
| 201 |
+
transformer_layers_per_block: int = 1,
|
| 202 |
+
num_attention_heads: Optional[int] = 1,
|
| 203 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 204 |
+
upcast_attention: bool = False,
|
| 205 |
+
use_linear_projection: bool = True,
|
| 206 |
+
):
|
| 207 |
+
# Before the midblock application, information is concatted from base to control.
|
| 208 |
+
# Concat doesn't require change in number of channels
|
| 209 |
+
base_to_ctrl = make_zero_conv(base_channels, base_channels)
|
| 210 |
+
|
| 211 |
+
midblock = UNetMidBlock2DCrossAttn(
|
| 212 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 213 |
+
in_channels=ctrl_channels + base_channels,
|
| 214 |
+
out_channels=ctrl_channels,
|
| 215 |
+
temb_channels=temb_channels,
|
| 216 |
+
# number or norm groups must divide both in_channels and out_channels
|
| 217 |
+
resnet_groups=find_largest_factor(gcd(ctrl_channels, ctrl_channels + base_channels), max_norm_num_groups),
|
| 218 |
+
cross_attention_dim=cross_attention_dim,
|
| 219 |
+
num_attention_heads=num_attention_heads,
|
| 220 |
+
use_linear_projection=use_linear_projection,
|
| 221 |
+
upcast_attention=upcast_attention,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# After the midblock application, information is added from control to base
|
| 225 |
+
# Addition requires change in number of channels
|
| 226 |
+
ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
|
| 227 |
+
|
| 228 |
+
return MidBlockControlNetXSAdapter(base_to_ctrl=base_to_ctrl, midblock=midblock, ctrl_to_base=ctrl_to_base)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def get_up_block_adapter(
|
| 232 |
+
out_channels: int,
|
| 233 |
+
prev_output_channel: int,
|
| 234 |
+
ctrl_skip_channels: List[int],
|
| 235 |
+
):
|
| 236 |
+
ctrl_to_base = []
|
| 237 |
+
num_layers = 3 # only support sd + sdxl
|
| 238 |
+
for i in range(num_layers):
|
| 239 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 240 |
+
ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
|
| 241 |
+
|
| 242 |
+
return UpBlockControlNetXSAdapter(ctrl_to_base=nn.ModuleList(ctrl_to_base))
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class ControlNetXSAdapter(ModelMixin, ConfigMixin):
|
| 246 |
+
r"""
|
| 247 |
+
A `ControlNetXSAdapter` model. To use it, pass it into a `UNetControlNetXSModel` (together with a
|
| 248 |
+
`UNet2DConditionModel` base model).
|
| 249 |
+
|
| 250 |
+
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
|
| 251 |
+
methods implemented for all models (such as downloading or saving).
|
| 252 |
+
|
| 253 |
+
Like `UNetControlNetXSModel`, `ControlNetXSAdapter` is compatible with StableDiffusion and StableDiffusion-XL. It's
|
| 254 |
+
default parameters are compatible with StableDiffusion.
|
| 255 |
+
|
| 256 |
+
Parameters:
|
| 257 |
+
conditioning_channels (`int`, defaults to 3):
|
| 258 |
+
Number of channels of conditioning input (e.g. an image)
|
| 259 |
+
conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 260 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 261 |
+
conditioning_embedding_out_channels (`tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
| 262 |
+
The tuple of output channels for each block in the `controlnet_cond_embedding` layer.
|
| 263 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
| 264 |
+
If 0, then only the control adapters's time embedding is used. If 1, then only the base unet's time
|
| 265 |
+
embedding is used. Otherwise, both are combined.
|
| 266 |
+
learn_time_embedding (`bool`, defaults to `False`):
|
| 267 |
+
Whether a time embedding should be learned. If yes, `UNetControlNetXSModel` will combine the time
|
| 268 |
+
embeddings of the base model and the control adapter. If no, `UNetControlNetXSModel` will use the base
|
| 269 |
+
model's time embedding.
|
| 270 |
+
num_attention_heads (`list[int]`, defaults to `[4]`):
|
| 271 |
+
The number of attention heads.
|
| 272 |
+
block_out_channels (`list[int]`, defaults to `[4, 8, 16, 16]`):
|
| 273 |
+
The tuple of output channels for each block.
|
| 274 |
+
base_block_out_channels (`list[int]`, defaults to `[320, 640, 1280, 1280]`):
|
| 275 |
+
The tuple of output channels for each block in the base unet.
|
| 276 |
+
cross_attention_dim (`int`, defaults to 1024):
|
| 277 |
+
The dimension of the cross attention features.
|
| 278 |
+
down_block_types (`list[str]`, defaults to `["CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D"]`):
|
| 279 |
+
The tuple of downsample blocks to use.
|
| 280 |
+
sample_size (`int`, defaults to 96):
|
| 281 |
+
Height and width of input/output sample.
|
| 282 |
+
transformer_layers_per_block (`Union[int, Tuple[int]]`, defaults to 1):
|
| 283 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
| 284 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
| 285 |
+
upcast_attention (`bool`, defaults to `True`):
|
| 286 |
+
Whether the attention computation should always be upcasted.
|
| 287 |
+
max_norm_num_groups (`int`, defaults to 32):
|
| 288 |
+
Maximum number of groups in group normal. The actual number will be the largest divisor of the respective
|
| 289 |
+
channels, that is <= max_norm_num_groups.
|
| 290 |
+
"""
|
| 291 |
+
|
| 292 |
+
@register_to_config
|
| 293 |
+
def __init__(
|
| 294 |
+
self,
|
| 295 |
+
conditioning_channels: int = 3,
|
| 296 |
+
conditioning_channel_order: str = "rgb",
|
| 297 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
| 298 |
+
time_embedding_mix: float = 1.0,
|
| 299 |
+
learn_time_embedding: bool = False,
|
| 300 |
+
num_attention_heads: Union[int, Tuple[int]] = 4,
|
| 301 |
+
block_out_channels: Tuple[int] = (4, 8, 16, 16),
|
| 302 |
+
base_block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 303 |
+
cross_attention_dim: int = 1024,
|
| 304 |
+
down_block_types: Tuple[str] = (
|
| 305 |
+
"CrossAttnDownBlock2D",
|
| 306 |
+
"CrossAttnDownBlock2D",
|
| 307 |
+
"CrossAttnDownBlock2D",
|
| 308 |
+
"DownBlock2D",
|
| 309 |
+
),
|
| 310 |
+
sample_size: Optional[int] = 96,
|
| 311 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 312 |
+
upcast_attention: bool = True,
|
| 313 |
+
max_norm_num_groups: int = 32,
|
| 314 |
+
use_linear_projection: bool = True,
|
| 315 |
+
):
|
| 316 |
+
super().__init__()
|
| 317 |
+
|
| 318 |
+
time_embedding_input_dim = base_block_out_channels[0]
|
| 319 |
+
time_embedding_dim = base_block_out_channels[0] * 4
|
| 320 |
+
|
| 321 |
+
# Check inputs
|
| 322 |
+
if conditioning_channel_order not in ["rgb", "bgr"]:
|
| 323 |
+
raise ValueError(f"unknown `conditioning_channel_order`: {conditioning_channel_order}")
|
| 324 |
+
|
| 325 |
+
if len(block_out_channels) != len(down_block_types):
|
| 326 |
+
raise ValueError(
|
| 327 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
if not isinstance(transformer_layers_per_block, (list, tuple)):
|
| 331 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 332 |
+
if not isinstance(cross_attention_dim, (list, tuple)):
|
| 333 |
+
cross_attention_dim = [cross_attention_dim] * len(down_block_types)
|
| 334 |
+
# see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why `ControlNetXSAdapter` takes `num_attention_heads` instead of `attention_head_dim`
|
| 335 |
+
if not isinstance(num_attention_heads, (list, tuple)):
|
| 336 |
+
num_attention_heads = [num_attention_heads] * len(down_block_types)
|
| 337 |
+
|
| 338 |
+
if len(num_attention_heads) != len(down_block_types):
|
| 339 |
+
raise ValueError(
|
| 340 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
# 5 - Create conditioning hint embedding
|
| 344 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 345 |
+
conditioning_embedding_channels=block_out_channels[0],
|
| 346 |
+
block_out_channels=conditioning_embedding_out_channels,
|
| 347 |
+
conditioning_channels=conditioning_channels,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
# time
|
| 351 |
+
if learn_time_embedding:
|
| 352 |
+
self.time_embedding = TimestepEmbedding(time_embedding_input_dim, time_embedding_dim)
|
| 353 |
+
else:
|
| 354 |
+
self.time_embedding = None
|
| 355 |
+
|
| 356 |
+
self.down_blocks = nn.ModuleList([])
|
| 357 |
+
self.up_connections = nn.ModuleList([])
|
| 358 |
+
|
| 359 |
+
# input
|
| 360 |
+
self.conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
|
| 361 |
+
self.control_to_base_for_conv_in = make_zero_conv(block_out_channels[0], base_block_out_channels[0])
|
| 362 |
+
|
| 363 |
+
# down
|
| 364 |
+
base_out_channels = base_block_out_channels[0]
|
| 365 |
+
ctrl_out_channels = block_out_channels[0]
|
| 366 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 367 |
+
base_in_channels = base_out_channels
|
| 368 |
+
base_out_channels = base_block_out_channels[i]
|
| 369 |
+
ctrl_in_channels = ctrl_out_channels
|
| 370 |
+
ctrl_out_channels = block_out_channels[i]
|
| 371 |
+
has_crossattn = "CrossAttn" in down_block_type
|
| 372 |
+
is_final_block = i == len(down_block_types) - 1
|
| 373 |
+
|
| 374 |
+
self.down_blocks.append(
|
| 375 |
+
get_down_block_adapter(
|
| 376 |
+
base_in_channels=base_in_channels,
|
| 377 |
+
base_out_channels=base_out_channels,
|
| 378 |
+
ctrl_in_channels=ctrl_in_channels,
|
| 379 |
+
ctrl_out_channels=ctrl_out_channels,
|
| 380 |
+
temb_channels=time_embedding_dim,
|
| 381 |
+
max_norm_num_groups=max_norm_num_groups,
|
| 382 |
+
has_crossattn=has_crossattn,
|
| 383 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 384 |
+
num_attention_heads=num_attention_heads[i],
|
| 385 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 386 |
+
add_downsample=not is_final_block,
|
| 387 |
+
upcast_attention=upcast_attention,
|
| 388 |
+
use_linear_projection=use_linear_projection,
|
| 389 |
+
)
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# mid
|
| 393 |
+
self.mid_block = get_mid_block_adapter(
|
| 394 |
+
base_channels=base_block_out_channels[-1],
|
| 395 |
+
ctrl_channels=block_out_channels[-1],
|
| 396 |
+
temb_channels=time_embedding_dim,
|
| 397 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 398 |
+
num_attention_heads=num_attention_heads[-1],
|
| 399 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 400 |
+
upcast_attention=upcast_attention,
|
| 401 |
+
use_linear_projection=use_linear_projection,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# up
|
| 405 |
+
# The skip connection channels are the output of the conv_in and of all the down subblocks
|
| 406 |
+
ctrl_skip_channels = [block_out_channels[0]]
|
| 407 |
+
for i, out_channels in enumerate(block_out_channels):
|
| 408 |
+
number_of_subblocks = (
|
| 409 |
+
3 if i < len(block_out_channels) - 1 else 2
|
| 410 |
+
) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
|
| 411 |
+
ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
|
| 412 |
+
|
| 413 |
+
reversed_base_block_out_channels = list(reversed(base_block_out_channels))
|
| 414 |
+
|
| 415 |
+
base_out_channels = reversed_base_block_out_channels[0]
|
| 416 |
+
for i in range(len(down_block_types)):
|
| 417 |
+
prev_base_output_channel = base_out_channels
|
| 418 |
+
base_out_channels = reversed_base_block_out_channels[i]
|
| 419 |
+
ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
|
| 420 |
+
|
| 421 |
+
self.up_connections.append(
|
| 422 |
+
get_up_block_adapter(
|
| 423 |
+
out_channels=base_out_channels,
|
| 424 |
+
prev_output_channel=prev_base_output_channel,
|
| 425 |
+
ctrl_skip_channels=ctrl_skip_channels_,
|
| 426 |
+
)
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
@classmethod
|
| 430 |
+
def from_unet(
|
| 431 |
+
cls,
|
| 432 |
+
unet: UNet2DConditionModel,
|
| 433 |
+
size_ratio: Optional[float] = None,
|
| 434 |
+
block_out_channels: Optional[List[int]] = None,
|
| 435 |
+
num_attention_heads: Optional[List[int]] = None,
|
| 436 |
+
learn_time_embedding: bool = False,
|
| 437 |
+
time_embedding_mix: int = 1.0,
|
| 438 |
+
conditioning_channels: int = 3,
|
| 439 |
+
conditioning_channel_order: str = "rgb",
|
| 440 |
+
conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
| 441 |
+
):
|
| 442 |
+
r"""
|
| 443 |
+
Instantiate a [`ControlNetXSAdapter`] from a [`UNet2DConditionModel`].
|
| 444 |
+
|
| 445 |
+
Parameters:
|
| 446 |
+
unet (`UNet2DConditionModel`):
|
| 447 |
+
The UNet model we want to control. The dimensions of the ControlNetXSAdapter will be adapted to it.
|
| 448 |
+
size_ratio (float, *optional*, defaults to `None`):
|
| 449 |
+
When given, block_out_channels is set to a fraction of the base model's block_out_channels. Either this
|
| 450 |
+
or `block_out_channels` must be given.
|
| 451 |
+
block_out_channels (`List[int]`, *optional*, defaults to `None`):
|
| 452 |
+
Down blocks output channels in control model. Either this or `size_ratio` must be given.
|
| 453 |
+
num_attention_heads (`List[int]`, *optional*, defaults to `None`):
|
| 454 |
+
The dimension of the attention heads. The naming seems a bit confusing and it is, see
|
| 455 |
+
https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
| 456 |
+
learn_time_embedding (`bool`, defaults to `False`):
|
| 457 |
+
Whether the `ControlNetXSAdapter` should learn a time embedding.
|
| 458 |
+
time_embedding_mix (`float`, defaults to 1.0):
|
| 459 |
+
If 0, then only the control adapter's time embedding is used. If 1, then only the base unet's time
|
| 460 |
+
embedding is used. Otherwise, both are combined.
|
| 461 |
+
conditioning_channels (`int`, defaults to 3):
|
| 462 |
+
Number of channels of conditioning input (e.g. an image)
|
| 463 |
+
conditioning_channel_order (`str`, defaults to `"rgb"`):
|
| 464 |
+
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
| 465 |
+
conditioning_embedding_out_channels (`Tuple[int]`, defaults to `(16, 32, 96, 256)`):
|
| 466 |
+
The tuple of output channel for each block in the `controlnet_cond_embedding` layer.
|
| 467 |
+
"""
|
| 468 |
+
|
| 469 |
+
# Check input
|
| 470 |
+
fixed_size = block_out_channels is not None
|
| 471 |
+
relative_size = size_ratio is not None
|
| 472 |
+
if not (fixed_size ^ relative_size):
|
| 473 |
+
raise ValueError(
|
| 474 |
+
"Pass exactly one of `block_out_channels` (for absolute sizing) or `size_ratio` (for relative sizing)."
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
# Create model
|
| 478 |
+
block_out_channels = block_out_channels or [int(b * size_ratio) for b in unet.config.block_out_channels]
|
| 479 |
+
if num_attention_heads is None:
|
| 480 |
+
# The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
| 481 |
+
num_attention_heads = unet.config.attention_head_dim
|
| 482 |
+
|
| 483 |
+
model = cls(
|
| 484 |
+
conditioning_channels=conditioning_channels,
|
| 485 |
+
conditioning_channel_order=conditioning_channel_order,
|
| 486 |
+
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
| 487 |
+
time_embedding_mix=time_embedding_mix,
|
| 488 |
+
learn_time_embedding=learn_time_embedding,
|
| 489 |
+
num_attention_heads=num_attention_heads,
|
| 490 |
+
block_out_channels=block_out_channels,
|
| 491 |
+
base_block_out_channels=unet.config.block_out_channels,
|
| 492 |
+
cross_attention_dim=unet.config.cross_attention_dim,
|
| 493 |
+
down_block_types=unet.config.down_block_types,
|
| 494 |
+
sample_size=unet.config.sample_size,
|
| 495 |
+
transformer_layers_per_block=unet.config.transformer_layers_per_block,
|
| 496 |
+
upcast_attention=unet.config.upcast_attention,
|
| 497 |
+
max_norm_num_groups=unet.config.norm_num_groups,
|
| 498 |
+
use_linear_projection=unet.config.use_linear_projection,
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
# ensure that the ControlNetXSAdapter is the same dtype as the UNet2DConditionModel
|
| 502 |
+
model.to(unet.dtype)
|
| 503 |
+
|
| 504 |
+
return model
|
| 505 |
+
|
| 506 |
+
def forward(self, *args, **kwargs):
|
| 507 |
+
raise ValueError(
|
| 508 |
+
"A ControlNetXSAdapter cannot be run by itself. Use it together with a UNet2DConditionModel to instantiate a UNetControlNetXSModel."
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
class UNetControlNetXSModel(ModelMixin, ConfigMixin):
|
| 513 |
+
r"""
|
| 514 |
+
A UNet fused with a ControlNet-XS adapter model
|
| 515 |
+
|
| 516 |
+
This model inherits from [`ModelMixin`] and [`ConfigMixin`]. Check the superclass documentation for it's generic
|
| 517 |
+
methods implemented for all models (such as downloading or saving).
|
| 518 |
+
|
| 519 |
+
`UNetControlNetXSModel` is compatible with StableDiffusion and StableDiffusion-XL. It's default parameters are
|
| 520 |
+
compatible with StableDiffusion.
|
| 521 |
+
|
| 522 |
+
It's parameters are either passed to the underlying `UNet2DConditionModel` or used exactly like in
|
| 523 |
+
`ControlNetXSAdapter` . See their documentation for details.
|
| 524 |
+
"""
|
| 525 |
+
|
| 526 |
+
_supports_gradient_checkpointing = True
|
| 527 |
+
|
| 528 |
+
@register_to_config
|
| 529 |
+
def __init__(
|
| 530 |
+
self,
|
| 531 |
+
# unet configs
|
| 532 |
+
sample_size: Optional[int] = 96,
|
| 533 |
+
down_block_types: Tuple[str] = (
|
| 534 |
+
"CrossAttnDownBlock2D",
|
| 535 |
+
"CrossAttnDownBlock2D",
|
| 536 |
+
"CrossAttnDownBlock2D",
|
| 537 |
+
"DownBlock2D",
|
| 538 |
+
),
|
| 539 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
| 540 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
| 541 |
+
norm_num_groups: Optional[int] = 32,
|
| 542 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1024,
|
| 543 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
| 544 |
+
num_attention_heads: Union[int, Tuple[int]] = 8,
|
| 545 |
+
addition_embed_type: Optional[str] = None,
|
| 546 |
+
addition_time_embed_dim: Optional[int] = None,
|
| 547 |
+
upcast_attention: bool = True,
|
| 548 |
+
use_linear_projection: bool = True,
|
| 549 |
+
time_cond_proj_dim: Optional[int] = None,
|
| 550 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
| 551 |
+
# additional controlnet configs
|
| 552 |
+
time_embedding_mix: float = 1.0,
|
| 553 |
+
ctrl_conditioning_channels: int = 3,
|
| 554 |
+
ctrl_conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256),
|
| 555 |
+
ctrl_conditioning_channel_order: str = "rgb",
|
| 556 |
+
ctrl_learn_time_embedding: bool = False,
|
| 557 |
+
ctrl_block_out_channels: Tuple[int] = (4, 8, 16, 16),
|
| 558 |
+
ctrl_num_attention_heads: Union[int, Tuple[int]] = 4,
|
| 559 |
+
ctrl_max_norm_num_groups: int = 32,
|
| 560 |
+
):
|
| 561 |
+
super().__init__()
|
| 562 |
+
|
| 563 |
+
if time_embedding_mix < 0 or time_embedding_mix > 1:
|
| 564 |
+
raise ValueError("`time_embedding_mix` needs to be between 0 and 1.")
|
| 565 |
+
if time_embedding_mix < 1 and not ctrl_learn_time_embedding:
|
| 566 |
+
raise ValueError("To use `time_embedding_mix` < 1, `ctrl_learn_time_embedding` must be `True`")
|
| 567 |
+
|
| 568 |
+
if addition_embed_type is not None and addition_embed_type != "text_time":
|
| 569 |
+
raise ValueError(
|
| 570 |
+
"As `UNetControlNetXSModel` currently only supports StableDiffusion and StableDiffusion-XL, `addition_embed_type` must be `None` or `'text_time'`."
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
if not isinstance(transformer_layers_per_block, (list, tuple)):
|
| 574 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
| 575 |
+
if not isinstance(cross_attention_dim, (list, tuple)):
|
| 576 |
+
cross_attention_dim = [cross_attention_dim] * len(down_block_types)
|
| 577 |
+
if not isinstance(num_attention_heads, (list, tuple)):
|
| 578 |
+
num_attention_heads = [num_attention_heads] * len(down_block_types)
|
| 579 |
+
if not isinstance(ctrl_num_attention_heads, (list, tuple)):
|
| 580 |
+
ctrl_num_attention_heads = [ctrl_num_attention_heads] * len(down_block_types)
|
| 581 |
+
|
| 582 |
+
base_num_attention_heads = num_attention_heads
|
| 583 |
+
|
| 584 |
+
self.in_channels = 4
|
| 585 |
+
|
| 586 |
+
# # Input
|
| 587 |
+
self.base_conv_in = nn.Conv2d(4, block_out_channels[0], kernel_size=3, padding=1)
|
| 588 |
+
self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 589 |
+
conditioning_embedding_channels=ctrl_block_out_channels[0],
|
| 590 |
+
block_out_channels=ctrl_conditioning_embedding_out_channels,
|
| 591 |
+
conditioning_channels=ctrl_conditioning_channels,
|
| 592 |
+
)
|
| 593 |
+
self.ctrl_conv_in = nn.Conv2d(4, ctrl_block_out_channels[0], kernel_size=3, padding=1)
|
| 594 |
+
self.control_to_base_for_conv_in = make_zero_conv(ctrl_block_out_channels[0], block_out_channels[0])
|
| 595 |
+
|
| 596 |
+
# # Time
|
| 597 |
+
time_embed_input_dim = block_out_channels[0]
|
| 598 |
+
time_embed_dim = block_out_channels[0] * 4
|
| 599 |
+
|
| 600 |
+
self.base_time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 601 |
+
self.base_time_embedding = TimestepEmbedding(
|
| 602 |
+
time_embed_input_dim,
|
| 603 |
+
time_embed_dim,
|
| 604 |
+
cond_proj_dim=time_cond_proj_dim,
|
| 605 |
+
)
|
| 606 |
+
if ctrl_learn_time_embedding:
|
| 607 |
+
self.ctrl_time_embedding = TimestepEmbedding(
|
| 608 |
+
in_channels=time_embed_input_dim, time_embed_dim=time_embed_dim
|
| 609 |
+
)
|
| 610 |
+
else:
|
| 611 |
+
self.ctrl_time_embedding = None
|
| 612 |
+
|
| 613 |
+
if addition_embed_type is None:
|
| 614 |
+
self.base_add_time_proj = None
|
| 615 |
+
self.base_add_embedding = None
|
| 616 |
+
else:
|
| 617 |
+
self.base_add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 618 |
+
self.base_add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
| 619 |
+
|
| 620 |
+
# # Create down blocks
|
| 621 |
+
down_blocks = []
|
| 622 |
+
base_out_channels = block_out_channels[0]
|
| 623 |
+
ctrl_out_channels = ctrl_block_out_channels[0]
|
| 624 |
+
for i, down_block_type in enumerate(down_block_types):
|
| 625 |
+
base_in_channels = base_out_channels
|
| 626 |
+
base_out_channels = block_out_channels[i]
|
| 627 |
+
ctrl_in_channels = ctrl_out_channels
|
| 628 |
+
ctrl_out_channels = ctrl_block_out_channels[i]
|
| 629 |
+
has_crossattn = "CrossAttn" in down_block_type
|
| 630 |
+
is_final_block = i == len(down_block_types) - 1
|
| 631 |
+
|
| 632 |
+
down_blocks.append(
|
| 633 |
+
ControlNetXSCrossAttnDownBlock2D(
|
| 634 |
+
base_in_channels=base_in_channels,
|
| 635 |
+
base_out_channels=base_out_channels,
|
| 636 |
+
ctrl_in_channels=ctrl_in_channels,
|
| 637 |
+
ctrl_out_channels=ctrl_out_channels,
|
| 638 |
+
temb_channels=time_embed_dim,
|
| 639 |
+
norm_num_groups=norm_num_groups,
|
| 640 |
+
ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
|
| 641 |
+
has_crossattn=has_crossattn,
|
| 642 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
| 643 |
+
base_num_attention_heads=base_num_attention_heads[i],
|
| 644 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads[i],
|
| 645 |
+
cross_attention_dim=cross_attention_dim[i],
|
| 646 |
+
add_downsample=not is_final_block,
|
| 647 |
+
upcast_attention=upcast_attention,
|
| 648 |
+
use_linear_projection=use_linear_projection,
|
| 649 |
+
)
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
# # Create mid block
|
| 653 |
+
self.mid_block = ControlNetXSCrossAttnMidBlock2D(
|
| 654 |
+
base_channels=block_out_channels[-1],
|
| 655 |
+
ctrl_channels=ctrl_block_out_channels[-1],
|
| 656 |
+
temb_channels=time_embed_dim,
|
| 657 |
+
norm_num_groups=norm_num_groups,
|
| 658 |
+
ctrl_max_norm_num_groups=ctrl_max_norm_num_groups,
|
| 659 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
| 660 |
+
base_num_attention_heads=base_num_attention_heads[-1],
|
| 661 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads[-1],
|
| 662 |
+
cross_attention_dim=cross_attention_dim[-1],
|
| 663 |
+
upcast_attention=upcast_attention,
|
| 664 |
+
use_linear_projection=use_linear_projection,
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
# # Create up blocks
|
| 668 |
+
up_blocks = []
|
| 669 |
+
rev_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
| 670 |
+
rev_num_attention_heads = list(reversed(base_num_attention_heads))
|
| 671 |
+
rev_cross_attention_dim = list(reversed(cross_attention_dim))
|
| 672 |
+
|
| 673 |
+
# The skip connection channels are the output of the conv_in and of all the down subblocks
|
| 674 |
+
ctrl_skip_channels = [ctrl_block_out_channels[0]]
|
| 675 |
+
for i, out_channels in enumerate(ctrl_block_out_channels):
|
| 676 |
+
number_of_subblocks = (
|
| 677 |
+
3 if i < len(ctrl_block_out_channels) - 1 else 2
|
| 678 |
+
) # every block has 3 subblocks, except last one, which has 2 as it has no downsampler
|
| 679 |
+
ctrl_skip_channels.extend([out_channels] * number_of_subblocks)
|
| 680 |
+
|
| 681 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
| 682 |
+
|
| 683 |
+
out_channels = reversed_block_out_channels[0]
|
| 684 |
+
for i, up_block_type in enumerate(up_block_types):
|
| 685 |
+
prev_output_channel = out_channels
|
| 686 |
+
out_channels = reversed_block_out_channels[i]
|
| 687 |
+
in_channels = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
| 688 |
+
ctrl_skip_channels_ = [ctrl_skip_channels.pop() for _ in range(3)]
|
| 689 |
+
|
| 690 |
+
has_crossattn = "CrossAttn" in up_block_type
|
| 691 |
+
is_final_block = i == len(block_out_channels) - 1
|
| 692 |
+
|
| 693 |
+
up_blocks.append(
|
| 694 |
+
ControlNetXSCrossAttnUpBlock2D(
|
| 695 |
+
in_channels=in_channels,
|
| 696 |
+
out_channels=out_channels,
|
| 697 |
+
prev_output_channel=prev_output_channel,
|
| 698 |
+
ctrl_skip_channels=ctrl_skip_channels_,
|
| 699 |
+
temb_channels=time_embed_dim,
|
| 700 |
+
resolution_idx=i,
|
| 701 |
+
has_crossattn=has_crossattn,
|
| 702 |
+
transformer_layers_per_block=rev_transformer_layers_per_block[i],
|
| 703 |
+
num_attention_heads=rev_num_attention_heads[i],
|
| 704 |
+
cross_attention_dim=rev_cross_attention_dim[i],
|
| 705 |
+
add_upsample=not is_final_block,
|
| 706 |
+
upcast_attention=upcast_attention,
|
| 707 |
+
norm_num_groups=norm_num_groups,
|
| 708 |
+
use_linear_projection=use_linear_projection,
|
| 709 |
+
)
|
| 710 |
+
)
|
| 711 |
+
|
| 712 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
| 713 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
| 714 |
+
|
| 715 |
+
self.base_conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups)
|
| 716 |
+
self.base_conv_act = nn.SiLU()
|
| 717 |
+
self.base_conv_out = nn.Conv2d(block_out_channels[0], 4, kernel_size=3, padding=1)
|
| 718 |
+
|
| 719 |
+
@classmethod
|
| 720 |
+
def from_unet(
|
| 721 |
+
cls,
|
| 722 |
+
unet: UNet2DConditionModel,
|
| 723 |
+
controlnet: Optional[ControlNetXSAdapter] = None,
|
| 724 |
+
size_ratio: Optional[float] = None,
|
| 725 |
+
ctrl_block_out_channels: Optional[List[float]] = None,
|
| 726 |
+
time_embedding_mix: Optional[float] = None,
|
| 727 |
+
ctrl_optional_kwargs: Optional[Dict] = None,
|
| 728 |
+
):
|
| 729 |
+
r"""
|
| 730 |
+
Instantiate a [`UNetControlNetXSModel`] from a [`UNet2DConditionModel`] and an optional [`ControlNetXSAdapter`]
|
| 731 |
+
.
|
| 732 |
+
|
| 733 |
+
Parameters:
|
| 734 |
+
unet (`UNet2DConditionModel`):
|
| 735 |
+
The UNet model we want to control.
|
| 736 |
+
controlnet (`ControlNetXSAdapter`):
|
| 737 |
+
The ControlNet-XS adapter with which the UNet will be fused. If none is given, a new ControlNet-XS
|
| 738 |
+
adapter will be created.
|
| 739 |
+
size_ratio (float, *optional*, defaults to `None`):
|
| 740 |
+
Used to construct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
|
| 741 |
+
ctrl_block_out_channels (`List[int]`, *optional*, defaults to `None`):
|
| 742 |
+
Used to construct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details,
|
| 743 |
+
where this parameter is called `block_out_channels`.
|
| 744 |
+
time_embedding_mix (`float`, *optional*, defaults to None):
|
| 745 |
+
Used to construct the controlnet if none is given. See [`ControlNetXSAdapter.from_unet`] for details.
|
| 746 |
+
ctrl_optional_kwargs (`Dict`, *optional*, defaults to `None`):
|
| 747 |
+
Passed to the `init` of the new controlnet if no controlnet was given.
|
| 748 |
+
"""
|
| 749 |
+
if controlnet is None:
|
| 750 |
+
controlnet = ControlNetXSAdapter.from_unet(
|
| 751 |
+
unet, size_ratio, ctrl_block_out_channels, **ctrl_optional_kwargs
|
| 752 |
+
)
|
| 753 |
+
else:
|
| 754 |
+
if any(
|
| 755 |
+
o is not None for o in (size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs)
|
| 756 |
+
):
|
| 757 |
+
raise ValueError(
|
| 758 |
+
"When a controlnet is passed, none of these parameters should be passed: size_ratio, ctrl_block_out_channels, time_embedding_mix, ctrl_optional_kwargs."
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
# # get params
|
| 762 |
+
params_for_unet = [
|
| 763 |
+
"sample_size",
|
| 764 |
+
"down_block_types",
|
| 765 |
+
"up_block_types",
|
| 766 |
+
"block_out_channels",
|
| 767 |
+
"norm_num_groups",
|
| 768 |
+
"cross_attention_dim",
|
| 769 |
+
"transformer_layers_per_block",
|
| 770 |
+
"addition_embed_type",
|
| 771 |
+
"addition_time_embed_dim",
|
| 772 |
+
"upcast_attention",
|
| 773 |
+
"use_linear_projection",
|
| 774 |
+
"time_cond_proj_dim",
|
| 775 |
+
"projection_class_embeddings_input_dim",
|
| 776 |
+
]
|
| 777 |
+
params_for_unet = {k: v for k, v in unet.config.items() if k in params_for_unet}
|
| 778 |
+
# The naming seems a bit confusing and it is, see https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 for why.
|
| 779 |
+
params_for_unet["num_attention_heads"] = unet.config.attention_head_dim
|
| 780 |
+
|
| 781 |
+
params_for_controlnet = [
|
| 782 |
+
"conditioning_channels",
|
| 783 |
+
"conditioning_embedding_out_channels",
|
| 784 |
+
"conditioning_channel_order",
|
| 785 |
+
"learn_time_embedding",
|
| 786 |
+
"block_out_channels",
|
| 787 |
+
"num_attention_heads",
|
| 788 |
+
"max_norm_num_groups",
|
| 789 |
+
]
|
| 790 |
+
params_for_controlnet = {"ctrl_" + k: v for k, v in controlnet.config.items() if k in params_for_controlnet}
|
| 791 |
+
params_for_controlnet["time_embedding_mix"] = controlnet.config.time_embedding_mix
|
| 792 |
+
|
| 793 |
+
# # create model
|
| 794 |
+
model = cls.from_config({**params_for_unet, **params_for_controlnet})
|
| 795 |
+
|
| 796 |
+
# # load weights
|
| 797 |
+
# from unet
|
| 798 |
+
modules_from_unet = [
|
| 799 |
+
"time_embedding",
|
| 800 |
+
"conv_in",
|
| 801 |
+
"conv_norm_out",
|
| 802 |
+
"conv_out",
|
| 803 |
+
]
|
| 804 |
+
for m in modules_from_unet:
|
| 805 |
+
getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
|
| 806 |
+
|
| 807 |
+
optional_modules_from_unet = [
|
| 808 |
+
"add_time_proj",
|
| 809 |
+
"add_embedding",
|
| 810 |
+
]
|
| 811 |
+
for m in optional_modules_from_unet:
|
| 812 |
+
if hasattr(unet, m) and getattr(unet, m) is not None:
|
| 813 |
+
getattr(model, "base_" + m).load_state_dict(getattr(unet, m).state_dict())
|
| 814 |
+
|
| 815 |
+
# from controlnet
|
| 816 |
+
model.controlnet_cond_embedding.load_state_dict(controlnet.controlnet_cond_embedding.state_dict())
|
| 817 |
+
model.ctrl_conv_in.load_state_dict(controlnet.conv_in.state_dict())
|
| 818 |
+
if controlnet.time_embedding is not None:
|
| 819 |
+
model.ctrl_time_embedding.load_state_dict(controlnet.time_embedding.state_dict())
|
| 820 |
+
model.control_to_base_for_conv_in.load_state_dict(controlnet.control_to_base_for_conv_in.state_dict())
|
| 821 |
+
|
| 822 |
+
# from both
|
| 823 |
+
model.down_blocks = nn.ModuleList(
|
| 824 |
+
ControlNetXSCrossAttnDownBlock2D.from_modules(b, c)
|
| 825 |
+
for b, c in zip(unet.down_blocks, controlnet.down_blocks)
|
| 826 |
+
)
|
| 827 |
+
model.mid_block = ControlNetXSCrossAttnMidBlock2D.from_modules(unet.mid_block, controlnet.mid_block)
|
| 828 |
+
model.up_blocks = nn.ModuleList(
|
| 829 |
+
ControlNetXSCrossAttnUpBlock2D.from_modules(b, c)
|
| 830 |
+
for b, c in zip(unet.up_blocks, controlnet.up_connections)
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
# ensure that the UNetControlNetXSModel is the same dtype as the UNet2DConditionModel
|
| 834 |
+
model.to(unet.dtype)
|
| 835 |
+
|
| 836 |
+
return model
|
| 837 |
+
|
| 838 |
+
def freeze_unet_params(self) -> None:
|
| 839 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 840 |
+
tuning."""
|
| 841 |
+
# Freeze everything
|
| 842 |
+
for param in self.parameters():
|
| 843 |
+
param.requires_grad = True
|
| 844 |
+
|
| 845 |
+
# Unfreeze ControlNetXSAdapter
|
| 846 |
+
base_parts = [
|
| 847 |
+
"base_time_proj",
|
| 848 |
+
"base_time_embedding",
|
| 849 |
+
"base_add_time_proj",
|
| 850 |
+
"base_add_embedding",
|
| 851 |
+
"base_conv_in",
|
| 852 |
+
"base_conv_norm_out",
|
| 853 |
+
"base_conv_act",
|
| 854 |
+
"base_conv_out",
|
| 855 |
+
]
|
| 856 |
+
base_parts = [getattr(self, part) for part in base_parts if getattr(self, part) is not None]
|
| 857 |
+
for part in base_parts:
|
| 858 |
+
for param in part.parameters():
|
| 859 |
+
param.requires_grad = False
|
| 860 |
+
|
| 861 |
+
for d in self.down_blocks:
|
| 862 |
+
d.freeze_base_params()
|
| 863 |
+
self.mid_block.freeze_base_params()
|
| 864 |
+
for u in self.up_blocks:
|
| 865 |
+
u.freeze_base_params()
|
| 866 |
+
|
| 867 |
+
@property
|
| 868 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 869 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 870 |
+
r"""
|
| 871 |
+
Returns:
|
| 872 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 873 |
+
indexed by its weight name.
|
| 874 |
+
"""
|
| 875 |
+
# set recursively
|
| 876 |
+
processors = {}
|
| 877 |
+
|
| 878 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 879 |
+
if hasattr(module, "get_processor"):
|
| 880 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 881 |
+
|
| 882 |
+
for sub_name, child in module.named_children():
|
| 883 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 884 |
+
|
| 885 |
+
return processors
|
| 886 |
+
|
| 887 |
+
for name, module in self.named_children():
|
| 888 |
+
fn_recursive_add_processors(name, module, processors)
|
| 889 |
+
|
| 890 |
+
return processors
|
| 891 |
+
|
| 892 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 893 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 894 |
+
r"""
|
| 895 |
+
Sets the attention processor to use to compute attention.
|
| 896 |
+
|
| 897 |
+
Parameters:
|
| 898 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 899 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 900 |
+
for **all** `Attention` layers.
|
| 901 |
+
|
| 902 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 903 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 904 |
+
|
| 905 |
+
"""
|
| 906 |
+
count = len(self.attn_processors.keys())
|
| 907 |
+
|
| 908 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 909 |
+
raise ValueError(
|
| 910 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 911 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 912 |
+
)
|
| 913 |
+
|
| 914 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 915 |
+
if hasattr(module, "set_processor"):
|
| 916 |
+
if not isinstance(processor, dict):
|
| 917 |
+
module.set_processor(processor)
|
| 918 |
+
else:
|
| 919 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 920 |
+
|
| 921 |
+
for sub_name, child in module.named_children():
|
| 922 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 923 |
+
|
| 924 |
+
for name, module in self.named_children():
|
| 925 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 926 |
+
|
| 927 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 928 |
+
def set_default_attn_processor(self):
|
| 929 |
+
"""
|
| 930 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 931 |
+
"""
|
| 932 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 933 |
+
processor = AttnAddedKVProcessor()
|
| 934 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 935 |
+
processor = AttnProcessor()
|
| 936 |
+
else:
|
| 937 |
+
raise ValueError(
|
| 938 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 939 |
+
)
|
| 940 |
+
|
| 941 |
+
self.set_attn_processor(processor)
|
| 942 |
+
|
| 943 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.enable_freeu
|
| 944 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
| 945 |
+
r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
|
| 946 |
+
|
| 947 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
| 948 |
+
|
| 949 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
| 950 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
| 951 |
+
|
| 952 |
+
Args:
|
| 953 |
+
s1 (`float`):
|
| 954 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
| 955 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 956 |
+
s2 (`float`):
|
| 957 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
| 958 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
| 959 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
| 960 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
| 961 |
+
"""
|
| 962 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 963 |
+
setattr(upsample_block, "s1", s1)
|
| 964 |
+
setattr(upsample_block, "s2", s2)
|
| 965 |
+
setattr(upsample_block, "b1", b1)
|
| 966 |
+
setattr(upsample_block, "b2", b2)
|
| 967 |
+
|
| 968 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.disable_freeu
|
| 969 |
+
def disable_freeu(self):
|
| 970 |
+
"""Disables the FreeU mechanism."""
|
| 971 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
| 972 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 973 |
+
for k in freeu_keys:
|
| 974 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
| 975 |
+
setattr(upsample_block, k, None)
|
| 976 |
+
|
| 977 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 978 |
+
def fuse_qkv_projections(self):
|
| 979 |
+
"""
|
| 980 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 981 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 982 |
+
|
| 983 |
+
<Tip warning={true}>
|
| 984 |
+
|
| 985 |
+
This API is 🧪 experimental.
|
| 986 |
+
|
| 987 |
+
</Tip>
|
| 988 |
+
"""
|
| 989 |
+
self.original_attn_processors = None
|
| 990 |
+
|
| 991 |
+
for _, attn_processor in self.attn_processors.items():
|
| 992 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 993 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 994 |
+
|
| 995 |
+
self.original_attn_processors = self.attn_processors
|
| 996 |
+
|
| 997 |
+
for module in self.modules():
|
| 998 |
+
if isinstance(module, Attention):
|
| 999 |
+
module.fuse_projections(fuse=True)
|
| 1000 |
+
|
| 1001 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
| 1002 |
+
|
| 1003 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 1004 |
+
def unfuse_qkv_projections(self):
|
| 1005 |
+
"""Disables the fused QKV projection if enabled.
|
| 1006 |
+
|
| 1007 |
+
<Tip warning={true}>
|
| 1008 |
+
|
| 1009 |
+
This API is 🧪 experimental.
|
| 1010 |
+
|
| 1011 |
+
</Tip>
|
| 1012 |
+
|
| 1013 |
+
"""
|
| 1014 |
+
if self.original_attn_processors is not None:
|
| 1015 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 1016 |
+
|
| 1017 |
+
def forward(
|
| 1018 |
+
self,
|
| 1019 |
+
sample: Tensor,
|
| 1020 |
+
timestep: Union[torch.Tensor, float, int],
|
| 1021 |
+
encoder_hidden_states: torch.Tensor,
|
| 1022 |
+
controlnet_cond: Optional[torch.Tensor] = None,
|
| 1023 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1024 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 1025 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 1026 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1027 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1028 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 1029 |
+
return_dict: bool = True,
|
| 1030 |
+
apply_control: bool = True,
|
| 1031 |
+
) -> Union[ControlNetXSOutput, Tuple]:
|
| 1032 |
+
"""
|
| 1033 |
+
The [`ControlNetXSModel`] forward method.
|
| 1034 |
+
|
| 1035 |
+
Args:
|
| 1036 |
+
sample (`Tensor`):
|
| 1037 |
+
The noisy input tensor.
|
| 1038 |
+
timestep (`Union[torch.Tensor, float, int]`):
|
| 1039 |
+
The number of timesteps to denoise an input.
|
| 1040 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 1041 |
+
The encoder hidden states.
|
| 1042 |
+
controlnet_cond (`Tensor`):
|
| 1043 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 1044 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 1045 |
+
How much the control model affects the base model outputs.
|
| 1046 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
| 1047 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
| 1048 |
+
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
| 1049 |
+
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
| 1050 |
+
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
| 1051 |
+
embeddings.
|
| 1052 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
| 1053 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 1054 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 1055 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 1056 |
+
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
| 1057 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
| 1058 |
+
added_cond_kwargs (`dict`):
|
| 1059 |
+
Additional conditions for the Stable Diffusion XL UNet.
|
| 1060 |
+
return_dict (`bool`, defaults to `True`):
|
| 1061 |
+
Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain
|
| 1062 |
+
tuple.
|
| 1063 |
+
apply_control (`bool`, defaults to `True`):
|
| 1064 |
+
If `False`, the input is run only through the base model.
|
| 1065 |
+
|
| 1066 |
+
Returns:
|
| 1067 |
+
[`~models.controlnetxs.ControlNetXSOutput`] **or** `tuple`:
|
| 1068 |
+
If `return_dict` is `True`, a [`~models.controlnetxs.ControlNetXSOutput`] is returned, otherwise a
|
| 1069 |
+
tuple is returned where the first element is the sample tensor.
|
| 1070 |
+
"""
|
| 1071 |
+
|
| 1072 |
+
# check channel order
|
| 1073 |
+
if self.config.ctrl_conditioning_channel_order == "bgr":
|
| 1074 |
+
controlnet_cond = torch.flip(controlnet_cond, dims=[1])
|
| 1075 |
+
|
| 1076 |
+
# prepare attention_mask
|
| 1077 |
+
if attention_mask is not None:
|
| 1078 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 1079 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 1080 |
+
|
| 1081 |
+
# 1. time
|
| 1082 |
+
timesteps = timestep
|
| 1083 |
+
if not torch.is_tensor(timesteps):
|
| 1084 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 1085 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 1086 |
+
is_mps = sample.device.type == "mps"
|
| 1087 |
+
is_npu = sample.device.type == "npu"
|
| 1088 |
+
if isinstance(timestep, float):
|
| 1089 |
+
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
| 1090 |
+
else:
|
| 1091 |
+
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
|
| 1092 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 1093 |
+
elif len(timesteps.shape) == 0:
|
| 1094 |
+
timesteps = timesteps[None].to(sample.device)
|
| 1095 |
+
|
| 1096 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1097 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 1098 |
+
|
| 1099 |
+
t_emb = self.base_time_proj(timesteps)
|
| 1100 |
+
|
| 1101 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 1102 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 1103 |
+
# there might be better ways to encapsulate this.
|
| 1104 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 1105 |
+
|
| 1106 |
+
if self.config.ctrl_learn_time_embedding and apply_control:
|
| 1107 |
+
ctrl_temb = self.ctrl_time_embedding(t_emb, timestep_cond)
|
| 1108 |
+
base_temb = self.base_time_embedding(t_emb, timestep_cond)
|
| 1109 |
+
interpolation_param = self.config.time_embedding_mix**0.3
|
| 1110 |
+
|
| 1111 |
+
temb = ctrl_temb * interpolation_param + base_temb * (1 - interpolation_param)
|
| 1112 |
+
else:
|
| 1113 |
+
temb = self.base_time_embedding(t_emb)
|
| 1114 |
+
|
| 1115 |
+
# added time & text embeddings
|
| 1116 |
+
aug_emb = None
|
| 1117 |
+
|
| 1118 |
+
if self.config.addition_embed_type is None:
|
| 1119 |
+
pass
|
| 1120 |
+
elif self.config.addition_embed_type == "text_time":
|
| 1121 |
+
# SDXL - style
|
| 1122 |
+
if "text_embeds" not in added_cond_kwargs:
|
| 1123 |
+
raise ValueError(
|
| 1124 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
| 1125 |
+
)
|
| 1126 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
| 1127 |
+
if "time_ids" not in added_cond_kwargs:
|
| 1128 |
+
raise ValueError(
|
| 1129 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
| 1130 |
+
)
|
| 1131 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
| 1132 |
+
time_embeds = self.base_add_time_proj(time_ids.flatten())
|
| 1133 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
| 1134 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
| 1135 |
+
add_embeds = add_embeds.to(temb.dtype)
|
| 1136 |
+
aug_emb = self.base_add_embedding(add_embeds)
|
| 1137 |
+
else:
|
| 1138 |
+
raise ValueError(
|
| 1139 |
+
f"ControlNet-XS currently only supports StableDiffusion and StableDiffusion-XL, so addition_embed_type = {self.config.addition_embed_type} is currently not supported."
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
temb = temb + aug_emb if aug_emb is not None else temb
|
| 1143 |
+
|
| 1144 |
+
# text embeddings
|
| 1145 |
+
cemb = encoder_hidden_states
|
| 1146 |
+
|
| 1147 |
+
# Preparation
|
| 1148 |
+
h_ctrl = h_base = sample
|
| 1149 |
+
hs_base, hs_ctrl = [], []
|
| 1150 |
+
|
| 1151 |
+
# Cross Control
|
| 1152 |
+
guided_hint = self.controlnet_cond_embedding(controlnet_cond)
|
| 1153 |
+
|
| 1154 |
+
# 1 - conv in & down
|
| 1155 |
+
|
| 1156 |
+
h_base = self.base_conv_in(h_base)
|
| 1157 |
+
h_ctrl = self.ctrl_conv_in(h_ctrl)
|
| 1158 |
+
if guided_hint is not None:
|
| 1159 |
+
h_ctrl += guided_hint
|
| 1160 |
+
if apply_control:
|
| 1161 |
+
h_base = h_base + self.control_to_base_for_conv_in(h_ctrl) * conditioning_scale # add ctrl -> base
|
| 1162 |
+
|
| 1163 |
+
hs_base.append(h_base)
|
| 1164 |
+
hs_ctrl.append(h_ctrl)
|
| 1165 |
+
|
| 1166 |
+
for down in self.down_blocks:
|
| 1167 |
+
h_base, h_ctrl, residual_hb, residual_hc = down(
|
| 1168 |
+
hidden_states_base=h_base,
|
| 1169 |
+
hidden_states_ctrl=h_ctrl,
|
| 1170 |
+
temb=temb,
|
| 1171 |
+
encoder_hidden_states=cemb,
|
| 1172 |
+
conditioning_scale=conditioning_scale,
|
| 1173 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1174 |
+
attention_mask=attention_mask,
|
| 1175 |
+
apply_control=apply_control,
|
| 1176 |
+
)
|
| 1177 |
+
hs_base.extend(residual_hb)
|
| 1178 |
+
hs_ctrl.extend(residual_hc)
|
| 1179 |
+
|
| 1180 |
+
# 2 - mid
|
| 1181 |
+
h_base, h_ctrl = self.mid_block(
|
| 1182 |
+
hidden_states_base=h_base,
|
| 1183 |
+
hidden_states_ctrl=h_ctrl,
|
| 1184 |
+
temb=temb,
|
| 1185 |
+
encoder_hidden_states=cemb,
|
| 1186 |
+
conditioning_scale=conditioning_scale,
|
| 1187 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1188 |
+
attention_mask=attention_mask,
|
| 1189 |
+
apply_control=apply_control,
|
| 1190 |
+
)
|
| 1191 |
+
|
| 1192 |
+
# 3 - up
|
| 1193 |
+
for up in self.up_blocks:
|
| 1194 |
+
n_resnets = len(up.resnets)
|
| 1195 |
+
skips_hb = hs_base[-n_resnets:]
|
| 1196 |
+
skips_hc = hs_ctrl[-n_resnets:]
|
| 1197 |
+
hs_base = hs_base[:-n_resnets]
|
| 1198 |
+
hs_ctrl = hs_ctrl[:-n_resnets]
|
| 1199 |
+
h_base = up(
|
| 1200 |
+
hidden_states=h_base,
|
| 1201 |
+
res_hidden_states_tuple_base=skips_hb,
|
| 1202 |
+
res_hidden_states_tuple_ctrl=skips_hc,
|
| 1203 |
+
temb=temb,
|
| 1204 |
+
encoder_hidden_states=cemb,
|
| 1205 |
+
conditioning_scale=conditioning_scale,
|
| 1206 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1207 |
+
attention_mask=attention_mask,
|
| 1208 |
+
apply_control=apply_control,
|
| 1209 |
+
)
|
| 1210 |
+
|
| 1211 |
+
# 4 - conv out
|
| 1212 |
+
h_base = self.base_conv_norm_out(h_base)
|
| 1213 |
+
h_base = self.base_conv_act(h_base)
|
| 1214 |
+
h_base = self.base_conv_out(h_base)
|
| 1215 |
+
|
| 1216 |
+
if not return_dict:
|
| 1217 |
+
return (h_base,)
|
| 1218 |
+
|
| 1219 |
+
return ControlNetXSOutput(sample=h_base)
|
| 1220 |
+
|
| 1221 |
+
|
| 1222 |
+
class ControlNetXSCrossAttnDownBlock2D(nn.Module):
|
| 1223 |
+
def __init__(
|
| 1224 |
+
self,
|
| 1225 |
+
base_in_channels: int,
|
| 1226 |
+
base_out_channels: int,
|
| 1227 |
+
ctrl_in_channels: int,
|
| 1228 |
+
ctrl_out_channels: int,
|
| 1229 |
+
temb_channels: int,
|
| 1230 |
+
norm_num_groups: int = 32,
|
| 1231 |
+
ctrl_max_norm_num_groups: int = 32,
|
| 1232 |
+
has_crossattn=True,
|
| 1233 |
+
transformer_layers_per_block: Optional[Union[int, Tuple[int]]] = 1,
|
| 1234 |
+
base_num_attention_heads: Optional[int] = 1,
|
| 1235 |
+
ctrl_num_attention_heads: Optional[int] = 1,
|
| 1236 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 1237 |
+
add_downsample: bool = True,
|
| 1238 |
+
upcast_attention: Optional[bool] = False,
|
| 1239 |
+
use_linear_projection: Optional[bool] = True,
|
| 1240 |
+
):
|
| 1241 |
+
super().__init__()
|
| 1242 |
+
base_resnets = []
|
| 1243 |
+
base_attentions = []
|
| 1244 |
+
ctrl_resnets = []
|
| 1245 |
+
ctrl_attentions = []
|
| 1246 |
+
ctrl_to_base = []
|
| 1247 |
+
base_to_ctrl = []
|
| 1248 |
+
|
| 1249 |
+
num_layers = 2 # only support sd + sdxl
|
| 1250 |
+
|
| 1251 |
+
if isinstance(transformer_layers_per_block, int):
|
| 1252 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 1253 |
+
|
| 1254 |
+
for i in range(num_layers):
|
| 1255 |
+
base_in_channels = base_in_channels if i == 0 else base_out_channels
|
| 1256 |
+
ctrl_in_channels = ctrl_in_channels if i == 0 else ctrl_out_channels
|
| 1257 |
+
|
| 1258 |
+
# Before the resnet/attention application, information is concatted from base to control.
|
| 1259 |
+
# Concat doesn't require change in number of channels
|
| 1260 |
+
base_to_ctrl.append(make_zero_conv(base_in_channels, base_in_channels))
|
| 1261 |
+
|
| 1262 |
+
base_resnets.append(
|
| 1263 |
+
ResnetBlock2D(
|
| 1264 |
+
in_channels=base_in_channels,
|
| 1265 |
+
out_channels=base_out_channels,
|
| 1266 |
+
temb_channels=temb_channels,
|
| 1267 |
+
groups=norm_num_groups,
|
| 1268 |
+
)
|
| 1269 |
+
)
|
| 1270 |
+
ctrl_resnets.append(
|
| 1271 |
+
ResnetBlock2D(
|
| 1272 |
+
in_channels=ctrl_in_channels + base_in_channels, # information from base is concatted to ctrl
|
| 1273 |
+
out_channels=ctrl_out_channels,
|
| 1274 |
+
temb_channels=temb_channels,
|
| 1275 |
+
groups=find_largest_factor(
|
| 1276 |
+
ctrl_in_channels + base_in_channels, max_factor=ctrl_max_norm_num_groups
|
| 1277 |
+
),
|
| 1278 |
+
groups_out=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
|
| 1279 |
+
eps=1e-5,
|
| 1280 |
+
)
|
| 1281 |
+
)
|
| 1282 |
+
|
| 1283 |
+
if has_crossattn:
|
| 1284 |
+
base_attentions.append(
|
| 1285 |
+
Transformer2DModel(
|
| 1286 |
+
base_num_attention_heads,
|
| 1287 |
+
base_out_channels // base_num_attention_heads,
|
| 1288 |
+
in_channels=base_out_channels,
|
| 1289 |
+
num_layers=transformer_layers_per_block[i],
|
| 1290 |
+
cross_attention_dim=cross_attention_dim,
|
| 1291 |
+
use_linear_projection=use_linear_projection,
|
| 1292 |
+
upcast_attention=upcast_attention,
|
| 1293 |
+
norm_num_groups=norm_num_groups,
|
| 1294 |
+
)
|
| 1295 |
+
)
|
| 1296 |
+
ctrl_attentions.append(
|
| 1297 |
+
Transformer2DModel(
|
| 1298 |
+
ctrl_num_attention_heads,
|
| 1299 |
+
ctrl_out_channels // ctrl_num_attention_heads,
|
| 1300 |
+
in_channels=ctrl_out_channels,
|
| 1301 |
+
num_layers=transformer_layers_per_block[i],
|
| 1302 |
+
cross_attention_dim=cross_attention_dim,
|
| 1303 |
+
use_linear_projection=use_linear_projection,
|
| 1304 |
+
upcast_attention=upcast_attention,
|
| 1305 |
+
norm_num_groups=find_largest_factor(ctrl_out_channels, max_factor=ctrl_max_norm_num_groups),
|
| 1306 |
+
)
|
| 1307 |
+
)
|
| 1308 |
+
|
| 1309 |
+
# After the resnet/attention application, information is added from control to base
|
| 1310 |
+
# Addition requires change in number of channels
|
| 1311 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 1312 |
+
|
| 1313 |
+
if add_downsample:
|
| 1314 |
+
# Before the downsampler application, information is concatted from base to control
|
| 1315 |
+
# Concat doesn't require change in number of channels
|
| 1316 |
+
base_to_ctrl.append(make_zero_conv(base_out_channels, base_out_channels))
|
| 1317 |
+
|
| 1318 |
+
self.base_downsamplers = Downsample2D(
|
| 1319 |
+
base_out_channels, use_conv=True, out_channels=base_out_channels, name="op"
|
| 1320 |
+
)
|
| 1321 |
+
self.ctrl_downsamplers = Downsample2D(
|
| 1322 |
+
ctrl_out_channels + base_out_channels, use_conv=True, out_channels=ctrl_out_channels, name="op"
|
| 1323 |
+
)
|
| 1324 |
+
|
| 1325 |
+
# After the downsampler application, information is added from control to base
|
| 1326 |
+
# Addition requires change in number of channels
|
| 1327 |
+
ctrl_to_base.append(make_zero_conv(ctrl_out_channels, base_out_channels))
|
| 1328 |
+
else:
|
| 1329 |
+
self.base_downsamplers = None
|
| 1330 |
+
self.ctrl_downsamplers = None
|
| 1331 |
+
|
| 1332 |
+
self.base_resnets = nn.ModuleList(base_resnets)
|
| 1333 |
+
self.ctrl_resnets = nn.ModuleList(ctrl_resnets)
|
| 1334 |
+
self.base_attentions = nn.ModuleList(base_attentions) if has_crossattn else [None] * num_layers
|
| 1335 |
+
self.ctrl_attentions = nn.ModuleList(ctrl_attentions) if has_crossattn else [None] * num_layers
|
| 1336 |
+
self.base_to_ctrl = nn.ModuleList(base_to_ctrl)
|
| 1337 |
+
self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
|
| 1338 |
+
|
| 1339 |
+
self.gradient_checkpointing = False
|
| 1340 |
+
|
| 1341 |
+
@classmethod
|
| 1342 |
+
def from_modules(cls, base_downblock: CrossAttnDownBlock2D, ctrl_downblock: DownBlockControlNetXSAdapter):
|
| 1343 |
+
# get params
|
| 1344 |
+
def get_first_cross_attention(block):
|
| 1345 |
+
return block.attentions[0].transformer_blocks[0].attn2
|
| 1346 |
+
|
| 1347 |
+
base_in_channels = base_downblock.resnets[0].in_channels
|
| 1348 |
+
base_out_channels = base_downblock.resnets[0].out_channels
|
| 1349 |
+
ctrl_in_channels = (
|
| 1350 |
+
ctrl_downblock.resnets[0].in_channels - base_in_channels
|
| 1351 |
+
) # base channels are concatted to ctrl channels in init
|
| 1352 |
+
ctrl_out_channels = ctrl_downblock.resnets[0].out_channels
|
| 1353 |
+
temb_channels = base_downblock.resnets[0].time_emb_proj.in_features
|
| 1354 |
+
num_groups = base_downblock.resnets[0].norm1.num_groups
|
| 1355 |
+
ctrl_num_groups = ctrl_downblock.resnets[0].norm1.num_groups
|
| 1356 |
+
if hasattr(base_downblock, "attentions"):
|
| 1357 |
+
has_crossattn = True
|
| 1358 |
+
transformer_layers_per_block = len(base_downblock.attentions[0].transformer_blocks)
|
| 1359 |
+
base_num_attention_heads = get_first_cross_attention(base_downblock).heads
|
| 1360 |
+
ctrl_num_attention_heads = get_first_cross_attention(ctrl_downblock).heads
|
| 1361 |
+
cross_attention_dim = get_first_cross_attention(base_downblock).cross_attention_dim
|
| 1362 |
+
upcast_attention = get_first_cross_attention(base_downblock).upcast_attention
|
| 1363 |
+
use_linear_projection = base_downblock.attentions[0].use_linear_projection
|
| 1364 |
+
else:
|
| 1365 |
+
has_crossattn = False
|
| 1366 |
+
transformer_layers_per_block = None
|
| 1367 |
+
base_num_attention_heads = None
|
| 1368 |
+
ctrl_num_attention_heads = None
|
| 1369 |
+
cross_attention_dim = None
|
| 1370 |
+
upcast_attention = None
|
| 1371 |
+
use_linear_projection = None
|
| 1372 |
+
add_downsample = base_downblock.downsamplers is not None
|
| 1373 |
+
|
| 1374 |
+
# create model
|
| 1375 |
+
model = cls(
|
| 1376 |
+
base_in_channels=base_in_channels,
|
| 1377 |
+
base_out_channels=base_out_channels,
|
| 1378 |
+
ctrl_in_channels=ctrl_in_channels,
|
| 1379 |
+
ctrl_out_channels=ctrl_out_channels,
|
| 1380 |
+
temb_channels=temb_channels,
|
| 1381 |
+
norm_num_groups=num_groups,
|
| 1382 |
+
ctrl_max_norm_num_groups=ctrl_num_groups,
|
| 1383 |
+
has_crossattn=has_crossattn,
|
| 1384 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1385 |
+
base_num_attention_heads=base_num_attention_heads,
|
| 1386 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads,
|
| 1387 |
+
cross_attention_dim=cross_attention_dim,
|
| 1388 |
+
add_downsample=add_downsample,
|
| 1389 |
+
upcast_attention=upcast_attention,
|
| 1390 |
+
use_linear_projection=use_linear_projection,
|
| 1391 |
+
)
|
| 1392 |
+
|
| 1393 |
+
# # load weights
|
| 1394 |
+
model.base_resnets.load_state_dict(base_downblock.resnets.state_dict())
|
| 1395 |
+
model.ctrl_resnets.load_state_dict(ctrl_downblock.resnets.state_dict())
|
| 1396 |
+
if has_crossattn:
|
| 1397 |
+
model.base_attentions.load_state_dict(base_downblock.attentions.state_dict())
|
| 1398 |
+
model.ctrl_attentions.load_state_dict(ctrl_downblock.attentions.state_dict())
|
| 1399 |
+
if add_downsample:
|
| 1400 |
+
model.base_downsamplers.load_state_dict(base_downblock.downsamplers[0].state_dict())
|
| 1401 |
+
model.ctrl_downsamplers.load_state_dict(ctrl_downblock.downsamplers.state_dict())
|
| 1402 |
+
model.base_to_ctrl.load_state_dict(ctrl_downblock.base_to_ctrl.state_dict())
|
| 1403 |
+
model.ctrl_to_base.load_state_dict(ctrl_downblock.ctrl_to_base.state_dict())
|
| 1404 |
+
|
| 1405 |
+
return model
|
| 1406 |
+
|
| 1407 |
+
def freeze_base_params(self) -> None:
|
| 1408 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 1409 |
+
tuning."""
|
| 1410 |
+
# Unfreeze everything
|
| 1411 |
+
for param in self.parameters():
|
| 1412 |
+
param.requires_grad = True
|
| 1413 |
+
|
| 1414 |
+
# Freeze base part
|
| 1415 |
+
base_parts = [self.base_resnets]
|
| 1416 |
+
if isinstance(self.base_attentions, nn.ModuleList): # attentions can be a list of Nones
|
| 1417 |
+
base_parts.append(self.base_attentions)
|
| 1418 |
+
if self.base_downsamplers is not None:
|
| 1419 |
+
base_parts.append(self.base_downsamplers)
|
| 1420 |
+
for part in base_parts:
|
| 1421 |
+
for param in part.parameters():
|
| 1422 |
+
param.requires_grad = False
|
| 1423 |
+
|
| 1424 |
+
def forward(
|
| 1425 |
+
self,
|
| 1426 |
+
hidden_states_base: Tensor,
|
| 1427 |
+
temb: Tensor,
|
| 1428 |
+
encoder_hidden_states: Optional[Tensor] = None,
|
| 1429 |
+
hidden_states_ctrl: Optional[Tensor] = None,
|
| 1430 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1431 |
+
attention_mask: Optional[Tensor] = None,
|
| 1432 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1433 |
+
encoder_attention_mask: Optional[Tensor] = None,
|
| 1434 |
+
apply_control: bool = True,
|
| 1435 |
+
) -> Tuple[Tensor, Tensor, Tuple[Tensor, ...], Tuple[Tensor, ...]]:
|
| 1436 |
+
if cross_attention_kwargs is not None:
|
| 1437 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1438 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1439 |
+
|
| 1440 |
+
h_base = hidden_states_base
|
| 1441 |
+
h_ctrl = hidden_states_ctrl
|
| 1442 |
+
|
| 1443 |
+
base_output_states = ()
|
| 1444 |
+
ctrl_output_states = ()
|
| 1445 |
+
|
| 1446 |
+
base_blocks = list(zip(self.base_resnets, self.base_attentions))
|
| 1447 |
+
ctrl_blocks = list(zip(self.ctrl_resnets, self.ctrl_attentions))
|
| 1448 |
+
|
| 1449 |
+
for (b_res, b_attn), (c_res, c_attn), b2c, c2b in zip(
|
| 1450 |
+
base_blocks, ctrl_blocks, self.base_to_ctrl, self.ctrl_to_base
|
| 1451 |
+
):
|
| 1452 |
+
# concat base -> ctrl
|
| 1453 |
+
if apply_control:
|
| 1454 |
+
h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
|
| 1455 |
+
|
| 1456 |
+
# apply base subblock
|
| 1457 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1458 |
+
h_base = self._gradient_checkpointing_func(b_res, h_base, temb)
|
| 1459 |
+
else:
|
| 1460 |
+
h_base = b_res(h_base, temb)
|
| 1461 |
+
|
| 1462 |
+
if b_attn is not None:
|
| 1463 |
+
h_base = b_attn(
|
| 1464 |
+
h_base,
|
| 1465 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1466 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1467 |
+
attention_mask=attention_mask,
|
| 1468 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1469 |
+
return_dict=False,
|
| 1470 |
+
)[0]
|
| 1471 |
+
|
| 1472 |
+
# apply ctrl subblock
|
| 1473 |
+
if apply_control:
|
| 1474 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1475 |
+
h_ctrl = self._gradient_checkpointing_func(c_res, h_ctrl, temb)
|
| 1476 |
+
else:
|
| 1477 |
+
h_ctrl = c_res(h_ctrl, temb)
|
| 1478 |
+
if c_attn is not None:
|
| 1479 |
+
h_ctrl = c_attn(
|
| 1480 |
+
h_ctrl,
|
| 1481 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1482 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1483 |
+
attention_mask=attention_mask,
|
| 1484 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1485 |
+
return_dict=False,
|
| 1486 |
+
)[0]
|
| 1487 |
+
|
| 1488 |
+
# add ctrl -> base
|
| 1489 |
+
if apply_control:
|
| 1490 |
+
h_base = h_base + c2b(h_ctrl) * conditioning_scale
|
| 1491 |
+
|
| 1492 |
+
base_output_states = base_output_states + (h_base,)
|
| 1493 |
+
ctrl_output_states = ctrl_output_states + (h_ctrl,)
|
| 1494 |
+
|
| 1495 |
+
if self.base_downsamplers is not None: # if we have a base_downsampler, then also a ctrl_downsampler
|
| 1496 |
+
b2c = self.base_to_ctrl[-1]
|
| 1497 |
+
c2b = self.ctrl_to_base[-1]
|
| 1498 |
+
|
| 1499 |
+
# concat base -> ctrl
|
| 1500 |
+
if apply_control:
|
| 1501 |
+
h_ctrl = torch.cat([h_ctrl, b2c(h_base)], dim=1)
|
| 1502 |
+
# apply base subblock
|
| 1503 |
+
h_base = self.base_downsamplers(h_base)
|
| 1504 |
+
# apply ctrl subblock
|
| 1505 |
+
if apply_control:
|
| 1506 |
+
h_ctrl = self.ctrl_downsamplers(h_ctrl)
|
| 1507 |
+
# add ctrl -> base
|
| 1508 |
+
if apply_control:
|
| 1509 |
+
h_base = h_base + c2b(h_ctrl) * conditioning_scale
|
| 1510 |
+
|
| 1511 |
+
base_output_states = base_output_states + (h_base,)
|
| 1512 |
+
ctrl_output_states = ctrl_output_states + (h_ctrl,)
|
| 1513 |
+
|
| 1514 |
+
return h_base, h_ctrl, base_output_states, ctrl_output_states
|
| 1515 |
+
|
| 1516 |
+
|
| 1517 |
+
class ControlNetXSCrossAttnMidBlock2D(nn.Module):
|
| 1518 |
+
def __init__(
|
| 1519 |
+
self,
|
| 1520 |
+
base_channels: int,
|
| 1521 |
+
ctrl_channels: int,
|
| 1522 |
+
temb_channels: Optional[int] = None,
|
| 1523 |
+
norm_num_groups: int = 32,
|
| 1524 |
+
ctrl_max_norm_num_groups: int = 32,
|
| 1525 |
+
transformer_layers_per_block: int = 1,
|
| 1526 |
+
base_num_attention_heads: Optional[int] = 1,
|
| 1527 |
+
ctrl_num_attention_heads: Optional[int] = 1,
|
| 1528 |
+
cross_attention_dim: Optional[int] = 1024,
|
| 1529 |
+
upcast_attention: bool = False,
|
| 1530 |
+
use_linear_projection: Optional[bool] = True,
|
| 1531 |
+
):
|
| 1532 |
+
super().__init__()
|
| 1533 |
+
|
| 1534 |
+
# Before the midblock application, information is concatted from base to control.
|
| 1535 |
+
# Concat doesn't require change in number of channels
|
| 1536 |
+
self.base_to_ctrl = make_zero_conv(base_channels, base_channels)
|
| 1537 |
+
|
| 1538 |
+
self.base_midblock = UNetMidBlock2DCrossAttn(
|
| 1539 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1540 |
+
in_channels=base_channels,
|
| 1541 |
+
temb_channels=temb_channels,
|
| 1542 |
+
resnet_groups=norm_num_groups,
|
| 1543 |
+
cross_attention_dim=cross_attention_dim,
|
| 1544 |
+
num_attention_heads=base_num_attention_heads,
|
| 1545 |
+
use_linear_projection=use_linear_projection,
|
| 1546 |
+
upcast_attention=upcast_attention,
|
| 1547 |
+
)
|
| 1548 |
+
|
| 1549 |
+
self.ctrl_midblock = UNetMidBlock2DCrossAttn(
|
| 1550 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1551 |
+
in_channels=ctrl_channels + base_channels,
|
| 1552 |
+
out_channels=ctrl_channels,
|
| 1553 |
+
temb_channels=temb_channels,
|
| 1554 |
+
# number or norm groups must divide both in_channels and out_channels
|
| 1555 |
+
resnet_groups=find_largest_factor(
|
| 1556 |
+
gcd(ctrl_channels, ctrl_channels + base_channels), ctrl_max_norm_num_groups
|
| 1557 |
+
),
|
| 1558 |
+
cross_attention_dim=cross_attention_dim,
|
| 1559 |
+
num_attention_heads=ctrl_num_attention_heads,
|
| 1560 |
+
use_linear_projection=use_linear_projection,
|
| 1561 |
+
upcast_attention=upcast_attention,
|
| 1562 |
+
)
|
| 1563 |
+
|
| 1564 |
+
# After the midblock application, information is added from control to base
|
| 1565 |
+
# Addition requires change in number of channels
|
| 1566 |
+
self.ctrl_to_base = make_zero_conv(ctrl_channels, base_channels)
|
| 1567 |
+
|
| 1568 |
+
self.gradient_checkpointing = False
|
| 1569 |
+
|
| 1570 |
+
@classmethod
|
| 1571 |
+
def from_modules(
|
| 1572 |
+
cls,
|
| 1573 |
+
base_midblock: UNetMidBlock2DCrossAttn,
|
| 1574 |
+
ctrl_midblock: MidBlockControlNetXSAdapter,
|
| 1575 |
+
):
|
| 1576 |
+
base_to_ctrl = ctrl_midblock.base_to_ctrl
|
| 1577 |
+
ctrl_to_base = ctrl_midblock.ctrl_to_base
|
| 1578 |
+
ctrl_midblock = ctrl_midblock.midblock
|
| 1579 |
+
|
| 1580 |
+
# get params
|
| 1581 |
+
def get_first_cross_attention(midblock):
|
| 1582 |
+
return midblock.attentions[0].transformer_blocks[0].attn2
|
| 1583 |
+
|
| 1584 |
+
base_channels = ctrl_to_base.out_channels
|
| 1585 |
+
ctrl_channels = ctrl_to_base.in_channels
|
| 1586 |
+
transformer_layers_per_block = len(base_midblock.attentions[0].transformer_blocks)
|
| 1587 |
+
temb_channels = base_midblock.resnets[0].time_emb_proj.in_features
|
| 1588 |
+
num_groups = base_midblock.resnets[0].norm1.num_groups
|
| 1589 |
+
ctrl_num_groups = ctrl_midblock.resnets[0].norm1.num_groups
|
| 1590 |
+
base_num_attention_heads = get_first_cross_attention(base_midblock).heads
|
| 1591 |
+
ctrl_num_attention_heads = get_first_cross_attention(ctrl_midblock).heads
|
| 1592 |
+
cross_attention_dim = get_first_cross_attention(base_midblock).cross_attention_dim
|
| 1593 |
+
upcast_attention = get_first_cross_attention(base_midblock).upcast_attention
|
| 1594 |
+
use_linear_projection = base_midblock.attentions[0].use_linear_projection
|
| 1595 |
+
|
| 1596 |
+
# create model
|
| 1597 |
+
model = cls(
|
| 1598 |
+
base_channels=base_channels,
|
| 1599 |
+
ctrl_channels=ctrl_channels,
|
| 1600 |
+
temb_channels=temb_channels,
|
| 1601 |
+
norm_num_groups=num_groups,
|
| 1602 |
+
ctrl_max_norm_num_groups=ctrl_num_groups,
|
| 1603 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1604 |
+
base_num_attention_heads=base_num_attention_heads,
|
| 1605 |
+
ctrl_num_attention_heads=ctrl_num_attention_heads,
|
| 1606 |
+
cross_attention_dim=cross_attention_dim,
|
| 1607 |
+
upcast_attention=upcast_attention,
|
| 1608 |
+
use_linear_projection=use_linear_projection,
|
| 1609 |
+
)
|
| 1610 |
+
|
| 1611 |
+
# load weights
|
| 1612 |
+
model.base_to_ctrl.load_state_dict(base_to_ctrl.state_dict())
|
| 1613 |
+
model.base_midblock.load_state_dict(base_midblock.state_dict())
|
| 1614 |
+
model.ctrl_midblock.load_state_dict(ctrl_midblock.state_dict())
|
| 1615 |
+
model.ctrl_to_base.load_state_dict(ctrl_to_base.state_dict())
|
| 1616 |
+
|
| 1617 |
+
return model
|
| 1618 |
+
|
| 1619 |
+
def freeze_base_params(self) -> None:
|
| 1620 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 1621 |
+
tuning."""
|
| 1622 |
+
# Unfreeze everything
|
| 1623 |
+
for param in self.parameters():
|
| 1624 |
+
param.requires_grad = True
|
| 1625 |
+
|
| 1626 |
+
# Freeze base part
|
| 1627 |
+
for param in self.base_midblock.parameters():
|
| 1628 |
+
param.requires_grad = False
|
| 1629 |
+
|
| 1630 |
+
def forward(
|
| 1631 |
+
self,
|
| 1632 |
+
hidden_states_base: Tensor,
|
| 1633 |
+
temb: Tensor,
|
| 1634 |
+
encoder_hidden_states: Tensor,
|
| 1635 |
+
hidden_states_ctrl: Optional[Tensor] = None,
|
| 1636 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1637 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1638 |
+
attention_mask: Optional[Tensor] = None,
|
| 1639 |
+
encoder_attention_mask: Optional[Tensor] = None,
|
| 1640 |
+
apply_control: bool = True,
|
| 1641 |
+
) -> Tuple[Tensor, Tensor]:
|
| 1642 |
+
if cross_attention_kwargs is not None:
|
| 1643 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1644 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1645 |
+
|
| 1646 |
+
h_base = hidden_states_base
|
| 1647 |
+
h_ctrl = hidden_states_ctrl
|
| 1648 |
+
|
| 1649 |
+
joint_args = {
|
| 1650 |
+
"temb": temb,
|
| 1651 |
+
"encoder_hidden_states": encoder_hidden_states,
|
| 1652 |
+
"attention_mask": attention_mask,
|
| 1653 |
+
"cross_attention_kwargs": cross_attention_kwargs,
|
| 1654 |
+
"encoder_attention_mask": encoder_attention_mask,
|
| 1655 |
+
}
|
| 1656 |
+
|
| 1657 |
+
if apply_control:
|
| 1658 |
+
h_ctrl = torch.cat([h_ctrl, self.base_to_ctrl(h_base)], dim=1) # concat base -> ctrl
|
| 1659 |
+
h_base = self.base_midblock(h_base, **joint_args) # apply base mid block
|
| 1660 |
+
if apply_control:
|
| 1661 |
+
h_ctrl = self.ctrl_midblock(h_ctrl, **joint_args) # apply ctrl mid block
|
| 1662 |
+
h_base = h_base + self.ctrl_to_base(h_ctrl) * conditioning_scale # add ctrl -> base
|
| 1663 |
+
|
| 1664 |
+
return h_base, h_ctrl
|
| 1665 |
+
|
| 1666 |
+
|
| 1667 |
+
class ControlNetXSCrossAttnUpBlock2D(nn.Module):
|
| 1668 |
+
def __init__(
|
| 1669 |
+
self,
|
| 1670 |
+
in_channels: int,
|
| 1671 |
+
out_channels: int,
|
| 1672 |
+
prev_output_channel: int,
|
| 1673 |
+
ctrl_skip_channels: List[int],
|
| 1674 |
+
temb_channels: int,
|
| 1675 |
+
norm_num_groups: int = 32,
|
| 1676 |
+
resolution_idx: Optional[int] = None,
|
| 1677 |
+
has_crossattn=True,
|
| 1678 |
+
transformer_layers_per_block: int = 1,
|
| 1679 |
+
num_attention_heads: int = 1,
|
| 1680 |
+
cross_attention_dim: int = 1024,
|
| 1681 |
+
add_upsample: bool = True,
|
| 1682 |
+
upcast_attention: bool = False,
|
| 1683 |
+
use_linear_projection: Optional[bool] = True,
|
| 1684 |
+
):
|
| 1685 |
+
super().__init__()
|
| 1686 |
+
resnets = []
|
| 1687 |
+
attentions = []
|
| 1688 |
+
ctrl_to_base = []
|
| 1689 |
+
|
| 1690 |
+
num_layers = 3 # only support sd + sdxl
|
| 1691 |
+
|
| 1692 |
+
self.has_cross_attention = has_crossattn
|
| 1693 |
+
self.num_attention_heads = num_attention_heads
|
| 1694 |
+
|
| 1695 |
+
if isinstance(transformer_layers_per_block, int):
|
| 1696 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
| 1697 |
+
|
| 1698 |
+
for i in range(num_layers):
|
| 1699 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
| 1700 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
| 1701 |
+
|
| 1702 |
+
ctrl_to_base.append(make_zero_conv(ctrl_skip_channels[i], resnet_in_channels))
|
| 1703 |
+
|
| 1704 |
+
resnets.append(
|
| 1705 |
+
ResnetBlock2D(
|
| 1706 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
| 1707 |
+
out_channels=out_channels,
|
| 1708 |
+
temb_channels=temb_channels,
|
| 1709 |
+
groups=norm_num_groups,
|
| 1710 |
+
)
|
| 1711 |
+
)
|
| 1712 |
+
|
| 1713 |
+
if has_crossattn:
|
| 1714 |
+
attentions.append(
|
| 1715 |
+
Transformer2DModel(
|
| 1716 |
+
num_attention_heads,
|
| 1717 |
+
out_channels // num_attention_heads,
|
| 1718 |
+
in_channels=out_channels,
|
| 1719 |
+
num_layers=transformer_layers_per_block[i],
|
| 1720 |
+
cross_attention_dim=cross_attention_dim,
|
| 1721 |
+
use_linear_projection=use_linear_projection,
|
| 1722 |
+
upcast_attention=upcast_attention,
|
| 1723 |
+
norm_num_groups=norm_num_groups,
|
| 1724 |
+
)
|
| 1725 |
+
)
|
| 1726 |
+
|
| 1727 |
+
self.resnets = nn.ModuleList(resnets)
|
| 1728 |
+
self.attentions = nn.ModuleList(attentions) if has_crossattn else [None] * num_layers
|
| 1729 |
+
self.ctrl_to_base = nn.ModuleList(ctrl_to_base)
|
| 1730 |
+
|
| 1731 |
+
if add_upsample:
|
| 1732 |
+
self.upsamplers = Upsample2D(out_channels, use_conv=True, out_channels=out_channels)
|
| 1733 |
+
else:
|
| 1734 |
+
self.upsamplers = None
|
| 1735 |
+
|
| 1736 |
+
self.gradient_checkpointing = False
|
| 1737 |
+
self.resolution_idx = resolution_idx
|
| 1738 |
+
|
| 1739 |
+
@classmethod
|
| 1740 |
+
def from_modules(cls, base_upblock: CrossAttnUpBlock2D, ctrl_upblock: UpBlockControlNetXSAdapter):
|
| 1741 |
+
ctrl_to_base_skip_connections = ctrl_upblock.ctrl_to_base
|
| 1742 |
+
|
| 1743 |
+
# get params
|
| 1744 |
+
def get_first_cross_attention(block):
|
| 1745 |
+
return block.attentions[0].transformer_blocks[0].attn2
|
| 1746 |
+
|
| 1747 |
+
out_channels = base_upblock.resnets[0].out_channels
|
| 1748 |
+
in_channels = base_upblock.resnets[-1].in_channels - out_channels
|
| 1749 |
+
prev_output_channels = base_upblock.resnets[0].in_channels - out_channels
|
| 1750 |
+
ctrl_skip_channelss = [c.in_channels for c in ctrl_to_base_skip_connections]
|
| 1751 |
+
temb_channels = base_upblock.resnets[0].time_emb_proj.in_features
|
| 1752 |
+
num_groups = base_upblock.resnets[0].norm1.num_groups
|
| 1753 |
+
resolution_idx = base_upblock.resolution_idx
|
| 1754 |
+
if hasattr(base_upblock, "attentions"):
|
| 1755 |
+
has_crossattn = True
|
| 1756 |
+
transformer_layers_per_block = len(base_upblock.attentions[0].transformer_blocks)
|
| 1757 |
+
num_attention_heads = get_first_cross_attention(base_upblock).heads
|
| 1758 |
+
cross_attention_dim = get_first_cross_attention(base_upblock).cross_attention_dim
|
| 1759 |
+
upcast_attention = get_first_cross_attention(base_upblock).upcast_attention
|
| 1760 |
+
use_linear_projection = base_upblock.attentions[0].use_linear_projection
|
| 1761 |
+
else:
|
| 1762 |
+
has_crossattn = False
|
| 1763 |
+
transformer_layers_per_block = None
|
| 1764 |
+
num_attention_heads = None
|
| 1765 |
+
cross_attention_dim = None
|
| 1766 |
+
upcast_attention = None
|
| 1767 |
+
use_linear_projection = None
|
| 1768 |
+
add_upsample = base_upblock.upsamplers is not None
|
| 1769 |
+
|
| 1770 |
+
# create model
|
| 1771 |
+
model = cls(
|
| 1772 |
+
in_channels=in_channels,
|
| 1773 |
+
out_channels=out_channels,
|
| 1774 |
+
prev_output_channel=prev_output_channels,
|
| 1775 |
+
ctrl_skip_channels=ctrl_skip_channelss,
|
| 1776 |
+
temb_channels=temb_channels,
|
| 1777 |
+
norm_num_groups=num_groups,
|
| 1778 |
+
resolution_idx=resolution_idx,
|
| 1779 |
+
has_crossattn=has_crossattn,
|
| 1780 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
| 1781 |
+
num_attention_heads=num_attention_heads,
|
| 1782 |
+
cross_attention_dim=cross_attention_dim,
|
| 1783 |
+
add_upsample=add_upsample,
|
| 1784 |
+
upcast_attention=upcast_attention,
|
| 1785 |
+
use_linear_projection=use_linear_projection,
|
| 1786 |
+
)
|
| 1787 |
+
|
| 1788 |
+
# load weights
|
| 1789 |
+
model.resnets.load_state_dict(base_upblock.resnets.state_dict())
|
| 1790 |
+
if has_crossattn:
|
| 1791 |
+
model.attentions.load_state_dict(base_upblock.attentions.state_dict())
|
| 1792 |
+
if add_upsample:
|
| 1793 |
+
model.upsamplers.load_state_dict(base_upblock.upsamplers[0].state_dict())
|
| 1794 |
+
model.ctrl_to_base.load_state_dict(ctrl_to_base_skip_connections.state_dict())
|
| 1795 |
+
|
| 1796 |
+
return model
|
| 1797 |
+
|
| 1798 |
+
def freeze_base_params(self) -> None:
|
| 1799 |
+
"""Freeze the weights of the parts belonging to the base UNet2DConditionModel, and leave everything else unfrozen for fine
|
| 1800 |
+
tuning."""
|
| 1801 |
+
# Unfreeze everything
|
| 1802 |
+
for param in self.parameters():
|
| 1803 |
+
param.requires_grad = True
|
| 1804 |
+
|
| 1805 |
+
# Freeze base part
|
| 1806 |
+
base_parts = [self.resnets]
|
| 1807 |
+
if isinstance(self.attentions, nn.ModuleList): # attentions can be a list of Nones
|
| 1808 |
+
base_parts.append(self.attentions)
|
| 1809 |
+
if self.upsamplers is not None:
|
| 1810 |
+
base_parts.append(self.upsamplers)
|
| 1811 |
+
for part in base_parts:
|
| 1812 |
+
for param in part.parameters():
|
| 1813 |
+
param.requires_grad = False
|
| 1814 |
+
|
| 1815 |
+
def forward(
|
| 1816 |
+
self,
|
| 1817 |
+
hidden_states: Tensor,
|
| 1818 |
+
res_hidden_states_tuple_base: Tuple[Tensor, ...],
|
| 1819 |
+
res_hidden_states_tuple_ctrl: Tuple[Tensor, ...],
|
| 1820 |
+
temb: Tensor,
|
| 1821 |
+
encoder_hidden_states: Optional[Tensor] = None,
|
| 1822 |
+
conditioning_scale: Optional[float] = 1.0,
|
| 1823 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1824 |
+
attention_mask: Optional[Tensor] = None,
|
| 1825 |
+
upsample_size: Optional[int] = None,
|
| 1826 |
+
encoder_attention_mask: Optional[Tensor] = None,
|
| 1827 |
+
apply_control: bool = True,
|
| 1828 |
+
) -> Tensor:
|
| 1829 |
+
if cross_attention_kwargs is not None:
|
| 1830 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1831 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1832 |
+
|
| 1833 |
+
is_freeu_enabled = (
|
| 1834 |
+
getattr(self, "s1", None)
|
| 1835 |
+
and getattr(self, "s2", None)
|
| 1836 |
+
and getattr(self, "b1", None)
|
| 1837 |
+
and getattr(self, "b2", None)
|
| 1838 |
+
)
|
| 1839 |
+
|
| 1840 |
+
def maybe_apply_freeu_to_subblock(hidden_states, res_h_base):
|
| 1841 |
+
# FreeU: Only operate on the first two stages
|
| 1842 |
+
if is_freeu_enabled:
|
| 1843 |
+
return apply_freeu(
|
| 1844 |
+
self.resolution_idx,
|
| 1845 |
+
hidden_states,
|
| 1846 |
+
res_h_base,
|
| 1847 |
+
s1=self.s1,
|
| 1848 |
+
s2=self.s2,
|
| 1849 |
+
b1=self.b1,
|
| 1850 |
+
b2=self.b2,
|
| 1851 |
+
)
|
| 1852 |
+
else:
|
| 1853 |
+
return hidden_states, res_h_base
|
| 1854 |
+
|
| 1855 |
+
for resnet, attn, c2b, res_h_base, res_h_ctrl in zip(
|
| 1856 |
+
self.resnets,
|
| 1857 |
+
self.attentions,
|
| 1858 |
+
self.ctrl_to_base,
|
| 1859 |
+
reversed(res_hidden_states_tuple_base),
|
| 1860 |
+
reversed(res_hidden_states_tuple_ctrl),
|
| 1861 |
+
):
|
| 1862 |
+
if apply_control:
|
| 1863 |
+
hidden_states += c2b(res_h_ctrl) * conditioning_scale
|
| 1864 |
+
|
| 1865 |
+
hidden_states, res_h_base = maybe_apply_freeu_to_subblock(hidden_states, res_h_base)
|
| 1866 |
+
hidden_states = torch.cat([hidden_states, res_h_base], dim=1)
|
| 1867 |
+
|
| 1868 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1869 |
+
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
|
| 1870 |
+
else:
|
| 1871 |
+
hidden_states = resnet(hidden_states, temb)
|
| 1872 |
+
|
| 1873 |
+
if attn is not None:
|
| 1874 |
+
hidden_states = attn(
|
| 1875 |
+
hidden_states,
|
| 1876 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1877 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1878 |
+
attention_mask=attention_mask,
|
| 1879 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 1880 |
+
return_dict=False,
|
| 1881 |
+
)[0]
|
| 1882 |
+
|
| 1883 |
+
if self.upsamplers is not None:
|
| 1884 |
+
hidden_states = self.upsamplers(hidden_states, upsample_size)
|
| 1885 |
+
|
| 1886 |
+
return hidden_states
|
| 1887 |
+
|
| 1888 |
+
|
| 1889 |
+
def make_zero_conv(in_channels, out_channels=None):
|
| 1890 |
+
return zero_module(nn.Conv2d(in_channels, out_channels, 1, padding=0))
|
| 1891 |
+
|
| 1892 |
+
|
| 1893 |
+
def zero_module(module):
|
| 1894 |
+
for p in module.parameters():
|
| 1895 |
+
nn.init.zeros_(p)
|
| 1896 |
+
return module
|
| 1897 |
+
|
| 1898 |
+
|
| 1899 |
+
def find_largest_factor(number, max_factor):
|
| 1900 |
+
factor = max_factor
|
| 1901 |
+
if factor >= number:
|
| 1902 |
+
return number
|
| 1903 |
+
while factor != 0:
|
| 1904 |
+
residual = number % factor
|
| 1905 |
+
if residual == 0:
|
| 1906 |
+
return factor
|
| 1907 |
+
factor -= 1
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/multicontrolnet.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
|
| 7 |
+
from ...utils import logging
|
| 8 |
+
from ..controlnets.controlnet import ControlNetModel, ControlNetOutput
|
| 9 |
+
from ..modeling_utils import ModelMixin
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
logger = logging.get_logger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class MultiControlNetModel(ModelMixin):
|
| 16 |
+
r"""
|
| 17 |
+
Multiple `ControlNetModel` wrapper class for Multi-ControlNet
|
| 18 |
+
|
| 19 |
+
This module is a wrapper for multiple instances of the `ControlNetModel`. The `forward()` API is designed to be
|
| 20 |
+
compatible with `ControlNetModel`.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
controlnets (`List[ControlNetModel]`):
|
| 24 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 25 |
+
`ControlNetModel` as a list.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(self, controlnets: Union[List[ControlNetModel], Tuple[ControlNetModel]]):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.nets = nn.ModuleList(controlnets)
|
| 31 |
+
|
| 32 |
+
def forward(
|
| 33 |
+
self,
|
| 34 |
+
sample: torch.Tensor,
|
| 35 |
+
timestep: Union[torch.Tensor, float, int],
|
| 36 |
+
encoder_hidden_states: torch.Tensor,
|
| 37 |
+
controlnet_cond: List[torch.tensor],
|
| 38 |
+
conditioning_scale: List[float],
|
| 39 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 40 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 41 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 42 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 43 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 44 |
+
guess_mode: bool = False,
|
| 45 |
+
return_dict: bool = True,
|
| 46 |
+
) -> Union[ControlNetOutput, Tuple]:
|
| 47 |
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
| 48 |
+
down_samples, mid_sample = controlnet(
|
| 49 |
+
sample=sample,
|
| 50 |
+
timestep=timestep,
|
| 51 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 52 |
+
controlnet_cond=image,
|
| 53 |
+
conditioning_scale=scale,
|
| 54 |
+
class_labels=class_labels,
|
| 55 |
+
timestep_cond=timestep_cond,
|
| 56 |
+
attention_mask=attention_mask,
|
| 57 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 58 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 59 |
+
guess_mode=guess_mode,
|
| 60 |
+
return_dict=return_dict,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# merge samples
|
| 64 |
+
if i == 0:
|
| 65 |
+
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
| 66 |
+
else:
|
| 67 |
+
down_block_res_samples = [
|
| 68 |
+
samples_prev + samples_curr
|
| 69 |
+
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
| 70 |
+
]
|
| 71 |
+
mid_block_res_sample += mid_sample
|
| 72 |
+
|
| 73 |
+
return down_block_res_samples, mid_block_res_sample
|
| 74 |
+
|
| 75 |
+
def save_pretrained(
|
| 76 |
+
self,
|
| 77 |
+
save_directory: Union[str, os.PathLike],
|
| 78 |
+
is_main_process: bool = True,
|
| 79 |
+
save_function: Callable = None,
|
| 80 |
+
safe_serialization: bool = True,
|
| 81 |
+
variant: Optional[str] = None,
|
| 82 |
+
):
|
| 83 |
+
"""
|
| 84 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
| 85 |
+
`[`~models.controlnets.multicontrolnet.MultiControlNetModel.from_pretrained`]` class method.
|
| 86 |
+
|
| 87 |
+
Arguments:
|
| 88 |
+
save_directory (`str` or `os.PathLike`):
|
| 89 |
+
Directory to which to save. Will be created if it doesn't exist.
|
| 90 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
| 91 |
+
Whether the process calling this is the main process or not. Useful when in distributed training like
|
| 92 |
+
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
| 93 |
+
the main process to avoid race conditions.
|
| 94 |
+
save_function (`Callable`):
|
| 95 |
+
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
| 96 |
+
need to replace `torch.save` by another method. Can be configured with the environment variable
|
| 97 |
+
`DIFFUSERS_SAVE_MODE`.
|
| 98 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
| 99 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 100 |
+
variant (`str`, *optional*):
|
| 101 |
+
If specified, weights are saved in the format pytorch_model.<variant>.bin.
|
| 102 |
+
"""
|
| 103 |
+
for idx, controlnet in enumerate(self.nets):
|
| 104 |
+
suffix = "" if idx == 0 else f"_{idx}"
|
| 105 |
+
controlnet.save_pretrained(
|
| 106 |
+
save_directory + suffix,
|
| 107 |
+
is_main_process=is_main_process,
|
| 108 |
+
save_function=save_function,
|
| 109 |
+
safe_serialization=safe_serialization,
|
| 110 |
+
variant=variant,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
@classmethod
|
| 114 |
+
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
|
| 115 |
+
r"""
|
| 116 |
+
Instantiate a pretrained MultiControlNet model from multiple pre-trained controlnet models.
|
| 117 |
+
|
| 118 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
| 119 |
+
the model, you should first set it back in training mode with `model.train()`.
|
| 120 |
+
|
| 121 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
| 122 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
| 123 |
+
task.
|
| 124 |
+
|
| 125 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
| 126 |
+
weights are discarded.
|
| 127 |
+
|
| 128 |
+
Parameters:
|
| 129 |
+
pretrained_model_path (`os.PathLike`):
|
| 130 |
+
A path to a *directory* containing model weights saved using
|
| 131 |
+
[`~models.controlnets.multicontrolnet.MultiControlNetModel.save_pretrained`], e.g.,
|
| 132 |
+
`./my_model_directory/controlnet`.
|
| 133 |
+
torch_dtype (`torch.dtype`, *optional*):
|
| 134 |
+
Override the default `torch.dtype` and load the model under this dtype.
|
| 135 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
| 136 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
| 137 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
| 138 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
| 139 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
| 140 |
+
same device.
|
| 141 |
+
|
| 142 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
| 143 |
+
more information about each option see [designing a device
|
| 144 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
| 145 |
+
max_memory (`Dict`, *optional*):
|
| 146 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
| 147 |
+
GPU and the available CPU RAM if unset.
|
| 148 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
| 149 |
+
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
|
| 150 |
+
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
|
| 151 |
+
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
|
| 152 |
+
setting this argument to `True` will raise an error.
|
| 153 |
+
variant (`str`, *optional*):
|
| 154 |
+
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
|
| 155 |
+
ignored when using `from_flax`.
|
| 156 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
| 157 |
+
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
|
| 158 |
+
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
|
| 159 |
+
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
|
| 160 |
+
"""
|
| 161 |
+
idx = 0
|
| 162 |
+
controlnets = []
|
| 163 |
+
|
| 164 |
+
# load controlnet and append to list until no controlnet directory exists anymore
|
| 165 |
+
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
|
| 166 |
+
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
|
| 167 |
+
model_path_to_load = pretrained_model_path
|
| 168 |
+
while os.path.isdir(model_path_to_load):
|
| 169 |
+
controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs)
|
| 170 |
+
controlnets.append(controlnet)
|
| 171 |
+
|
| 172 |
+
idx += 1
|
| 173 |
+
model_path_to_load = pretrained_model_path + f"_{idx}"
|
| 174 |
+
|
| 175 |
+
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.")
|
| 176 |
+
|
| 177 |
+
if len(controlnets) == 0:
|
| 178 |
+
raise ValueError(
|
| 179 |
+
f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
return cls(controlnets)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/controlnets/multicontrolnet_union.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
|
| 7 |
+
from ...utils import logging
|
| 8 |
+
from ..controlnets.controlnet import ControlNetOutput
|
| 9 |
+
from ..controlnets.controlnet_union import ControlNetUnionModel
|
| 10 |
+
from ..modeling_utils import ModelMixin
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
logger = logging.get_logger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class MultiControlNetUnionModel(ModelMixin):
|
| 17 |
+
r"""
|
| 18 |
+
Multiple `ControlNetUnionModel` wrapper class for Multi-ControlNet-Union.
|
| 19 |
+
|
| 20 |
+
This module is a wrapper for multiple instances of the `ControlNetUnionModel`. The `forward()` API is designed to
|
| 21 |
+
be compatible with `ControlNetUnionModel`.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
controlnets (`List[ControlNetUnionModel]`):
|
| 25 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 26 |
+
`ControlNetUnionModel` as a list.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self, controlnets: Union[List[ControlNetUnionModel], Tuple[ControlNetUnionModel]]):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.nets = nn.ModuleList(controlnets)
|
| 32 |
+
|
| 33 |
+
def forward(
|
| 34 |
+
self,
|
| 35 |
+
sample: torch.Tensor,
|
| 36 |
+
timestep: Union[torch.Tensor, float, int],
|
| 37 |
+
encoder_hidden_states: torch.Tensor,
|
| 38 |
+
controlnet_cond: List[torch.tensor],
|
| 39 |
+
control_type: List[torch.Tensor],
|
| 40 |
+
control_type_idx: List[List[int]],
|
| 41 |
+
conditioning_scale: List[float],
|
| 42 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 43 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 44 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 45 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 46 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 47 |
+
guess_mode: bool = False,
|
| 48 |
+
return_dict: bool = True,
|
| 49 |
+
) -> Union[ControlNetOutput, Tuple]:
|
| 50 |
+
down_block_res_samples, mid_block_res_sample = None, None
|
| 51 |
+
for i, (image, ctype, ctype_idx, scale, controlnet) in enumerate(
|
| 52 |
+
zip(controlnet_cond, control_type, control_type_idx, conditioning_scale, self.nets)
|
| 53 |
+
):
|
| 54 |
+
if scale == 0.0:
|
| 55 |
+
continue
|
| 56 |
+
down_samples, mid_sample = controlnet(
|
| 57 |
+
sample=sample,
|
| 58 |
+
timestep=timestep,
|
| 59 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 60 |
+
controlnet_cond=image,
|
| 61 |
+
control_type=ctype,
|
| 62 |
+
control_type_idx=ctype_idx,
|
| 63 |
+
conditioning_scale=scale,
|
| 64 |
+
class_labels=class_labels,
|
| 65 |
+
timestep_cond=timestep_cond,
|
| 66 |
+
attention_mask=attention_mask,
|
| 67 |
+
added_cond_kwargs=added_cond_kwargs,
|
| 68 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 69 |
+
from_multi=True,
|
| 70 |
+
guess_mode=guess_mode,
|
| 71 |
+
return_dict=return_dict,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# merge samples
|
| 75 |
+
if down_block_res_samples is None and mid_block_res_sample is None:
|
| 76 |
+
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
| 77 |
+
else:
|
| 78 |
+
down_block_res_samples = [
|
| 79 |
+
samples_prev + samples_curr
|
| 80 |
+
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
| 81 |
+
]
|
| 82 |
+
mid_block_res_sample += mid_sample
|
| 83 |
+
|
| 84 |
+
return down_block_res_samples, mid_block_res_sample
|
| 85 |
+
|
| 86 |
+
# Copied from diffusers.models.controlnets.multicontrolnet.MultiControlNetModel.save_pretrained with ControlNet->ControlNetUnion
|
| 87 |
+
def save_pretrained(
|
| 88 |
+
self,
|
| 89 |
+
save_directory: Union[str, os.PathLike],
|
| 90 |
+
is_main_process: bool = True,
|
| 91 |
+
save_function: Callable = None,
|
| 92 |
+
safe_serialization: bool = True,
|
| 93 |
+
variant: Optional[str] = None,
|
| 94 |
+
):
|
| 95 |
+
"""
|
| 96 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
| 97 |
+
`[`~models.controlnets.multicontrolnet.MultiControlNetUnionModel.from_pretrained`]` class method.
|
| 98 |
+
|
| 99 |
+
Arguments:
|
| 100 |
+
save_directory (`str` or `os.PathLike`):
|
| 101 |
+
Directory to which to save. Will be created if it doesn't exist.
|
| 102 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
| 103 |
+
Whether the process calling this is the main process or not. Useful when in distributed training like
|
| 104 |
+
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
| 105 |
+
the main process to avoid race conditions.
|
| 106 |
+
save_function (`Callable`):
|
| 107 |
+
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
| 108 |
+
need to replace `torch.save` by another method. Can be configured with the environment variable
|
| 109 |
+
`DIFFUSERS_SAVE_MODE`.
|
| 110 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
| 111 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 112 |
+
variant (`str`, *optional*):
|
| 113 |
+
If specified, weights are saved in the format pytorch_model.<variant>.bin.
|
| 114 |
+
"""
|
| 115 |
+
for idx, controlnet in enumerate(self.nets):
|
| 116 |
+
suffix = "" if idx == 0 else f"_{idx}"
|
| 117 |
+
controlnet.save_pretrained(
|
| 118 |
+
save_directory + suffix,
|
| 119 |
+
is_main_process=is_main_process,
|
| 120 |
+
save_function=save_function,
|
| 121 |
+
safe_serialization=safe_serialization,
|
| 122 |
+
variant=variant,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
@classmethod
|
| 126 |
+
# Copied from diffusers.models.controlnets.multicontrolnet.MultiControlNetModel.from_pretrained with ControlNet->ControlNetUnion
|
| 127 |
+
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
|
| 128 |
+
r"""
|
| 129 |
+
Instantiate a pretrained MultiControlNetUnion model from multiple pre-trained controlnet models.
|
| 130 |
+
|
| 131 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
| 132 |
+
the model, you should first set it back in training mode with `model.train()`.
|
| 133 |
+
|
| 134 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
| 135 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
| 136 |
+
task.
|
| 137 |
+
|
| 138 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
| 139 |
+
weights are discarded.
|
| 140 |
+
|
| 141 |
+
Parameters:
|
| 142 |
+
pretrained_model_path (`os.PathLike`):
|
| 143 |
+
A path to a *directory* containing model weights saved using
|
| 144 |
+
[`~models.controlnets.multicontrolnet.MultiControlNetUnionModel.save_pretrained`], e.g.,
|
| 145 |
+
`./my_model_directory/controlnet`.
|
| 146 |
+
torch_dtype (`torch.dtype`, *optional*):
|
| 147 |
+
Override the default `torch.dtype` and load the model under this dtype.
|
| 148 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
| 149 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
| 150 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
| 151 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
| 152 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
| 153 |
+
same device.
|
| 154 |
+
|
| 155 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
| 156 |
+
more information about each option see [designing a device
|
| 157 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
| 158 |
+
max_memory (`Dict`, *optional*):
|
| 159 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
| 160 |
+
GPU and the available CPU RAM if unset.
|
| 161 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
| 162 |
+
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
|
| 163 |
+
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
|
| 164 |
+
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
|
| 165 |
+
setting this argument to `True` will raise an error.
|
| 166 |
+
variant (`str`, *optional*):
|
| 167 |
+
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
|
| 168 |
+
ignored when using `from_flax`.
|
| 169 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
| 170 |
+
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
|
| 171 |
+
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
|
| 172 |
+
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
|
| 173 |
+
"""
|
| 174 |
+
idx = 0
|
| 175 |
+
controlnets = []
|
| 176 |
+
|
| 177 |
+
# load controlnet and append to list until no controlnet directory exists anymore
|
| 178 |
+
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
|
| 179 |
+
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
|
| 180 |
+
model_path_to_load = pretrained_model_path
|
| 181 |
+
while os.path.isdir(model_path_to_load):
|
| 182 |
+
controlnet = ControlNetUnionModel.from_pretrained(model_path_to_load, **kwargs)
|
| 183 |
+
controlnets.append(controlnet)
|
| 184 |
+
|
| 185 |
+
idx += 1
|
| 186 |
+
model_path_to_load = pretrained_model_path + f"_{idx}"
|
| 187 |
+
|
| 188 |
+
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.")
|
| 189 |
+
|
| 190 |
+
if len(controlnets) == 0:
|
| 191 |
+
raise ValueError(
|
| 192 |
+
f"No ControlNetUnions found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
return cls(controlnets)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/__init__.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ...utils import is_torch_available
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
if is_torch_available():
|
| 5 |
+
from .auraflow_transformer_2d import AuraFlowTransformer2DModel
|
| 6 |
+
from .cogvideox_transformer_3d import CogVideoXTransformer3DModel
|
| 7 |
+
from .consisid_transformer_3d import ConsisIDTransformer3DModel
|
| 8 |
+
from .dit_transformer_2d import DiTTransformer2DModel
|
| 9 |
+
from .dual_transformer_2d import DualTransformer2DModel
|
| 10 |
+
from .hunyuan_transformer_2d import HunyuanDiT2DModel
|
| 11 |
+
from .latte_transformer_3d import LatteTransformer3DModel
|
| 12 |
+
from .lumina_nextdit2d import LuminaNextDiT2DModel
|
| 13 |
+
from .pixart_transformer_2d import PixArtTransformer2DModel
|
| 14 |
+
from .prior_transformer import PriorTransformer
|
| 15 |
+
from .sana_transformer import SanaTransformer2DModel
|
| 16 |
+
from .stable_audio_transformer import StableAudioDiTModel
|
| 17 |
+
from .t5_film_transformer import T5FilmDecoder
|
| 18 |
+
from .transformer_2d import Transformer2DModel
|
| 19 |
+
from .transformer_allegro import AllegroTransformer3DModel
|
| 20 |
+
from .transformer_bria import BriaTransformer2DModel
|
| 21 |
+
from .transformer_chroma import ChromaTransformer2DModel
|
| 22 |
+
from .transformer_cogview3plus import CogView3PlusTransformer2DModel
|
| 23 |
+
from .transformer_cogview4 import CogView4Transformer2DModel
|
| 24 |
+
from .transformer_cosmos import CosmosTransformer3DModel
|
| 25 |
+
from .transformer_easyanimate import EasyAnimateTransformer3DModel
|
| 26 |
+
from .transformer_flux import FluxTransformer2DModel
|
| 27 |
+
from .transformer_hidream_image import HiDreamImageTransformer2DModel
|
| 28 |
+
from .transformer_hunyuan_video import HunyuanVideoTransformer3DModel
|
| 29 |
+
from .transformer_hunyuan_video_framepack import HunyuanVideoFramepackTransformer3DModel
|
| 30 |
+
from .transformer_ltx import LTXVideoTransformer3DModel
|
| 31 |
+
from .transformer_lumina2 import Lumina2Transformer2DModel
|
| 32 |
+
from .transformer_mochi import MochiTransformer3DModel
|
| 33 |
+
from .transformer_omnigen import OmniGenTransformer2DModel
|
| 34 |
+
from .transformer_qwenimage import QwenImageTransformer2DModel
|
| 35 |
+
from .transformer_sd3 import SD3Transformer2DModel
|
| 36 |
+
from .transformer_skyreels_v2 import SkyReelsV2Transformer3DModel
|
| 37 |
+
from .transformer_temporal import TransformerTemporalModel
|
| 38 |
+
from .transformer_wan import WanTransformer3DModel
|
| 39 |
+
from .transformer_wan_s2v import WanS2VTransformer3DModel
|
| 40 |
+
from .transformer_wan_vace import WanVACETransformer3DModel
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/auraflow_transformer_2d.py
ADDED
|
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 AuraFlow Authors, The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, Optional, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 24 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 25 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 26 |
+
from ..attention_processor import (
|
| 27 |
+
Attention,
|
| 28 |
+
AttentionProcessor,
|
| 29 |
+
AuraFlowAttnProcessor2_0,
|
| 30 |
+
FusedAuraFlowAttnProcessor2_0,
|
| 31 |
+
)
|
| 32 |
+
from ..embeddings import TimestepEmbedding, Timesteps
|
| 33 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 34 |
+
from ..modeling_utils import ModelMixin
|
| 35 |
+
from ..normalization import AdaLayerNormZero, FP32LayerNorm
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Taken from the original aura flow inference code.
|
| 42 |
+
def find_multiple(n: int, k: int) -> int:
|
| 43 |
+
if n % k == 0:
|
| 44 |
+
return n
|
| 45 |
+
return n + k - (n % k)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Aura Flow patch embed doesn't use convs for projections.
|
| 49 |
+
# Additionally, it uses learned positional embeddings.
|
| 50 |
+
class AuraFlowPatchEmbed(nn.Module):
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
height=224,
|
| 54 |
+
width=224,
|
| 55 |
+
patch_size=16,
|
| 56 |
+
in_channels=3,
|
| 57 |
+
embed_dim=768,
|
| 58 |
+
pos_embed_max_size=None,
|
| 59 |
+
):
|
| 60 |
+
super().__init__()
|
| 61 |
+
|
| 62 |
+
self.num_patches = (height // patch_size) * (width // patch_size)
|
| 63 |
+
self.pos_embed_max_size = pos_embed_max_size
|
| 64 |
+
|
| 65 |
+
self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim)
|
| 66 |
+
self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1)
|
| 67 |
+
|
| 68 |
+
self.patch_size = patch_size
|
| 69 |
+
self.height, self.width = height // patch_size, width // patch_size
|
| 70 |
+
self.base_size = height // patch_size
|
| 71 |
+
|
| 72 |
+
def pe_selection_index_based_on_dim(self, h, w):
|
| 73 |
+
# select subset of positional embedding based on H, W, where H, W is size of latent
|
| 74 |
+
# PE will be viewed as 2d-grid, and H/p x W/p of the PE will be selected
|
| 75 |
+
# because original input are in flattened format, we have to flatten this 2d grid as well.
|
| 76 |
+
h_p, w_p = h // self.patch_size, w // self.patch_size
|
| 77 |
+
h_max, w_max = int(self.pos_embed_max_size**0.5), int(self.pos_embed_max_size**0.5)
|
| 78 |
+
|
| 79 |
+
# Calculate the top-left corner indices for the centered patch grid
|
| 80 |
+
starth = h_max // 2 - h_p // 2
|
| 81 |
+
startw = w_max // 2 - w_p // 2
|
| 82 |
+
|
| 83 |
+
# Generate the row and column indices for the desired patch grid
|
| 84 |
+
rows = torch.arange(starth, starth + h_p, device=self.pos_embed.device)
|
| 85 |
+
cols = torch.arange(startw, startw + w_p, device=self.pos_embed.device)
|
| 86 |
+
|
| 87 |
+
# Create a 2D grid of indices
|
| 88 |
+
row_indices, col_indices = torch.meshgrid(rows, cols, indexing="ij")
|
| 89 |
+
|
| 90 |
+
# Convert the 2D grid indices to flattened 1D indices
|
| 91 |
+
selected_indices = (row_indices * w_max + col_indices).flatten()
|
| 92 |
+
|
| 93 |
+
return selected_indices
|
| 94 |
+
|
| 95 |
+
def forward(self, latent):
|
| 96 |
+
batch_size, num_channels, height, width = latent.size()
|
| 97 |
+
latent = latent.view(
|
| 98 |
+
batch_size,
|
| 99 |
+
num_channels,
|
| 100 |
+
height // self.patch_size,
|
| 101 |
+
self.patch_size,
|
| 102 |
+
width // self.patch_size,
|
| 103 |
+
self.patch_size,
|
| 104 |
+
)
|
| 105 |
+
latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
|
| 106 |
+
latent = self.proj(latent)
|
| 107 |
+
pe_index = self.pe_selection_index_based_on_dim(height, width)
|
| 108 |
+
return latent + self.pos_embed[:, pe_index]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# Taken from the original Aura flow inference code.
|
| 112 |
+
# Our feedforward only has GELU but Aura uses SiLU.
|
| 113 |
+
class AuraFlowFeedForward(nn.Module):
|
| 114 |
+
def __init__(self, dim, hidden_dim=None) -> None:
|
| 115 |
+
super().__init__()
|
| 116 |
+
if hidden_dim is None:
|
| 117 |
+
hidden_dim = 4 * dim
|
| 118 |
+
|
| 119 |
+
final_hidden_dim = int(2 * hidden_dim / 3)
|
| 120 |
+
final_hidden_dim = find_multiple(final_hidden_dim, 256)
|
| 121 |
+
|
| 122 |
+
self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False)
|
| 123 |
+
self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False)
|
| 124 |
+
self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False)
|
| 125 |
+
|
| 126 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 127 |
+
x = F.silu(self.linear_1(x)) * self.linear_2(x)
|
| 128 |
+
x = self.out_projection(x)
|
| 129 |
+
return x
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class AuraFlowPreFinalBlock(nn.Module):
|
| 133 |
+
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int):
|
| 134 |
+
super().__init__()
|
| 135 |
+
|
| 136 |
+
self.silu = nn.SiLU()
|
| 137 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False)
|
| 138 |
+
|
| 139 |
+
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
| 140 |
+
emb = self.linear(self.silu(conditioning_embedding).to(x.dtype))
|
| 141 |
+
scale, shift = torch.chunk(emb, 2, dim=1)
|
| 142 |
+
x = x * (1 + scale)[:, None, :] + shift[:, None, :]
|
| 143 |
+
return x
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
@maybe_allow_in_graph
|
| 147 |
+
class AuraFlowSingleTransformerBlock(nn.Module):
|
| 148 |
+
"""Similar to `AuraFlowJointTransformerBlock` with a single DiT instead of an MMDiT."""
|
| 149 |
+
|
| 150 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim):
|
| 151 |
+
super().__init__()
|
| 152 |
+
|
| 153 |
+
self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
|
| 154 |
+
|
| 155 |
+
processor = AuraFlowAttnProcessor2_0()
|
| 156 |
+
self.attn = Attention(
|
| 157 |
+
query_dim=dim,
|
| 158 |
+
cross_attention_dim=None,
|
| 159 |
+
dim_head=attention_head_dim,
|
| 160 |
+
heads=num_attention_heads,
|
| 161 |
+
qk_norm="fp32_layer_norm",
|
| 162 |
+
out_dim=dim,
|
| 163 |
+
bias=False,
|
| 164 |
+
out_bias=False,
|
| 165 |
+
processor=processor,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
|
| 169 |
+
self.ff = AuraFlowFeedForward(dim, dim * 4)
|
| 170 |
+
|
| 171 |
+
def forward(
|
| 172 |
+
self,
|
| 173 |
+
hidden_states: torch.FloatTensor,
|
| 174 |
+
temb: torch.FloatTensor,
|
| 175 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 176 |
+
):
|
| 177 |
+
residual = hidden_states
|
| 178 |
+
attention_kwargs = attention_kwargs or {}
|
| 179 |
+
|
| 180 |
+
# Norm + Projection.
|
| 181 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 182 |
+
|
| 183 |
+
# Attention.
|
| 184 |
+
attn_output = self.attn(hidden_states=norm_hidden_states, **attention_kwargs)
|
| 185 |
+
|
| 186 |
+
# Process attention outputs for the `hidden_states`.
|
| 187 |
+
hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output)
|
| 188 |
+
hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 189 |
+
ff_output = self.ff(hidden_states)
|
| 190 |
+
hidden_states = gate_mlp.unsqueeze(1) * ff_output
|
| 191 |
+
hidden_states = residual + hidden_states
|
| 192 |
+
|
| 193 |
+
return hidden_states
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
@maybe_allow_in_graph
|
| 197 |
+
class AuraFlowJointTransformerBlock(nn.Module):
|
| 198 |
+
r"""
|
| 199 |
+
Transformer block for Aura Flow. Similar to SD3 MMDiT. Differences (non-exhaustive):
|
| 200 |
+
|
| 201 |
+
* QK Norm in the attention blocks
|
| 202 |
+
* No bias in the attention blocks
|
| 203 |
+
* Most LayerNorms are in FP32
|
| 204 |
+
|
| 205 |
+
Parameters:
|
| 206 |
+
dim (`int`): The number of channels in the input and output.
|
| 207 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 208 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 209 |
+
is_last (`bool`): Boolean to determine if this is the last block in the model.
|
| 210 |
+
"""
|
| 211 |
+
|
| 212 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim):
|
| 213 |
+
super().__init__()
|
| 214 |
+
|
| 215 |
+
self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
|
| 216 |
+
self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm")
|
| 217 |
+
|
| 218 |
+
processor = AuraFlowAttnProcessor2_0()
|
| 219 |
+
self.attn = Attention(
|
| 220 |
+
query_dim=dim,
|
| 221 |
+
cross_attention_dim=None,
|
| 222 |
+
added_kv_proj_dim=dim,
|
| 223 |
+
added_proj_bias=False,
|
| 224 |
+
dim_head=attention_head_dim,
|
| 225 |
+
heads=num_attention_heads,
|
| 226 |
+
qk_norm="fp32_layer_norm",
|
| 227 |
+
out_dim=dim,
|
| 228 |
+
bias=False,
|
| 229 |
+
out_bias=False,
|
| 230 |
+
processor=processor,
|
| 231 |
+
context_pre_only=False,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
|
| 235 |
+
self.ff = AuraFlowFeedForward(dim, dim * 4)
|
| 236 |
+
self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False)
|
| 237 |
+
self.ff_context = AuraFlowFeedForward(dim, dim * 4)
|
| 238 |
+
|
| 239 |
+
def forward(
|
| 240 |
+
self,
|
| 241 |
+
hidden_states: torch.FloatTensor,
|
| 242 |
+
encoder_hidden_states: torch.FloatTensor,
|
| 243 |
+
temb: torch.FloatTensor,
|
| 244 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 245 |
+
):
|
| 246 |
+
residual = hidden_states
|
| 247 |
+
residual_context = encoder_hidden_states
|
| 248 |
+
attention_kwargs = attention_kwargs or {}
|
| 249 |
+
|
| 250 |
+
# Norm + Projection.
|
| 251 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 252 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 253 |
+
encoder_hidden_states, emb=temb
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
# Attention.
|
| 257 |
+
attn_output, context_attn_output = self.attn(
|
| 258 |
+
hidden_states=norm_hidden_states,
|
| 259 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 260 |
+
**attention_kwargs,
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# Process attention outputs for the `hidden_states`.
|
| 264 |
+
hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output)
|
| 265 |
+
hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 266 |
+
hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states)
|
| 267 |
+
hidden_states = residual + hidden_states
|
| 268 |
+
|
| 269 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 270 |
+
encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output)
|
| 271 |
+
encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 272 |
+
encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states)
|
| 273 |
+
encoder_hidden_states = residual_context + encoder_hidden_states
|
| 274 |
+
|
| 275 |
+
return encoder_hidden_states, hidden_states
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 279 |
+
r"""
|
| 280 |
+
A 2D Transformer model as introduced in AuraFlow (https://blog.fal.ai/auraflow/).
|
| 281 |
+
|
| 282 |
+
Parameters:
|
| 283 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
| 284 |
+
it is used to learn a number of position embeddings.
|
| 285 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 286 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input.
|
| 287 |
+
num_mmdit_layers (`int`, *optional*, defaults to 4): The number of layers of MMDiT Transformer blocks to use.
|
| 288 |
+
num_single_dit_layers (`int`, *optional*, defaults to 32):
|
| 289 |
+
The number of layers of Transformer blocks to use. These blocks use concatenated image and text
|
| 290 |
+
representations.
|
| 291 |
+
attention_head_dim (`int`, *optional*, defaults to 256): The number of channels in each head.
|
| 292 |
+
num_attention_heads (`int`, *optional*, defaults to 12): The number of heads to use for multi-head attention.
|
| 293 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 294 |
+
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
| 295 |
+
out_channels (`int`, defaults to 4): Number of output channels.
|
| 296 |
+
pos_embed_max_size (`int`, defaults to 1024): Maximum positions to embed from the image latents.
|
| 297 |
+
"""
|
| 298 |
+
|
| 299 |
+
_no_split_modules = ["AuraFlowJointTransformerBlock", "AuraFlowSingleTransformerBlock", "AuraFlowPatchEmbed"]
|
| 300 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 301 |
+
_supports_gradient_checkpointing = True
|
| 302 |
+
|
| 303 |
+
@register_to_config
|
| 304 |
+
def __init__(
|
| 305 |
+
self,
|
| 306 |
+
sample_size: int = 64,
|
| 307 |
+
patch_size: int = 2,
|
| 308 |
+
in_channels: int = 4,
|
| 309 |
+
num_mmdit_layers: int = 4,
|
| 310 |
+
num_single_dit_layers: int = 32,
|
| 311 |
+
attention_head_dim: int = 256,
|
| 312 |
+
num_attention_heads: int = 12,
|
| 313 |
+
joint_attention_dim: int = 2048,
|
| 314 |
+
caption_projection_dim: int = 3072,
|
| 315 |
+
out_channels: int = 4,
|
| 316 |
+
pos_embed_max_size: int = 1024,
|
| 317 |
+
):
|
| 318 |
+
super().__init__()
|
| 319 |
+
default_out_channels = in_channels
|
| 320 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
| 321 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 322 |
+
|
| 323 |
+
self.pos_embed = AuraFlowPatchEmbed(
|
| 324 |
+
height=self.config.sample_size,
|
| 325 |
+
width=self.config.sample_size,
|
| 326 |
+
patch_size=self.config.patch_size,
|
| 327 |
+
in_channels=self.config.in_channels,
|
| 328 |
+
embed_dim=self.inner_dim,
|
| 329 |
+
pos_embed_max_size=pos_embed_max_size,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
self.context_embedder = nn.Linear(
|
| 333 |
+
self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False
|
| 334 |
+
)
|
| 335 |
+
self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True)
|
| 336 |
+
self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
|
| 337 |
+
|
| 338 |
+
self.joint_transformer_blocks = nn.ModuleList(
|
| 339 |
+
[
|
| 340 |
+
AuraFlowJointTransformerBlock(
|
| 341 |
+
dim=self.inner_dim,
|
| 342 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 343 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 344 |
+
)
|
| 345 |
+
for i in range(self.config.num_mmdit_layers)
|
| 346 |
+
]
|
| 347 |
+
)
|
| 348 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 349 |
+
[
|
| 350 |
+
AuraFlowSingleTransformerBlock(
|
| 351 |
+
dim=self.inner_dim,
|
| 352 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 353 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 354 |
+
)
|
| 355 |
+
for _ in range(self.config.num_single_dit_layers)
|
| 356 |
+
]
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim)
|
| 360 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False)
|
| 361 |
+
|
| 362 |
+
# https://huggingface.co/papers/2309.16588
|
| 363 |
+
# prevents artifacts in the attention maps
|
| 364 |
+
self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02)
|
| 365 |
+
|
| 366 |
+
self.gradient_checkpointing = False
|
| 367 |
+
|
| 368 |
+
@property
|
| 369 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 370 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 371 |
+
r"""
|
| 372 |
+
Returns:
|
| 373 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 374 |
+
indexed by its weight name.
|
| 375 |
+
"""
|
| 376 |
+
# set recursively
|
| 377 |
+
processors = {}
|
| 378 |
+
|
| 379 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 380 |
+
if hasattr(module, "get_processor"):
|
| 381 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 382 |
+
|
| 383 |
+
for sub_name, child in module.named_children():
|
| 384 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 385 |
+
|
| 386 |
+
return processors
|
| 387 |
+
|
| 388 |
+
for name, module in self.named_children():
|
| 389 |
+
fn_recursive_add_processors(name, module, processors)
|
| 390 |
+
|
| 391 |
+
return processors
|
| 392 |
+
|
| 393 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 394 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 395 |
+
r"""
|
| 396 |
+
Sets the attention processor to use to compute attention.
|
| 397 |
+
|
| 398 |
+
Parameters:
|
| 399 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 400 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 401 |
+
for **all** `Attention` layers.
|
| 402 |
+
|
| 403 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 404 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 405 |
+
|
| 406 |
+
"""
|
| 407 |
+
count = len(self.attn_processors.keys())
|
| 408 |
+
|
| 409 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 410 |
+
raise ValueError(
|
| 411 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 412 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 416 |
+
if hasattr(module, "set_processor"):
|
| 417 |
+
if not isinstance(processor, dict):
|
| 418 |
+
module.set_processor(processor)
|
| 419 |
+
else:
|
| 420 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 421 |
+
|
| 422 |
+
for sub_name, child in module.named_children():
|
| 423 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 424 |
+
|
| 425 |
+
for name, module in self.named_children():
|
| 426 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 427 |
+
|
| 428 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedAuraFlowAttnProcessor2_0
|
| 429 |
+
def fuse_qkv_projections(self):
|
| 430 |
+
"""
|
| 431 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 432 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 433 |
+
|
| 434 |
+
<Tip warning={true}>
|
| 435 |
+
|
| 436 |
+
This API is 🧪 experimental.
|
| 437 |
+
|
| 438 |
+
</Tip>
|
| 439 |
+
"""
|
| 440 |
+
self.original_attn_processors = None
|
| 441 |
+
|
| 442 |
+
for _, attn_processor in self.attn_processors.items():
|
| 443 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 444 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 445 |
+
|
| 446 |
+
self.original_attn_processors = self.attn_processors
|
| 447 |
+
|
| 448 |
+
for module in self.modules():
|
| 449 |
+
if isinstance(module, Attention):
|
| 450 |
+
module.fuse_projections(fuse=True)
|
| 451 |
+
|
| 452 |
+
self.set_attn_processor(FusedAuraFlowAttnProcessor2_0())
|
| 453 |
+
|
| 454 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 455 |
+
def unfuse_qkv_projections(self):
|
| 456 |
+
"""Disables the fused QKV projection if enabled.
|
| 457 |
+
|
| 458 |
+
<Tip warning={true}>
|
| 459 |
+
|
| 460 |
+
This API is 🧪 experimental.
|
| 461 |
+
|
| 462 |
+
</Tip>
|
| 463 |
+
|
| 464 |
+
"""
|
| 465 |
+
if self.original_attn_processors is not None:
|
| 466 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 467 |
+
|
| 468 |
+
def forward(
|
| 469 |
+
self,
|
| 470 |
+
hidden_states: torch.FloatTensor,
|
| 471 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 472 |
+
timestep: torch.LongTensor = None,
|
| 473 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 474 |
+
return_dict: bool = True,
|
| 475 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 476 |
+
if attention_kwargs is not None:
|
| 477 |
+
attention_kwargs = attention_kwargs.copy()
|
| 478 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 479 |
+
else:
|
| 480 |
+
lora_scale = 1.0
|
| 481 |
+
|
| 482 |
+
if USE_PEFT_BACKEND:
|
| 483 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 484 |
+
scale_lora_layers(self, lora_scale)
|
| 485 |
+
else:
|
| 486 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 487 |
+
logger.warning(
|
| 488 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
height, width = hidden_states.shape[-2:]
|
| 492 |
+
|
| 493 |
+
# Apply patch embedding, timestep embedding, and project the caption embeddings.
|
| 494 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
| 495 |
+
temb = self.time_step_embed(timestep).to(dtype=next(self.parameters()).dtype)
|
| 496 |
+
temb = self.time_step_proj(temb)
|
| 497 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 498 |
+
encoder_hidden_states = torch.cat(
|
| 499 |
+
[self.register_tokens.repeat(encoder_hidden_states.size(0), 1, 1), encoder_hidden_states], dim=1
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
# MMDiT blocks.
|
| 503 |
+
for index_block, block in enumerate(self.joint_transformer_blocks):
|
| 504 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 505 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 506 |
+
block,
|
| 507 |
+
hidden_states,
|
| 508 |
+
encoder_hidden_states,
|
| 509 |
+
temb,
|
| 510 |
+
)
|
| 511 |
+
|
| 512 |
+
else:
|
| 513 |
+
encoder_hidden_states, hidden_states = block(
|
| 514 |
+
hidden_states=hidden_states,
|
| 515 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 516 |
+
temb=temb,
|
| 517 |
+
attention_kwargs=attention_kwargs,
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
# Single DiT blocks that combine the `hidden_states` (image) and `encoder_hidden_states` (text)
|
| 521 |
+
if len(self.single_transformer_blocks) > 0:
|
| 522 |
+
encoder_seq_len = encoder_hidden_states.size(1)
|
| 523 |
+
combined_hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 524 |
+
|
| 525 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 526 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 527 |
+
combined_hidden_states = self._gradient_checkpointing_func(
|
| 528 |
+
block,
|
| 529 |
+
combined_hidden_states,
|
| 530 |
+
temb,
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
else:
|
| 534 |
+
combined_hidden_states = block(
|
| 535 |
+
hidden_states=combined_hidden_states, temb=temb, attention_kwargs=attention_kwargs
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
hidden_states = combined_hidden_states[:, encoder_seq_len:]
|
| 539 |
+
|
| 540 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 541 |
+
hidden_states = self.proj_out(hidden_states)
|
| 542 |
+
|
| 543 |
+
# unpatchify
|
| 544 |
+
patch_size = self.config.patch_size
|
| 545 |
+
out_channels = self.config.out_channels
|
| 546 |
+
height = height // patch_size
|
| 547 |
+
width = width // patch_size
|
| 548 |
+
|
| 549 |
+
hidden_states = hidden_states.reshape(
|
| 550 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, out_channels)
|
| 551 |
+
)
|
| 552 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 553 |
+
output = hidden_states.reshape(
|
| 554 |
+
shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size)
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
if USE_PEFT_BACKEND:
|
| 558 |
+
# remove `lora_scale` from each PEFT layer
|
| 559 |
+
unscale_lora_layers(self, lora_scale)
|
| 560 |
+
|
| 561 |
+
if not return_dict:
|
| 562 |
+
return (output,)
|
| 563 |
+
|
| 564 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/cogvideox_transformer_3d.py
ADDED
|
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 25 |
+
from ..attention import Attention, FeedForward
|
| 26 |
+
from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0
|
| 27 |
+
from ..cache_utils import CacheMixin
|
| 28 |
+
from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
|
| 29 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 30 |
+
from ..modeling_utils import ModelMixin
|
| 31 |
+
from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@maybe_allow_in_graph
|
| 38 |
+
class CogVideoXBlock(nn.Module):
|
| 39 |
+
r"""
|
| 40 |
+
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model.
|
| 41 |
+
|
| 42 |
+
Parameters:
|
| 43 |
+
dim (`int`):
|
| 44 |
+
The number of channels in the input and output.
|
| 45 |
+
num_attention_heads (`int`):
|
| 46 |
+
The number of heads to use for multi-head attention.
|
| 47 |
+
attention_head_dim (`int`):
|
| 48 |
+
The number of channels in each head.
|
| 49 |
+
time_embed_dim (`int`):
|
| 50 |
+
The number of channels in timestep embedding.
|
| 51 |
+
dropout (`float`, defaults to `0.0`):
|
| 52 |
+
The dropout probability to use.
|
| 53 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 54 |
+
Activation function to be used in feed-forward.
|
| 55 |
+
attention_bias (`bool`, defaults to `False`):
|
| 56 |
+
Whether or not to use bias in attention projection layers.
|
| 57 |
+
qk_norm (`bool`, defaults to `True`):
|
| 58 |
+
Whether or not to use normalization after query and key projections in Attention.
|
| 59 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 60 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 61 |
+
norm_eps (`float`, defaults to `1e-5`):
|
| 62 |
+
Epsilon value for normalization layers.
|
| 63 |
+
final_dropout (`bool` defaults to `False`):
|
| 64 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 65 |
+
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
| 66 |
+
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
| 67 |
+
ff_bias (`bool`, defaults to `True`):
|
| 68 |
+
Whether or not to use bias in Feed-forward layer.
|
| 69 |
+
attention_out_bias (`bool`, defaults to `True`):
|
| 70 |
+
Whether or not to use bias in Attention output projection layer.
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
def __init__(
|
| 74 |
+
self,
|
| 75 |
+
dim: int,
|
| 76 |
+
num_attention_heads: int,
|
| 77 |
+
attention_head_dim: int,
|
| 78 |
+
time_embed_dim: int,
|
| 79 |
+
dropout: float = 0.0,
|
| 80 |
+
activation_fn: str = "gelu-approximate",
|
| 81 |
+
attention_bias: bool = False,
|
| 82 |
+
qk_norm: bool = True,
|
| 83 |
+
norm_elementwise_affine: bool = True,
|
| 84 |
+
norm_eps: float = 1e-5,
|
| 85 |
+
final_dropout: bool = True,
|
| 86 |
+
ff_inner_dim: Optional[int] = None,
|
| 87 |
+
ff_bias: bool = True,
|
| 88 |
+
attention_out_bias: bool = True,
|
| 89 |
+
):
|
| 90 |
+
super().__init__()
|
| 91 |
+
|
| 92 |
+
# 1. Self Attention
|
| 93 |
+
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
| 94 |
+
|
| 95 |
+
self.attn1 = Attention(
|
| 96 |
+
query_dim=dim,
|
| 97 |
+
dim_head=attention_head_dim,
|
| 98 |
+
heads=num_attention_heads,
|
| 99 |
+
qk_norm="layer_norm" if qk_norm else None,
|
| 100 |
+
eps=1e-6,
|
| 101 |
+
bias=attention_bias,
|
| 102 |
+
out_bias=attention_out_bias,
|
| 103 |
+
processor=CogVideoXAttnProcessor2_0(),
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# 2. Feed Forward
|
| 107 |
+
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
| 108 |
+
|
| 109 |
+
self.ff = FeedForward(
|
| 110 |
+
dim,
|
| 111 |
+
dropout=dropout,
|
| 112 |
+
activation_fn=activation_fn,
|
| 113 |
+
final_dropout=final_dropout,
|
| 114 |
+
inner_dim=ff_inner_dim,
|
| 115 |
+
bias=ff_bias,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
def forward(
|
| 119 |
+
self,
|
| 120 |
+
hidden_states: torch.Tensor,
|
| 121 |
+
encoder_hidden_states: torch.Tensor,
|
| 122 |
+
temb: torch.Tensor,
|
| 123 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 124 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 125 |
+
) -> torch.Tensor:
|
| 126 |
+
text_seq_length = encoder_hidden_states.size(1)
|
| 127 |
+
attention_kwargs = attention_kwargs or {}
|
| 128 |
+
|
| 129 |
+
# norm & modulate
|
| 130 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
| 131 |
+
hidden_states, encoder_hidden_states, temb
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# attention
|
| 135 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
| 136 |
+
hidden_states=norm_hidden_states,
|
| 137 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 138 |
+
image_rotary_emb=image_rotary_emb,
|
| 139 |
+
**attention_kwargs,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
| 143 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
| 144 |
+
|
| 145 |
+
# norm & modulate
|
| 146 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
| 147 |
+
hidden_states, encoder_hidden_states, temb
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# feed-forward
|
| 151 |
+
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
| 152 |
+
ff_output = self.ff(norm_hidden_states)
|
| 153 |
+
|
| 154 |
+
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
| 155 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
| 156 |
+
|
| 157 |
+
return hidden_states, encoder_hidden_states
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, CacheMixin):
|
| 161 |
+
"""
|
| 162 |
+
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo).
|
| 163 |
+
|
| 164 |
+
Parameters:
|
| 165 |
+
num_attention_heads (`int`, defaults to `30`):
|
| 166 |
+
The number of heads to use for multi-head attention.
|
| 167 |
+
attention_head_dim (`int`, defaults to `64`):
|
| 168 |
+
The number of channels in each head.
|
| 169 |
+
in_channels (`int`, defaults to `16`):
|
| 170 |
+
The number of channels in the input.
|
| 171 |
+
out_channels (`int`, *optional*, defaults to `16`):
|
| 172 |
+
The number of channels in the output.
|
| 173 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 174 |
+
Whether to flip the sin to cos in the time embedding.
|
| 175 |
+
time_embed_dim (`int`, defaults to `512`):
|
| 176 |
+
Output dimension of timestep embeddings.
|
| 177 |
+
ofs_embed_dim (`int`, defaults to `512`):
|
| 178 |
+
Output dimension of "ofs" embeddings used in CogVideoX-5b-I2B in version 1.5
|
| 179 |
+
text_embed_dim (`int`, defaults to `4096`):
|
| 180 |
+
Input dimension of text embeddings from the text encoder.
|
| 181 |
+
num_layers (`int`, defaults to `30`):
|
| 182 |
+
The number of layers of Transformer blocks to use.
|
| 183 |
+
dropout (`float`, defaults to `0.0`):
|
| 184 |
+
The dropout probability to use.
|
| 185 |
+
attention_bias (`bool`, defaults to `True`):
|
| 186 |
+
Whether to use bias in the attention projection layers.
|
| 187 |
+
sample_width (`int`, defaults to `90`):
|
| 188 |
+
The width of the input latents.
|
| 189 |
+
sample_height (`int`, defaults to `60`):
|
| 190 |
+
The height of the input latents.
|
| 191 |
+
sample_frames (`int`, defaults to `49`):
|
| 192 |
+
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
| 193 |
+
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings,
|
| 194 |
+
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
| 195 |
+
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
| 196 |
+
patch_size (`int`, defaults to `2`):
|
| 197 |
+
The size of the patches to use in the patch embedding layer.
|
| 198 |
+
temporal_compression_ratio (`int`, defaults to `4`):
|
| 199 |
+
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
| 200 |
+
max_text_seq_length (`int`, defaults to `226`):
|
| 201 |
+
The maximum sequence length of the input text embeddings.
|
| 202 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 203 |
+
Activation function to use in feed-forward.
|
| 204 |
+
timestep_activation_fn (`str`, defaults to `"silu"`):
|
| 205 |
+
Activation function to use when generating the timestep embeddings.
|
| 206 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 207 |
+
Whether to use elementwise affine in normalization layers.
|
| 208 |
+
norm_eps (`float`, defaults to `1e-5`):
|
| 209 |
+
The epsilon value to use in normalization layers.
|
| 210 |
+
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
| 211 |
+
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
| 212 |
+
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
| 213 |
+
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
_skip_layerwise_casting_patterns = ["patch_embed", "norm"]
|
| 217 |
+
_supports_gradient_checkpointing = True
|
| 218 |
+
_no_split_modules = ["CogVideoXBlock", "CogVideoXPatchEmbed"]
|
| 219 |
+
|
| 220 |
+
@register_to_config
|
| 221 |
+
def __init__(
|
| 222 |
+
self,
|
| 223 |
+
num_attention_heads: int = 30,
|
| 224 |
+
attention_head_dim: int = 64,
|
| 225 |
+
in_channels: int = 16,
|
| 226 |
+
out_channels: Optional[int] = 16,
|
| 227 |
+
flip_sin_to_cos: bool = True,
|
| 228 |
+
freq_shift: int = 0,
|
| 229 |
+
time_embed_dim: int = 512,
|
| 230 |
+
ofs_embed_dim: Optional[int] = None,
|
| 231 |
+
text_embed_dim: int = 4096,
|
| 232 |
+
num_layers: int = 30,
|
| 233 |
+
dropout: float = 0.0,
|
| 234 |
+
attention_bias: bool = True,
|
| 235 |
+
sample_width: int = 90,
|
| 236 |
+
sample_height: int = 60,
|
| 237 |
+
sample_frames: int = 49,
|
| 238 |
+
patch_size: int = 2,
|
| 239 |
+
patch_size_t: Optional[int] = None,
|
| 240 |
+
temporal_compression_ratio: int = 4,
|
| 241 |
+
max_text_seq_length: int = 226,
|
| 242 |
+
activation_fn: str = "gelu-approximate",
|
| 243 |
+
timestep_activation_fn: str = "silu",
|
| 244 |
+
norm_elementwise_affine: bool = True,
|
| 245 |
+
norm_eps: float = 1e-5,
|
| 246 |
+
spatial_interpolation_scale: float = 1.875,
|
| 247 |
+
temporal_interpolation_scale: float = 1.0,
|
| 248 |
+
use_rotary_positional_embeddings: bool = False,
|
| 249 |
+
use_learned_positional_embeddings: bool = False,
|
| 250 |
+
patch_bias: bool = True,
|
| 251 |
+
):
|
| 252 |
+
super().__init__()
|
| 253 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 254 |
+
|
| 255 |
+
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
| 256 |
+
raise ValueError(
|
| 257 |
+
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional "
|
| 258 |
+
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
| 259 |
+
"issue at https://github.com/huggingface/diffusers/issues."
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# 1. Patch embedding
|
| 263 |
+
self.patch_embed = CogVideoXPatchEmbed(
|
| 264 |
+
patch_size=patch_size,
|
| 265 |
+
patch_size_t=patch_size_t,
|
| 266 |
+
in_channels=in_channels,
|
| 267 |
+
embed_dim=inner_dim,
|
| 268 |
+
text_embed_dim=text_embed_dim,
|
| 269 |
+
bias=patch_bias,
|
| 270 |
+
sample_width=sample_width,
|
| 271 |
+
sample_height=sample_height,
|
| 272 |
+
sample_frames=sample_frames,
|
| 273 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 274 |
+
max_text_seq_length=max_text_seq_length,
|
| 275 |
+
spatial_interpolation_scale=spatial_interpolation_scale,
|
| 276 |
+
temporal_interpolation_scale=temporal_interpolation_scale,
|
| 277 |
+
use_positional_embeddings=not use_rotary_positional_embeddings,
|
| 278 |
+
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
| 279 |
+
)
|
| 280 |
+
self.embedding_dropout = nn.Dropout(dropout)
|
| 281 |
+
|
| 282 |
+
# 2. Time embeddings and ofs embedding(Only CogVideoX1.5-5B I2V have)
|
| 283 |
+
|
| 284 |
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
| 285 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
| 286 |
+
|
| 287 |
+
self.ofs_proj = None
|
| 288 |
+
self.ofs_embedding = None
|
| 289 |
+
if ofs_embed_dim:
|
| 290 |
+
self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift)
|
| 291 |
+
self.ofs_embedding = TimestepEmbedding(
|
| 292 |
+
ofs_embed_dim, ofs_embed_dim, timestep_activation_fn
|
| 293 |
+
) # same as time embeddings, for ofs
|
| 294 |
+
|
| 295 |
+
# 3. Define spatio-temporal transformers blocks
|
| 296 |
+
self.transformer_blocks = nn.ModuleList(
|
| 297 |
+
[
|
| 298 |
+
CogVideoXBlock(
|
| 299 |
+
dim=inner_dim,
|
| 300 |
+
num_attention_heads=num_attention_heads,
|
| 301 |
+
attention_head_dim=attention_head_dim,
|
| 302 |
+
time_embed_dim=time_embed_dim,
|
| 303 |
+
dropout=dropout,
|
| 304 |
+
activation_fn=activation_fn,
|
| 305 |
+
attention_bias=attention_bias,
|
| 306 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 307 |
+
norm_eps=norm_eps,
|
| 308 |
+
)
|
| 309 |
+
for _ in range(num_layers)
|
| 310 |
+
]
|
| 311 |
+
)
|
| 312 |
+
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
| 313 |
+
|
| 314 |
+
# 4. Output blocks
|
| 315 |
+
self.norm_out = AdaLayerNorm(
|
| 316 |
+
embedding_dim=time_embed_dim,
|
| 317 |
+
output_dim=2 * inner_dim,
|
| 318 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 319 |
+
norm_eps=norm_eps,
|
| 320 |
+
chunk_dim=1,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
if patch_size_t is None:
|
| 324 |
+
# For CogVideox 1.0
|
| 325 |
+
output_dim = patch_size * patch_size * out_channels
|
| 326 |
+
else:
|
| 327 |
+
# For CogVideoX 1.5
|
| 328 |
+
output_dim = patch_size * patch_size * patch_size_t * out_channels
|
| 329 |
+
|
| 330 |
+
self.proj_out = nn.Linear(inner_dim, output_dim)
|
| 331 |
+
|
| 332 |
+
self.gradient_checkpointing = False
|
| 333 |
+
|
| 334 |
+
@property
|
| 335 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 336 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 337 |
+
r"""
|
| 338 |
+
Returns:
|
| 339 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 340 |
+
indexed by its weight name.
|
| 341 |
+
"""
|
| 342 |
+
# set recursively
|
| 343 |
+
processors = {}
|
| 344 |
+
|
| 345 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 346 |
+
if hasattr(module, "get_processor"):
|
| 347 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 348 |
+
|
| 349 |
+
for sub_name, child in module.named_children():
|
| 350 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 351 |
+
|
| 352 |
+
return processors
|
| 353 |
+
|
| 354 |
+
for name, module in self.named_children():
|
| 355 |
+
fn_recursive_add_processors(name, module, processors)
|
| 356 |
+
|
| 357 |
+
return processors
|
| 358 |
+
|
| 359 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 360 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 361 |
+
r"""
|
| 362 |
+
Sets the attention processor to use to compute attention.
|
| 363 |
+
|
| 364 |
+
Parameters:
|
| 365 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 366 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 367 |
+
for **all** `Attention` layers.
|
| 368 |
+
|
| 369 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 370 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 371 |
+
|
| 372 |
+
"""
|
| 373 |
+
count = len(self.attn_processors.keys())
|
| 374 |
+
|
| 375 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 376 |
+
raise ValueError(
|
| 377 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 378 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 382 |
+
if hasattr(module, "set_processor"):
|
| 383 |
+
if not isinstance(processor, dict):
|
| 384 |
+
module.set_processor(processor)
|
| 385 |
+
else:
|
| 386 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 387 |
+
|
| 388 |
+
for sub_name, child in module.named_children():
|
| 389 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 390 |
+
|
| 391 |
+
for name, module in self.named_children():
|
| 392 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 393 |
+
|
| 394 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0
|
| 395 |
+
def fuse_qkv_projections(self):
|
| 396 |
+
"""
|
| 397 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 398 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 399 |
+
|
| 400 |
+
<Tip warning={true}>
|
| 401 |
+
|
| 402 |
+
This API is 🧪 experimental.
|
| 403 |
+
|
| 404 |
+
</Tip>
|
| 405 |
+
"""
|
| 406 |
+
self.original_attn_processors = None
|
| 407 |
+
|
| 408 |
+
for _, attn_processor in self.attn_processors.items():
|
| 409 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 410 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 411 |
+
|
| 412 |
+
self.original_attn_processors = self.attn_processors
|
| 413 |
+
|
| 414 |
+
for module in self.modules():
|
| 415 |
+
if isinstance(module, Attention):
|
| 416 |
+
module.fuse_projections(fuse=True)
|
| 417 |
+
|
| 418 |
+
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0())
|
| 419 |
+
|
| 420 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 421 |
+
def unfuse_qkv_projections(self):
|
| 422 |
+
"""Disables the fused QKV projection if enabled.
|
| 423 |
+
|
| 424 |
+
<Tip warning={true}>
|
| 425 |
+
|
| 426 |
+
This API is 🧪 experimental.
|
| 427 |
+
|
| 428 |
+
</Tip>
|
| 429 |
+
|
| 430 |
+
"""
|
| 431 |
+
if self.original_attn_processors is not None:
|
| 432 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 433 |
+
|
| 434 |
+
def forward(
|
| 435 |
+
self,
|
| 436 |
+
hidden_states: torch.Tensor,
|
| 437 |
+
encoder_hidden_states: torch.Tensor,
|
| 438 |
+
timestep: Union[int, float, torch.LongTensor],
|
| 439 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 440 |
+
ofs: Optional[Union[int, float, torch.LongTensor]] = None,
|
| 441 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 442 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 443 |
+
return_dict: bool = True,
|
| 444 |
+
):
|
| 445 |
+
if attention_kwargs is not None:
|
| 446 |
+
attention_kwargs = attention_kwargs.copy()
|
| 447 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 448 |
+
else:
|
| 449 |
+
lora_scale = 1.0
|
| 450 |
+
|
| 451 |
+
if USE_PEFT_BACKEND:
|
| 452 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 453 |
+
scale_lora_layers(self, lora_scale)
|
| 454 |
+
else:
|
| 455 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 456 |
+
logger.warning(
|
| 457 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
batch_size, num_frames, channels, height, width = hidden_states.shape
|
| 461 |
+
|
| 462 |
+
# 1. Time embedding
|
| 463 |
+
timesteps = timestep
|
| 464 |
+
t_emb = self.time_proj(timesteps)
|
| 465 |
+
|
| 466 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 467 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 468 |
+
# there might be better ways to encapsulate this.
|
| 469 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
| 470 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 471 |
+
|
| 472 |
+
if self.ofs_embedding is not None:
|
| 473 |
+
ofs_emb = self.ofs_proj(ofs)
|
| 474 |
+
ofs_emb = ofs_emb.to(dtype=hidden_states.dtype)
|
| 475 |
+
ofs_emb = self.ofs_embedding(ofs_emb)
|
| 476 |
+
emb = emb + ofs_emb
|
| 477 |
+
|
| 478 |
+
# 2. Patch embedding
|
| 479 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states)
|
| 480 |
+
hidden_states = self.embedding_dropout(hidden_states)
|
| 481 |
+
|
| 482 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
| 483 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
| 484 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
| 485 |
+
|
| 486 |
+
# 3. Transformer blocks
|
| 487 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 488 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 489 |
+
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
|
| 490 |
+
block,
|
| 491 |
+
hidden_states,
|
| 492 |
+
encoder_hidden_states,
|
| 493 |
+
emb,
|
| 494 |
+
image_rotary_emb,
|
| 495 |
+
attention_kwargs,
|
| 496 |
+
)
|
| 497 |
+
else:
|
| 498 |
+
hidden_states, encoder_hidden_states = block(
|
| 499 |
+
hidden_states=hidden_states,
|
| 500 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 501 |
+
temb=emb,
|
| 502 |
+
image_rotary_emb=image_rotary_emb,
|
| 503 |
+
attention_kwargs=attention_kwargs,
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
hidden_states = self.norm_final(hidden_states)
|
| 507 |
+
|
| 508 |
+
# 4. Final block
|
| 509 |
+
hidden_states = self.norm_out(hidden_states, temb=emb)
|
| 510 |
+
hidden_states = self.proj_out(hidden_states)
|
| 511 |
+
|
| 512 |
+
# 5. Unpatchify
|
| 513 |
+
p = self.config.patch_size
|
| 514 |
+
p_t = self.config.patch_size_t
|
| 515 |
+
|
| 516 |
+
if p_t is None:
|
| 517 |
+
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
| 518 |
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
| 519 |
+
else:
|
| 520 |
+
output = hidden_states.reshape(
|
| 521 |
+
batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p
|
| 522 |
+
)
|
| 523 |
+
output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2)
|
| 524 |
+
|
| 525 |
+
if USE_PEFT_BACKEND:
|
| 526 |
+
# remove `lora_scale` from each PEFT layer
|
| 527 |
+
unscale_lora_layers(self, lora_scale)
|
| 528 |
+
|
| 529 |
+
if not return_dict:
|
| 530 |
+
return (output,)
|
| 531 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/consisid_transformer_3d.py
ADDED
|
@@ -0,0 +1,789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 ConsisID Authors and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import math
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 25 |
+
from ..attention import Attention, FeedForward
|
| 26 |
+
from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0
|
| 27 |
+
from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps
|
| 28 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 29 |
+
from ..modeling_utils import ModelMixin
|
| 30 |
+
from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class PerceiverAttention(nn.Module):
|
| 37 |
+
def __init__(self, dim: int, dim_head: int = 64, heads: int = 8, kv_dim: Optional[int] = None):
|
| 38 |
+
super().__init__()
|
| 39 |
+
|
| 40 |
+
self.scale = dim_head**-0.5
|
| 41 |
+
self.dim_head = dim_head
|
| 42 |
+
self.heads = heads
|
| 43 |
+
inner_dim = dim_head * heads
|
| 44 |
+
|
| 45 |
+
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
| 46 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 47 |
+
|
| 48 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 49 |
+
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
| 50 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 51 |
+
|
| 52 |
+
def forward(self, image_embeds: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
# Apply normalization
|
| 54 |
+
image_embeds = self.norm1(image_embeds)
|
| 55 |
+
latents = self.norm2(latents)
|
| 56 |
+
|
| 57 |
+
batch_size, seq_len, _ = latents.shape # Get batch size and sequence length
|
| 58 |
+
|
| 59 |
+
# Compute query, key, and value matrices
|
| 60 |
+
query = self.to_q(latents)
|
| 61 |
+
kv_input = torch.cat((image_embeds, latents), dim=-2)
|
| 62 |
+
key, value = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 63 |
+
|
| 64 |
+
# Reshape the tensors for multi-head attention
|
| 65 |
+
query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
|
| 66 |
+
key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
|
| 67 |
+
value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
|
| 68 |
+
|
| 69 |
+
# attention
|
| 70 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 71 |
+
weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 72 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 73 |
+
output = weight @ value
|
| 74 |
+
|
| 75 |
+
# Reshape and return the final output
|
| 76 |
+
output = output.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1)
|
| 77 |
+
|
| 78 |
+
return self.to_out(output)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class LocalFacialExtractor(nn.Module):
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
id_dim: int = 1280,
|
| 85 |
+
vit_dim: int = 1024,
|
| 86 |
+
depth: int = 10,
|
| 87 |
+
dim_head: int = 64,
|
| 88 |
+
heads: int = 16,
|
| 89 |
+
num_id_token: int = 5,
|
| 90 |
+
num_queries: int = 32,
|
| 91 |
+
output_dim: int = 2048,
|
| 92 |
+
ff_mult: int = 4,
|
| 93 |
+
num_scale: int = 5,
|
| 94 |
+
):
|
| 95 |
+
super().__init__()
|
| 96 |
+
|
| 97 |
+
# Storing identity token and query information
|
| 98 |
+
self.num_id_token = num_id_token
|
| 99 |
+
self.vit_dim = vit_dim
|
| 100 |
+
self.num_queries = num_queries
|
| 101 |
+
assert depth % num_scale == 0
|
| 102 |
+
self.depth = depth // num_scale
|
| 103 |
+
self.num_scale = num_scale
|
| 104 |
+
scale = vit_dim**-0.5
|
| 105 |
+
|
| 106 |
+
# Learnable latent query embeddings
|
| 107 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, vit_dim) * scale)
|
| 108 |
+
# Projection layer to map the latent output to the desired dimension
|
| 109 |
+
self.proj_out = nn.Parameter(scale * torch.randn(vit_dim, output_dim))
|
| 110 |
+
|
| 111 |
+
# Attention and ConsisIDFeedForward layer stack
|
| 112 |
+
self.layers = nn.ModuleList([])
|
| 113 |
+
for _ in range(depth):
|
| 114 |
+
self.layers.append(
|
| 115 |
+
nn.ModuleList(
|
| 116 |
+
[
|
| 117 |
+
PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer
|
| 118 |
+
nn.Sequential(
|
| 119 |
+
nn.LayerNorm(vit_dim),
|
| 120 |
+
nn.Linear(vit_dim, vit_dim * ff_mult, bias=False),
|
| 121 |
+
nn.GELU(),
|
| 122 |
+
nn.Linear(vit_dim * ff_mult, vit_dim, bias=False),
|
| 123 |
+
), # ConsisIDFeedForward layer
|
| 124 |
+
]
|
| 125 |
+
)
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Mappings for each of the 5 different ViT features
|
| 129 |
+
for i in range(num_scale):
|
| 130 |
+
setattr(
|
| 131 |
+
self,
|
| 132 |
+
f"mapping_{i}",
|
| 133 |
+
nn.Sequential(
|
| 134 |
+
nn.Linear(vit_dim, vit_dim),
|
| 135 |
+
nn.LayerNorm(vit_dim),
|
| 136 |
+
nn.LeakyReLU(),
|
| 137 |
+
nn.Linear(vit_dim, vit_dim),
|
| 138 |
+
nn.LayerNorm(vit_dim),
|
| 139 |
+
nn.LeakyReLU(),
|
| 140 |
+
nn.Linear(vit_dim, vit_dim),
|
| 141 |
+
),
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Mapping for identity embedding vectors
|
| 145 |
+
self.id_embedding_mapping = nn.Sequential(
|
| 146 |
+
nn.Linear(id_dim, vit_dim),
|
| 147 |
+
nn.LayerNorm(vit_dim),
|
| 148 |
+
nn.LeakyReLU(),
|
| 149 |
+
nn.Linear(vit_dim, vit_dim),
|
| 150 |
+
nn.LayerNorm(vit_dim),
|
| 151 |
+
nn.LeakyReLU(),
|
| 152 |
+
nn.Linear(vit_dim, vit_dim * num_id_token),
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
def forward(self, id_embeds: torch.Tensor, vit_hidden_states: List[torch.Tensor]) -> torch.Tensor:
|
| 156 |
+
# Repeat latent queries for the batch size
|
| 157 |
+
latents = self.latents.repeat(id_embeds.size(0), 1, 1)
|
| 158 |
+
|
| 159 |
+
# Map the identity embedding to tokens
|
| 160 |
+
id_embeds = self.id_embedding_mapping(id_embeds)
|
| 161 |
+
id_embeds = id_embeds.reshape(-1, self.num_id_token, self.vit_dim)
|
| 162 |
+
|
| 163 |
+
# Concatenate identity tokens with the latent queries
|
| 164 |
+
latents = torch.cat((latents, id_embeds), dim=1)
|
| 165 |
+
|
| 166 |
+
# Process each of the num_scale visual feature inputs
|
| 167 |
+
for i in range(self.num_scale):
|
| 168 |
+
vit_feature = getattr(self, f"mapping_{i}")(vit_hidden_states[i])
|
| 169 |
+
ctx_feature = torch.cat((id_embeds, vit_feature), dim=1)
|
| 170 |
+
|
| 171 |
+
# Pass through the PerceiverAttention and ConsisIDFeedForward layers
|
| 172 |
+
for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]:
|
| 173 |
+
latents = attn(ctx_feature, latents) + latents
|
| 174 |
+
latents = ff(latents) + latents
|
| 175 |
+
|
| 176 |
+
# Retain only the query latents
|
| 177 |
+
latents = latents[:, : self.num_queries]
|
| 178 |
+
# Project the latents to the output dimension
|
| 179 |
+
latents = latents @ self.proj_out
|
| 180 |
+
return latents
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class PerceiverCrossAttention(nn.Module):
|
| 184 |
+
def __init__(self, dim: int = 3072, dim_head: int = 128, heads: int = 16, kv_dim: int = 2048):
|
| 185 |
+
super().__init__()
|
| 186 |
+
|
| 187 |
+
self.scale = dim_head**-0.5
|
| 188 |
+
self.dim_head = dim_head
|
| 189 |
+
self.heads = heads
|
| 190 |
+
inner_dim = dim_head * heads
|
| 191 |
+
|
| 192 |
+
# Layer normalization to stabilize training
|
| 193 |
+
self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim)
|
| 194 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 195 |
+
|
| 196 |
+
# Linear transformations to produce queries, keys, and values
|
| 197 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 198 |
+
self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False)
|
| 199 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 200 |
+
|
| 201 |
+
def forward(self, image_embeds: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 202 |
+
# Apply layer normalization to the input image and latent features
|
| 203 |
+
image_embeds = self.norm1(image_embeds)
|
| 204 |
+
hidden_states = self.norm2(hidden_states)
|
| 205 |
+
|
| 206 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 207 |
+
|
| 208 |
+
# Compute queries, keys, and values
|
| 209 |
+
query = self.to_q(hidden_states)
|
| 210 |
+
key, value = self.to_kv(image_embeds).chunk(2, dim=-1)
|
| 211 |
+
|
| 212 |
+
# Reshape tensors to split into attention heads
|
| 213 |
+
query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
|
| 214 |
+
key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
|
| 215 |
+
value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2)
|
| 216 |
+
|
| 217 |
+
# Compute attention weights
|
| 218 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 219 |
+
weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable scaling than post-division
|
| 220 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 221 |
+
|
| 222 |
+
# Compute the output via weighted combination of values
|
| 223 |
+
out = weight @ value
|
| 224 |
+
|
| 225 |
+
# Reshape and permute to prepare for final linear transformation
|
| 226 |
+
out = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1)
|
| 227 |
+
|
| 228 |
+
return self.to_out(out)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
@maybe_allow_in_graph
|
| 232 |
+
class ConsisIDBlock(nn.Module):
|
| 233 |
+
r"""
|
| 234 |
+
Transformer block used in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) model.
|
| 235 |
+
|
| 236 |
+
Parameters:
|
| 237 |
+
dim (`int`):
|
| 238 |
+
The number of channels in the input and output.
|
| 239 |
+
num_attention_heads (`int`):
|
| 240 |
+
The number of heads to use for multi-head attention.
|
| 241 |
+
attention_head_dim (`int`):
|
| 242 |
+
The number of channels in each head.
|
| 243 |
+
time_embed_dim (`int`):
|
| 244 |
+
The number of channels in timestep embedding.
|
| 245 |
+
dropout (`float`, defaults to `0.0`):
|
| 246 |
+
The dropout probability to use.
|
| 247 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 248 |
+
Activation function to be used in feed-forward.
|
| 249 |
+
attention_bias (`bool`, defaults to `False`):
|
| 250 |
+
Whether or not to use bias in attention projection layers.
|
| 251 |
+
qk_norm (`bool`, defaults to `True`):
|
| 252 |
+
Whether or not to use normalization after query and key projections in Attention.
|
| 253 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 254 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 255 |
+
norm_eps (`float`, defaults to `1e-5`):
|
| 256 |
+
Epsilon value for normalization layers.
|
| 257 |
+
final_dropout (`bool` defaults to `False`):
|
| 258 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 259 |
+
ff_inner_dim (`int`, *optional*, defaults to `None`):
|
| 260 |
+
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used.
|
| 261 |
+
ff_bias (`bool`, defaults to `True`):
|
| 262 |
+
Whether or not to use bias in Feed-forward layer.
|
| 263 |
+
attention_out_bias (`bool`, defaults to `True`):
|
| 264 |
+
Whether or not to use bias in Attention output projection layer.
|
| 265 |
+
"""
|
| 266 |
+
|
| 267 |
+
def __init__(
|
| 268 |
+
self,
|
| 269 |
+
dim: int,
|
| 270 |
+
num_attention_heads: int,
|
| 271 |
+
attention_head_dim: int,
|
| 272 |
+
time_embed_dim: int,
|
| 273 |
+
dropout: float = 0.0,
|
| 274 |
+
activation_fn: str = "gelu-approximate",
|
| 275 |
+
attention_bias: bool = False,
|
| 276 |
+
qk_norm: bool = True,
|
| 277 |
+
norm_elementwise_affine: bool = True,
|
| 278 |
+
norm_eps: float = 1e-5,
|
| 279 |
+
final_dropout: bool = True,
|
| 280 |
+
ff_inner_dim: Optional[int] = None,
|
| 281 |
+
ff_bias: bool = True,
|
| 282 |
+
attention_out_bias: bool = True,
|
| 283 |
+
):
|
| 284 |
+
super().__init__()
|
| 285 |
+
|
| 286 |
+
# 1. Self Attention
|
| 287 |
+
self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
| 288 |
+
|
| 289 |
+
self.attn1 = Attention(
|
| 290 |
+
query_dim=dim,
|
| 291 |
+
dim_head=attention_head_dim,
|
| 292 |
+
heads=num_attention_heads,
|
| 293 |
+
qk_norm="layer_norm" if qk_norm else None,
|
| 294 |
+
eps=1e-6,
|
| 295 |
+
bias=attention_bias,
|
| 296 |
+
out_bias=attention_out_bias,
|
| 297 |
+
processor=CogVideoXAttnProcessor2_0(),
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# 2. Feed Forward
|
| 301 |
+
self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True)
|
| 302 |
+
|
| 303 |
+
self.ff = FeedForward(
|
| 304 |
+
dim,
|
| 305 |
+
dropout=dropout,
|
| 306 |
+
activation_fn=activation_fn,
|
| 307 |
+
final_dropout=final_dropout,
|
| 308 |
+
inner_dim=ff_inner_dim,
|
| 309 |
+
bias=ff_bias,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
def forward(
|
| 313 |
+
self,
|
| 314 |
+
hidden_states: torch.Tensor,
|
| 315 |
+
encoder_hidden_states: torch.Tensor,
|
| 316 |
+
temb: torch.Tensor,
|
| 317 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 318 |
+
) -> torch.Tensor:
|
| 319 |
+
text_seq_length = encoder_hidden_states.size(1)
|
| 320 |
+
|
| 321 |
+
# norm & modulate
|
| 322 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
| 323 |
+
hidden_states, encoder_hidden_states, temb
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# attention
|
| 327 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
| 328 |
+
hidden_states=norm_hidden_states,
|
| 329 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 330 |
+
image_rotary_emb=image_rotary_emb,
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
hidden_states = hidden_states + gate_msa * attn_hidden_states
|
| 334 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states
|
| 335 |
+
|
| 336 |
+
# norm & modulate
|
| 337 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
| 338 |
+
hidden_states, encoder_hidden_states, temb
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
# feed-forward
|
| 342 |
+
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
| 343 |
+
ff_output = self.ff(norm_hidden_states)
|
| 344 |
+
|
| 345 |
+
hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:]
|
| 346 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length]
|
| 347 |
+
|
| 348 |
+
return hidden_states, encoder_hidden_states
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
| 352 |
+
"""
|
| 353 |
+
A Transformer model for video-like data in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID).
|
| 354 |
+
|
| 355 |
+
Parameters:
|
| 356 |
+
num_attention_heads (`int`, defaults to `30`):
|
| 357 |
+
The number of heads to use for multi-head attention.
|
| 358 |
+
attention_head_dim (`int`, defaults to `64`):
|
| 359 |
+
The number of channels in each head.
|
| 360 |
+
in_channels (`int`, defaults to `16`):
|
| 361 |
+
The number of channels in the input.
|
| 362 |
+
out_channels (`int`, *optional*, defaults to `16`):
|
| 363 |
+
The number of channels in the output.
|
| 364 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 365 |
+
Whether to flip the sin to cos in the time embedding.
|
| 366 |
+
time_embed_dim (`int`, defaults to `512`):
|
| 367 |
+
Output dimension of timestep embeddings.
|
| 368 |
+
text_embed_dim (`int`, defaults to `4096`):
|
| 369 |
+
Input dimension of text embeddings from the text encoder.
|
| 370 |
+
num_layers (`int`, defaults to `30`):
|
| 371 |
+
The number of layers of Transformer blocks to use.
|
| 372 |
+
dropout (`float`, defaults to `0.0`):
|
| 373 |
+
The dropout probability to use.
|
| 374 |
+
attention_bias (`bool`, defaults to `True`):
|
| 375 |
+
Whether to use bias in the attention projection layers.
|
| 376 |
+
sample_width (`int`, defaults to `90`):
|
| 377 |
+
The width of the input latents.
|
| 378 |
+
sample_height (`int`, defaults to `60`):
|
| 379 |
+
The height of the input latents.
|
| 380 |
+
sample_frames (`int`, defaults to `49`):
|
| 381 |
+
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49
|
| 382 |
+
instead of 13 because ConsisID processed 13 latent frames at once in its default and recommended settings,
|
| 383 |
+
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with
|
| 384 |
+
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1).
|
| 385 |
+
patch_size (`int`, defaults to `2`):
|
| 386 |
+
The size of the patches to use in the patch embedding layer.
|
| 387 |
+
temporal_compression_ratio (`int`, defaults to `4`):
|
| 388 |
+
The compression ratio across the temporal dimension. See documentation for `sample_frames`.
|
| 389 |
+
max_text_seq_length (`int`, defaults to `226`):
|
| 390 |
+
The maximum sequence length of the input text embeddings.
|
| 391 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 392 |
+
Activation function to use in feed-forward.
|
| 393 |
+
timestep_activation_fn (`str`, defaults to `"silu"`):
|
| 394 |
+
Activation function to use when generating the timestep embeddings.
|
| 395 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 396 |
+
Whether to use elementwise affine in normalization layers.
|
| 397 |
+
norm_eps (`float`, defaults to `1e-5`):
|
| 398 |
+
The epsilon value to use in normalization layers.
|
| 399 |
+
spatial_interpolation_scale (`float`, defaults to `1.875`):
|
| 400 |
+
Scaling factor to apply in 3D positional embeddings across spatial dimensions.
|
| 401 |
+
temporal_interpolation_scale (`float`, defaults to `1.0`):
|
| 402 |
+
Scaling factor to apply in 3D positional embeddings across temporal dimensions.
|
| 403 |
+
is_train_face (`bool`, defaults to `False`):
|
| 404 |
+
Whether to use enable the identity-preserving module during the training process. When set to `True`, the
|
| 405 |
+
model will focus on identity-preserving tasks.
|
| 406 |
+
is_kps (`bool`, defaults to `False`):
|
| 407 |
+
Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model.
|
| 408 |
+
cross_attn_interval (`int`, defaults to `2`):
|
| 409 |
+
The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the
|
| 410 |
+
frequency of cross-attention computations, which can help reduce computational overhead.
|
| 411 |
+
cross_attn_dim_head (`int`, optional, defaults to `128`):
|
| 412 |
+
The dimensionality of each attention head in the cross-attention layers of the Transformer architecture. A
|
| 413 |
+
larger value increases the capacity to attend to more complex patterns, but also increases memory and
|
| 414 |
+
computation costs.
|
| 415 |
+
cross_attn_num_heads (`int`, optional, defaults to `16`):
|
| 416 |
+
The number of attention heads in the cross-attention layers. More heads allow for more parallel attention
|
| 417 |
+
mechanisms, capturing diverse relationships between different components of the input, but can also
|
| 418 |
+
increase computational requirements.
|
| 419 |
+
LFE_id_dim (`int`, optional, defaults to `1280`):
|
| 420 |
+
The dimensionality of the identity vector used in the Local Facial Extractor (LFE). This vector represents
|
| 421 |
+
the identity features of a face, which are important for tasks like face recognition and identity
|
| 422 |
+
preservation across different frames.
|
| 423 |
+
LFE_vit_dim (`int`, optional, defaults to `1024`):
|
| 424 |
+
The dimension of the vision transformer (ViT) output used in the Local Facial Extractor (LFE). This value
|
| 425 |
+
dictates the size of the transformer-generated feature vectors that will be processed for facial feature
|
| 426 |
+
extraction.
|
| 427 |
+
LFE_depth (`int`, optional, defaults to `10`):
|
| 428 |
+
The number of layers in the Local Facial Extractor (LFE). Increasing the depth allows the model to capture
|
| 429 |
+
more complex representations of facial features, but also increases the computational load.
|
| 430 |
+
LFE_dim_head (`int`, optional, defaults to `64`):
|
| 431 |
+
The dimensionality of each attention head in the Local Facial Extractor (LFE). This parameter affects how
|
| 432 |
+
finely the model can process and focus on different parts of the facial features during the extraction
|
| 433 |
+
process.
|
| 434 |
+
LFE_num_heads (`int`, optional, defaults to `16`):
|
| 435 |
+
The number of attention heads in the Local Facial Extractor (LFE). More heads can improve the model's
|
| 436 |
+
ability to capture diverse facial features, but at the cost of increased computational complexity.
|
| 437 |
+
LFE_num_id_token (`int`, optional, defaults to `5`):
|
| 438 |
+
The number of identity tokens used in the Local Facial Extractor (LFE). This defines how many
|
| 439 |
+
identity-related tokens the model will process to ensure face identity preservation during feature
|
| 440 |
+
extraction.
|
| 441 |
+
LFE_num_querie (`int`, optional, defaults to `32`):
|
| 442 |
+
The number of query tokens used in the Local Facial Extractor (LFE). These tokens are used to capture
|
| 443 |
+
high-frequency face-related information that aids in accurate facial feature extraction.
|
| 444 |
+
LFE_output_dim (`int`, optional, defaults to `2048`):
|
| 445 |
+
The output dimension of the Local Facial Extractor (LFE). This dimension determines the size of the feature
|
| 446 |
+
vectors produced by the LFE module, which will be used for subsequent tasks such as face recognition or
|
| 447 |
+
tracking.
|
| 448 |
+
LFE_ff_mult (`int`, optional, defaults to `4`):
|
| 449 |
+
The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial
|
| 450 |
+
Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature
|
| 451 |
+
transformations, but also increases the computation and memory requirements.
|
| 452 |
+
LFE_num_scale (`int`, optional, defaults to `5`):
|
| 453 |
+
The number of different scales visual feature. A higher value increases the model's capacity to learn more
|
| 454 |
+
complex facial feature transformations, but also increases the computation and memory requirements.
|
| 455 |
+
local_face_scale (`float`, defaults to `1.0`):
|
| 456 |
+
A scaling factor used to adjust the importance of local facial features in the model. This can influence
|
| 457 |
+
how strongly the model focuses on high frequency face-related content.
|
| 458 |
+
"""
|
| 459 |
+
|
| 460 |
+
_supports_gradient_checkpointing = True
|
| 461 |
+
|
| 462 |
+
@register_to_config
|
| 463 |
+
def __init__(
|
| 464 |
+
self,
|
| 465 |
+
num_attention_heads: int = 30,
|
| 466 |
+
attention_head_dim: int = 64,
|
| 467 |
+
in_channels: int = 16,
|
| 468 |
+
out_channels: Optional[int] = 16,
|
| 469 |
+
flip_sin_to_cos: bool = True,
|
| 470 |
+
freq_shift: int = 0,
|
| 471 |
+
time_embed_dim: int = 512,
|
| 472 |
+
text_embed_dim: int = 4096,
|
| 473 |
+
num_layers: int = 30,
|
| 474 |
+
dropout: float = 0.0,
|
| 475 |
+
attention_bias: bool = True,
|
| 476 |
+
sample_width: int = 90,
|
| 477 |
+
sample_height: int = 60,
|
| 478 |
+
sample_frames: int = 49,
|
| 479 |
+
patch_size: int = 2,
|
| 480 |
+
temporal_compression_ratio: int = 4,
|
| 481 |
+
max_text_seq_length: int = 226,
|
| 482 |
+
activation_fn: str = "gelu-approximate",
|
| 483 |
+
timestep_activation_fn: str = "silu",
|
| 484 |
+
norm_elementwise_affine: bool = True,
|
| 485 |
+
norm_eps: float = 1e-5,
|
| 486 |
+
spatial_interpolation_scale: float = 1.875,
|
| 487 |
+
temporal_interpolation_scale: float = 1.0,
|
| 488 |
+
use_rotary_positional_embeddings: bool = False,
|
| 489 |
+
use_learned_positional_embeddings: bool = False,
|
| 490 |
+
is_train_face: bool = False,
|
| 491 |
+
is_kps: bool = False,
|
| 492 |
+
cross_attn_interval: int = 2,
|
| 493 |
+
cross_attn_dim_head: int = 128,
|
| 494 |
+
cross_attn_num_heads: int = 16,
|
| 495 |
+
LFE_id_dim: int = 1280,
|
| 496 |
+
LFE_vit_dim: int = 1024,
|
| 497 |
+
LFE_depth: int = 10,
|
| 498 |
+
LFE_dim_head: int = 64,
|
| 499 |
+
LFE_num_heads: int = 16,
|
| 500 |
+
LFE_num_id_token: int = 5,
|
| 501 |
+
LFE_num_querie: int = 32,
|
| 502 |
+
LFE_output_dim: int = 2048,
|
| 503 |
+
LFE_ff_mult: int = 4,
|
| 504 |
+
LFE_num_scale: int = 5,
|
| 505 |
+
local_face_scale: float = 1.0,
|
| 506 |
+
):
|
| 507 |
+
super().__init__()
|
| 508 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 509 |
+
|
| 510 |
+
if not use_rotary_positional_embeddings and use_learned_positional_embeddings:
|
| 511 |
+
raise ValueError(
|
| 512 |
+
"There are no ConsisID checkpoints available with disable rotary embeddings and learned positional "
|
| 513 |
+
"embeddings. If you're using a custom model and/or believe this should be supported, please open an "
|
| 514 |
+
"issue at https://github.com/huggingface/diffusers/issues."
|
| 515 |
+
)
|
| 516 |
+
|
| 517 |
+
# 1. Patch embedding
|
| 518 |
+
self.patch_embed = CogVideoXPatchEmbed(
|
| 519 |
+
patch_size=patch_size,
|
| 520 |
+
in_channels=in_channels,
|
| 521 |
+
embed_dim=inner_dim,
|
| 522 |
+
text_embed_dim=text_embed_dim,
|
| 523 |
+
bias=True,
|
| 524 |
+
sample_width=sample_width,
|
| 525 |
+
sample_height=sample_height,
|
| 526 |
+
sample_frames=sample_frames,
|
| 527 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
| 528 |
+
max_text_seq_length=max_text_seq_length,
|
| 529 |
+
spatial_interpolation_scale=spatial_interpolation_scale,
|
| 530 |
+
temporal_interpolation_scale=temporal_interpolation_scale,
|
| 531 |
+
use_positional_embeddings=not use_rotary_positional_embeddings,
|
| 532 |
+
use_learned_positional_embeddings=use_learned_positional_embeddings,
|
| 533 |
+
)
|
| 534 |
+
self.embedding_dropout = nn.Dropout(dropout)
|
| 535 |
+
|
| 536 |
+
# 2. Time embeddings
|
| 537 |
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
| 538 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
| 539 |
+
|
| 540 |
+
# 3. Define spatio-temporal transformers blocks
|
| 541 |
+
self.transformer_blocks = nn.ModuleList(
|
| 542 |
+
[
|
| 543 |
+
ConsisIDBlock(
|
| 544 |
+
dim=inner_dim,
|
| 545 |
+
num_attention_heads=num_attention_heads,
|
| 546 |
+
attention_head_dim=attention_head_dim,
|
| 547 |
+
time_embed_dim=time_embed_dim,
|
| 548 |
+
dropout=dropout,
|
| 549 |
+
activation_fn=activation_fn,
|
| 550 |
+
attention_bias=attention_bias,
|
| 551 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 552 |
+
norm_eps=norm_eps,
|
| 553 |
+
)
|
| 554 |
+
for _ in range(num_layers)
|
| 555 |
+
]
|
| 556 |
+
)
|
| 557 |
+
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
| 558 |
+
|
| 559 |
+
# 4. Output blocks
|
| 560 |
+
self.norm_out = AdaLayerNorm(
|
| 561 |
+
embedding_dim=time_embed_dim,
|
| 562 |
+
output_dim=2 * inner_dim,
|
| 563 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 564 |
+
norm_eps=norm_eps,
|
| 565 |
+
chunk_dim=1,
|
| 566 |
+
)
|
| 567 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
| 568 |
+
|
| 569 |
+
self.is_train_face = is_train_face
|
| 570 |
+
self.is_kps = is_kps
|
| 571 |
+
|
| 572 |
+
# 5. Define identity-preserving config
|
| 573 |
+
if is_train_face:
|
| 574 |
+
# LFE configs
|
| 575 |
+
self.LFE_id_dim = LFE_id_dim
|
| 576 |
+
self.LFE_vit_dim = LFE_vit_dim
|
| 577 |
+
self.LFE_depth = LFE_depth
|
| 578 |
+
self.LFE_dim_head = LFE_dim_head
|
| 579 |
+
self.LFE_num_heads = LFE_num_heads
|
| 580 |
+
self.LFE_num_id_token = LFE_num_id_token
|
| 581 |
+
self.LFE_num_querie = LFE_num_querie
|
| 582 |
+
self.LFE_output_dim = LFE_output_dim
|
| 583 |
+
self.LFE_ff_mult = LFE_ff_mult
|
| 584 |
+
self.LFE_num_scale = LFE_num_scale
|
| 585 |
+
# cross configs
|
| 586 |
+
self.inner_dim = inner_dim
|
| 587 |
+
self.cross_attn_interval = cross_attn_interval
|
| 588 |
+
self.num_cross_attn = num_layers // cross_attn_interval
|
| 589 |
+
self.cross_attn_dim_head = cross_attn_dim_head
|
| 590 |
+
self.cross_attn_num_heads = cross_attn_num_heads
|
| 591 |
+
self.cross_attn_kv_dim = int(self.inner_dim / 3 * 2)
|
| 592 |
+
self.local_face_scale = local_face_scale
|
| 593 |
+
# face modules
|
| 594 |
+
self._init_face_inputs()
|
| 595 |
+
|
| 596 |
+
self.gradient_checkpointing = False
|
| 597 |
+
|
| 598 |
+
def _init_face_inputs(self):
|
| 599 |
+
self.local_facial_extractor = LocalFacialExtractor(
|
| 600 |
+
id_dim=self.LFE_id_dim,
|
| 601 |
+
vit_dim=self.LFE_vit_dim,
|
| 602 |
+
depth=self.LFE_depth,
|
| 603 |
+
dim_head=self.LFE_dim_head,
|
| 604 |
+
heads=self.LFE_num_heads,
|
| 605 |
+
num_id_token=self.LFE_num_id_token,
|
| 606 |
+
num_queries=self.LFE_num_querie,
|
| 607 |
+
output_dim=self.LFE_output_dim,
|
| 608 |
+
ff_mult=self.LFE_ff_mult,
|
| 609 |
+
num_scale=self.LFE_num_scale,
|
| 610 |
+
)
|
| 611 |
+
self.perceiver_cross_attention = nn.ModuleList(
|
| 612 |
+
[
|
| 613 |
+
PerceiverCrossAttention(
|
| 614 |
+
dim=self.inner_dim,
|
| 615 |
+
dim_head=self.cross_attn_dim_head,
|
| 616 |
+
heads=self.cross_attn_num_heads,
|
| 617 |
+
kv_dim=self.cross_attn_kv_dim,
|
| 618 |
+
)
|
| 619 |
+
for _ in range(self.num_cross_attn)
|
| 620 |
+
]
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
@property
|
| 624 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 625 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 626 |
+
r"""
|
| 627 |
+
Returns:
|
| 628 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 629 |
+
indexed by its weight name.
|
| 630 |
+
"""
|
| 631 |
+
# set recursively
|
| 632 |
+
processors = {}
|
| 633 |
+
|
| 634 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 635 |
+
if hasattr(module, "get_processor"):
|
| 636 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 637 |
+
|
| 638 |
+
for sub_name, child in module.named_children():
|
| 639 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 640 |
+
|
| 641 |
+
return processors
|
| 642 |
+
|
| 643 |
+
for name, module in self.named_children():
|
| 644 |
+
fn_recursive_add_processors(name, module, processors)
|
| 645 |
+
|
| 646 |
+
return processors
|
| 647 |
+
|
| 648 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 649 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 650 |
+
r"""
|
| 651 |
+
Sets the attention processor to use to compute attention.
|
| 652 |
+
|
| 653 |
+
Parameters:
|
| 654 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 655 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 656 |
+
for **all** `Attention` layers.
|
| 657 |
+
|
| 658 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 659 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 660 |
+
|
| 661 |
+
"""
|
| 662 |
+
count = len(self.attn_processors.keys())
|
| 663 |
+
|
| 664 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 665 |
+
raise ValueError(
|
| 666 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 667 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 671 |
+
if hasattr(module, "set_processor"):
|
| 672 |
+
if not isinstance(processor, dict):
|
| 673 |
+
module.set_processor(processor)
|
| 674 |
+
else:
|
| 675 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 676 |
+
|
| 677 |
+
for sub_name, child in module.named_children():
|
| 678 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 679 |
+
|
| 680 |
+
for name, module in self.named_children():
|
| 681 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 682 |
+
|
| 683 |
+
def forward(
|
| 684 |
+
self,
|
| 685 |
+
hidden_states: torch.Tensor,
|
| 686 |
+
encoder_hidden_states: torch.Tensor,
|
| 687 |
+
timestep: Union[int, float, torch.LongTensor],
|
| 688 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 689 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 690 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 691 |
+
id_cond: Optional[torch.Tensor] = None,
|
| 692 |
+
id_vit_hidden: Optional[torch.Tensor] = None,
|
| 693 |
+
return_dict: bool = True,
|
| 694 |
+
):
|
| 695 |
+
if attention_kwargs is not None:
|
| 696 |
+
attention_kwargs = attention_kwargs.copy()
|
| 697 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 698 |
+
else:
|
| 699 |
+
lora_scale = 1.0
|
| 700 |
+
|
| 701 |
+
if USE_PEFT_BACKEND:
|
| 702 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 703 |
+
scale_lora_layers(self, lora_scale)
|
| 704 |
+
else:
|
| 705 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 706 |
+
logger.warning(
|
| 707 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
# fuse clip and insightface
|
| 711 |
+
valid_face_emb = None
|
| 712 |
+
if self.is_train_face:
|
| 713 |
+
id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype)
|
| 714 |
+
id_vit_hidden = [
|
| 715 |
+
tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden
|
| 716 |
+
]
|
| 717 |
+
valid_face_emb = self.local_facial_extractor(
|
| 718 |
+
id_cond, id_vit_hidden
|
| 719 |
+
) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048])
|
| 720 |
+
|
| 721 |
+
batch_size, num_frames, channels, height, width = hidden_states.shape
|
| 722 |
+
|
| 723 |
+
# 1. Time embedding
|
| 724 |
+
timesteps = timestep
|
| 725 |
+
t_emb = self.time_proj(timesteps)
|
| 726 |
+
|
| 727 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 728 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 729 |
+
# there might be better ways to encapsulate this.
|
| 730 |
+
t_emb = t_emb.to(dtype=hidden_states.dtype)
|
| 731 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 732 |
+
|
| 733 |
+
# 2. Patch embedding
|
| 734 |
+
# torch.Size([1, 226, 4096]) torch.Size([1, 13, 32, 60, 90])
|
| 735 |
+
hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) # torch.Size([1, 17776, 3072])
|
| 736 |
+
hidden_states = self.embedding_dropout(hidden_states) # torch.Size([1, 17776, 3072])
|
| 737 |
+
|
| 738 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
| 739 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length] # torch.Size([1, 226, 3072])
|
| 740 |
+
hidden_states = hidden_states[:, text_seq_length:] # torch.Size([1, 17550, 3072])
|
| 741 |
+
|
| 742 |
+
# 3. Transformer blocks
|
| 743 |
+
ca_idx = 0
|
| 744 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 745 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 746 |
+
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
|
| 747 |
+
block,
|
| 748 |
+
hidden_states,
|
| 749 |
+
encoder_hidden_states,
|
| 750 |
+
emb,
|
| 751 |
+
image_rotary_emb,
|
| 752 |
+
)
|
| 753 |
+
else:
|
| 754 |
+
hidden_states, encoder_hidden_states = block(
|
| 755 |
+
hidden_states=hidden_states,
|
| 756 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 757 |
+
temb=emb,
|
| 758 |
+
image_rotary_emb=image_rotary_emb,
|
| 759 |
+
)
|
| 760 |
+
|
| 761 |
+
if self.is_train_face:
|
| 762 |
+
if i % self.cross_attn_interval == 0 and valid_face_emb is not None:
|
| 763 |
+
hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx](
|
| 764 |
+
valid_face_emb, hidden_states
|
| 765 |
+
) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072])
|
| 766 |
+
ca_idx += 1
|
| 767 |
+
|
| 768 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 769 |
+
hidden_states = self.norm_final(hidden_states)
|
| 770 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
| 771 |
+
|
| 772 |
+
# 4. Final block
|
| 773 |
+
hidden_states = self.norm_out(hidden_states, temb=emb)
|
| 774 |
+
hidden_states = self.proj_out(hidden_states)
|
| 775 |
+
|
| 776 |
+
# 5. Unpatchify
|
| 777 |
+
# Note: we use `-1` instead of `channels`:
|
| 778 |
+
# - It is okay to `channels` use for ConsisID (number of input channels is equal to output channels)
|
| 779 |
+
p = self.config.patch_size
|
| 780 |
+
output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p)
|
| 781 |
+
output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
| 782 |
+
|
| 783 |
+
if USE_PEFT_BACKEND:
|
| 784 |
+
# remove `lora_scale` from each PEFT layer
|
| 785 |
+
unscale_lora_layers(self, lora_scale)
|
| 786 |
+
|
| 787 |
+
if not return_dict:
|
| 788 |
+
return (output,)
|
| 789 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/dit_transformer_2d.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, Optional
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ...utils import logging
|
| 22 |
+
from ..attention import BasicTransformerBlock
|
| 23 |
+
from ..embeddings import PatchEmbed
|
| 24 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 25 |
+
from ..modeling_utils import ModelMixin
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class DiTTransformer2DModel(ModelMixin, ConfigMixin):
|
| 32 |
+
r"""
|
| 33 |
+
A 2D Transformer model as introduced in DiT (https://huggingface.co/papers/2212.09748).
|
| 34 |
+
|
| 35 |
+
Parameters:
|
| 36 |
+
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
| 37 |
+
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
| 38 |
+
in_channels (int, defaults to 4): The number of channels in the input.
|
| 39 |
+
out_channels (int, optional):
|
| 40 |
+
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
| 41 |
+
input.
|
| 42 |
+
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
| 43 |
+
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
| 44 |
+
norm_num_groups (int, optional, defaults to 32):
|
| 45 |
+
Number of groups for group normalization within Transformer blocks.
|
| 46 |
+
attention_bias (bool, optional, defaults to True):
|
| 47 |
+
Configure if the Transformer blocks' attention should contain a bias parameter.
|
| 48 |
+
sample_size (int, defaults to 32):
|
| 49 |
+
The width of the latent images. This parameter is fixed during training.
|
| 50 |
+
patch_size (int, defaults to 2):
|
| 51 |
+
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
| 52 |
+
activation_fn (str, optional, defaults to "gelu-approximate"):
|
| 53 |
+
Activation function to use in feed-forward networks within Transformer blocks.
|
| 54 |
+
num_embeds_ada_norm (int, optional, defaults to 1000):
|
| 55 |
+
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
| 56 |
+
inference.
|
| 57 |
+
upcast_attention (bool, optional, defaults to False):
|
| 58 |
+
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
| 59 |
+
norm_type (str, optional, defaults to "ada_norm_zero"):
|
| 60 |
+
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
| 61 |
+
norm_elementwise_affine (bool, optional, defaults to False):
|
| 62 |
+
If true, enables element-wise affine parameters in the normalization layers.
|
| 63 |
+
norm_eps (float, optional, defaults to 1e-5):
|
| 64 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 68 |
+
_supports_gradient_checkpointing = True
|
| 69 |
+
_supports_group_offloading = False
|
| 70 |
+
|
| 71 |
+
@register_to_config
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
num_attention_heads: int = 16,
|
| 75 |
+
attention_head_dim: int = 72,
|
| 76 |
+
in_channels: int = 4,
|
| 77 |
+
out_channels: Optional[int] = None,
|
| 78 |
+
num_layers: int = 28,
|
| 79 |
+
dropout: float = 0.0,
|
| 80 |
+
norm_num_groups: int = 32,
|
| 81 |
+
attention_bias: bool = True,
|
| 82 |
+
sample_size: int = 32,
|
| 83 |
+
patch_size: int = 2,
|
| 84 |
+
activation_fn: str = "gelu-approximate",
|
| 85 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
| 86 |
+
upcast_attention: bool = False,
|
| 87 |
+
norm_type: str = "ada_norm_zero",
|
| 88 |
+
norm_elementwise_affine: bool = False,
|
| 89 |
+
norm_eps: float = 1e-5,
|
| 90 |
+
):
|
| 91 |
+
super().__init__()
|
| 92 |
+
|
| 93 |
+
# Validate inputs.
|
| 94 |
+
if norm_type != "ada_norm_zero":
|
| 95 |
+
raise NotImplementedError(
|
| 96 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
| 97 |
+
)
|
| 98 |
+
elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None:
|
| 99 |
+
raise ValueError(
|
| 100 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Set some common variables used across the board.
|
| 104 |
+
self.attention_head_dim = attention_head_dim
|
| 105 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 106 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 107 |
+
self.gradient_checkpointing = False
|
| 108 |
+
|
| 109 |
+
# 2. Initialize the position embedding and transformer blocks.
|
| 110 |
+
self.height = self.config.sample_size
|
| 111 |
+
self.width = self.config.sample_size
|
| 112 |
+
|
| 113 |
+
self.patch_size = self.config.patch_size
|
| 114 |
+
self.pos_embed = PatchEmbed(
|
| 115 |
+
height=self.config.sample_size,
|
| 116 |
+
width=self.config.sample_size,
|
| 117 |
+
patch_size=self.config.patch_size,
|
| 118 |
+
in_channels=self.config.in_channels,
|
| 119 |
+
embed_dim=self.inner_dim,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
self.transformer_blocks = nn.ModuleList(
|
| 123 |
+
[
|
| 124 |
+
BasicTransformerBlock(
|
| 125 |
+
self.inner_dim,
|
| 126 |
+
self.config.num_attention_heads,
|
| 127 |
+
self.config.attention_head_dim,
|
| 128 |
+
dropout=self.config.dropout,
|
| 129 |
+
activation_fn=self.config.activation_fn,
|
| 130 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 131 |
+
attention_bias=self.config.attention_bias,
|
| 132 |
+
upcast_attention=self.config.upcast_attention,
|
| 133 |
+
norm_type=norm_type,
|
| 134 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 135 |
+
norm_eps=self.config.norm_eps,
|
| 136 |
+
)
|
| 137 |
+
for _ in range(self.config.num_layers)
|
| 138 |
+
]
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
# 3. Output blocks.
|
| 142 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 143 |
+
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
| 144 |
+
self.proj_out_2 = nn.Linear(
|
| 145 |
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def forward(
|
| 149 |
+
self,
|
| 150 |
+
hidden_states: torch.Tensor,
|
| 151 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 152 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 153 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 154 |
+
return_dict: bool = True,
|
| 155 |
+
):
|
| 156 |
+
"""
|
| 157 |
+
The [`DiTTransformer2DModel`] forward method.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
| 161 |
+
Input `hidden_states`.
|
| 162 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 163 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 164 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
| 165 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
| 166 |
+
`AdaLayerZeroNorm`.
|
| 167 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 168 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 169 |
+
`self.processor` in
|
| 170 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 171 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 172 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 173 |
+
tuple.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 177 |
+
`tuple` where the first element is the sample tensor.
|
| 178 |
+
"""
|
| 179 |
+
# 1. Input
|
| 180 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
| 181 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 182 |
+
|
| 183 |
+
# 2. Blocks
|
| 184 |
+
for block in self.transformer_blocks:
|
| 185 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 186 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 187 |
+
block,
|
| 188 |
+
hidden_states,
|
| 189 |
+
None,
|
| 190 |
+
None,
|
| 191 |
+
None,
|
| 192 |
+
timestep,
|
| 193 |
+
cross_attention_kwargs,
|
| 194 |
+
class_labels,
|
| 195 |
+
)
|
| 196 |
+
else:
|
| 197 |
+
hidden_states = block(
|
| 198 |
+
hidden_states,
|
| 199 |
+
attention_mask=None,
|
| 200 |
+
encoder_hidden_states=None,
|
| 201 |
+
encoder_attention_mask=None,
|
| 202 |
+
timestep=timestep,
|
| 203 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 204 |
+
class_labels=class_labels,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# 3. Output
|
| 208 |
+
conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype)
|
| 209 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
| 210 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
| 211 |
+
hidden_states = self.proj_out_2(hidden_states)
|
| 212 |
+
|
| 213 |
+
# unpatchify
|
| 214 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
| 215 |
+
hidden_states = hidden_states.reshape(
|
| 216 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
| 217 |
+
)
|
| 218 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 219 |
+
output = hidden_states.reshape(
|
| 220 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
if not return_dict:
|
| 224 |
+
return (output,)
|
| 225 |
+
|
| 226 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/dual_transformer_2d.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Optional
|
| 15 |
+
|
| 16 |
+
from torch import nn
|
| 17 |
+
|
| 18 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 19 |
+
from .transformer_2d import Transformer2DModel
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class DualTransformer2DModel(nn.Module):
|
| 23 |
+
"""
|
| 24 |
+
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
|
| 25 |
+
|
| 26 |
+
Parameters:
|
| 27 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 28 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 29 |
+
in_channels (`int`, *optional*):
|
| 30 |
+
Pass if the input is continuous. The number of channels in the input and output.
|
| 31 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 32 |
+
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
| 33 |
+
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
|
| 34 |
+
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
|
| 35 |
+
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
|
| 36 |
+
`ImagePositionalEmbeddings`.
|
| 37 |
+
num_vector_embeds (`int`, *optional*):
|
| 38 |
+
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
|
| 39 |
+
Includes the class for the masked latent pixel.
|
| 40 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 41 |
+
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
|
| 42 |
+
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
|
| 43 |
+
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
|
| 44 |
+
up to but not more than steps than `num_embeds_ada_norm`.
|
| 45 |
+
attention_bias (`bool`, *optional*):
|
| 46 |
+
Configure if the TransformerBlocks' attention should contain a bias parameter.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
num_attention_heads: int = 16,
|
| 52 |
+
attention_head_dim: int = 88,
|
| 53 |
+
in_channels: Optional[int] = None,
|
| 54 |
+
num_layers: int = 1,
|
| 55 |
+
dropout: float = 0.0,
|
| 56 |
+
norm_num_groups: int = 32,
|
| 57 |
+
cross_attention_dim: Optional[int] = None,
|
| 58 |
+
attention_bias: bool = False,
|
| 59 |
+
sample_size: Optional[int] = None,
|
| 60 |
+
num_vector_embeds: Optional[int] = None,
|
| 61 |
+
activation_fn: str = "geglu",
|
| 62 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 63 |
+
):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.transformers = nn.ModuleList(
|
| 66 |
+
[
|
| 67 |
+
Transformer2DModel(
|
| 68 |
+
num_attention_heads=num_attention_heads,
|
| 69 |
+
attention_head_dim=attention_head_dim,
|
| 70 |
+
in_channels=in_channels,
|
| 71 |
+
num_layers=num_layers,
|
| 72 |
+
dropout=dropout,
|
| 73 |
+
norm_num_groups=norm_num_groups,
|
| 74 |
+
cross_attention_dim=cross_attention_dim,
|
| 75 |
+
attention_bias=attention_bias,
|
| 76 |
+
sample_size=sample_size,
|
| 77 |
+
num_vector_embeds=num_vector_embeds,
|
| 78 |
+
activation_fn=activation_fn,
|
| 79 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 80 |
+
)
|
| 81 |
+
for _ in range(2)
|
| 82 |
+
]
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Variables that can be set by a pipeline:
|
| 86 |
+
|
| 87 |
+
# The ratio of transformer1 to transformer2's output states to be combined during inference
|
| 88 |
+
self.mix_ratio = 0.5
|
| 89 |
+
|
| 90 |
+
# The shape of `encoder_hidden_states` is expected to be
|
| 91 |
+
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
|
| 92 |
+
self.condition_lengths = [77, 257]
|
| 93 |
+
|
| 94 |
+
# Which transformer to use to encode which condition.
|
| 95 |
+
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
|
| 96 |
+
self.transformer_index_for_condition = [1, 0]
|
| 97 |
+
|
| 98 |
+
def forward(
|
| 99 |
+
self,
|
| 100 |
+
hidden_states,
|
| 101 |
+
encoder_hidden_states,
|
| 102 |
+
timestep=None,
|
| 103 |
+
attention_mask=None,
|
| 104 |
+
cross_attention_kwargs=None,
|
| 105 |
+
return_dict: bool = True,
|
| 106 |
+
):
|
| 107 |
+
"""
|
| 108 |
+
Args:
|
| 109 |
+
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
|
| 110 |
+
When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states.
|
| 111 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
| 112 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 113 |
+
self-attention.
|
| 114 |
+
timestep ( `torch.long`, *optional*):
|
| 115 |
+
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
|
| 116 |
+
attention_mask (`torch.Tensor`, *optional*):
|
| 117 |
+
Optional attention mask to be applied in Attention.
|
| 118 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 119 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 120 |
+
`self.processor` in
|
| 121 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 122 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 123 |
+
Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 124 |
+
tuple.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
[`~models.transformers.transformer_2d.Transformer2DModelOutput`] or `tuple`:
|
| 128 |
+
[`~models.transformers.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a
|
| 129 |
+
`tuple`. When returning a tuple, the first element is the sample tensor.
|
| 130 |
+
"""
|
| 131 |
+
input_states = hidden_states
|
| 132 |
+
|
| 133 |
+
encoded_states = []
|
| 134 |
+
tokens_start = 0
|
| 135 |
+
# attention_mask is not used yet
|
| 136 |
+
for i in range(2):
|
| 137 |
+
# for each of the two transformers, pass the corresponding condition tokens
|
| 138 |
+
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
|
| 139 |
+
transformer_index = self.transformer_index_for_condition[i]
|
| 140 |
+
encoded_state = self.transformers[transformer_index](
|
| 141 |
+
input_states,
|
| 142 |
+
encoder_hidden_states=condition_state,
|
| 143 |
+
timestep=timestep,
|
| 144 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 145 |
+
return_dict=False,
|
| 146 |
+
)[0]
|
| 147 |
+
encoded_states.append(encoded_state - input_states)
|
| 148 |
+
tokens_start += self.condition_lengths[i]
|
| 149 |
+
|
| 150 |
+
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
|
| 151 |
+
output_states = output_states + input_states
|
| 152 |
+
|
| 153 |
+
if not return_dict:
|
| 154 |
+
return (output_states,)
|
| 155 |
+
|
| 156 |
+
return Transformer2DModelOutput(sample=output_states)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/hunyuan_transformer_2d.py
ADDED
|
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Dict, Optional, Union
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
from torch import nn
|
| 18 |
+
|
| 19 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 20 |
+
from ...utils import logging
|
| 21 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 22 |
+
from ..attention import FeedForward
|
| 23 |
+
from ..attention_processor import Attention, AttentionProcessor, FusedHunyuanAttnProcessor2_0, HunyuanAttnProcessor2_0
|
| 24 |
+
from ..embeddings import (
|
| 25 |
+
HunyuanCombinedTimestepTextSizeStyleEmbedding,
|
| 26 |
+
PatchEmbed,
|
| 27 |
+
PixArtAlphaTextProjection,
|
| 28 |
+
)
|
| 29 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 30 |
+
from ..modeling_utils import ModelMixin
|
| 31 |
+
from ..normalization import AdaLayerNormContinuous, FP32LayerNorm
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class AdaLayerNormShift(nn.Module):
|
| 38 |
+
r"""
|
| 39 |
+
Norm layer modified to incorporate timestep embeddings.
|
| 40 |
+
|
| 41 |
+
Parameters:
|
| 42 |
+
embedding_dim (`int`): The size of each embedding vector.
|
| 43 |
+
num_embeddings (`int`): The size of the embeddings dictionary.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, embedding_dim: int, elementwise_affine=True, eps=1e-6):
|
| 47 |
+
super().__init__()
|
| 48 |
+
self.silu = nn.SiLU()
|
| 49 |
+
self.linear = nn.Linear(embedding_dim, embedding_dim)
|
| 50 |
+
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps)
|
| 51 |
+
|
| 52 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
| 53 |
+
shift = self.linear(self.silu(emb.to(torch.float32)).to(emb.dtype))
|
| 54 |
+
x = self.norm(x) + shift.unsqueeze(dim=1)
|
| 55 |
+
return x
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@maybe_allow_in_graph
|
| 59 |
+
class HunyuanDiTBlock(nn.Module):
|
| 60 |
+
r"""
|
| 61 |
+
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and
|
| 62 |
+
QKNorm
|
| 63 |
+
|
| 64 |
+
Parameters:
|
| 65 |
+
dim (`int`):
|
| 66 |
+
The number of channels in the input and output.
|
| 67 |
+
num_attention_heads (`int`):
|
| 68 |
+
The number of headsto use for multi-head attention.
|
| 69 |
+
cross_attention_dim (`int`,*optional*):
|
| 70 |
+
The size of the encoder_hidden_states vector for cross attention.
|
| 71 |
+
dropout(`float`, *optional*, defaults to 0.0):
|
| 72 |
+
The dropout probability to use.
|
| 73 |
+
activation_fn (`str`,*optional*, defaults to `"geglu"`):
|
| 74 |
+
Activation function to be used in feed-forward. .
|
| 75 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
| 76 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 77 |
+
norm_eps (`float`, *optional*, defaults to 1e-6):
|
| 78 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
| 79 |
+
final_dropout (`bool` *optional*, defaults to False):
|
| 80 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 81 |
+
ff_inner_dim (`int`, *optional*):
|
| 82 |
+
The size of the hidden layer in the feed-forward block. Defaults to `None`.
|
| 83 |
+
ff_bias (`bool`, *optional*, defaults to `True`):
|
| 84 |
+
Whether to use bias in the feed-forward block.
|
| 85 |
+
skip (`bool`, *optional*, defaults to `False`):
|
| 86 |
+
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks.
|
| 87 |
+
qk_norm (`bool`, *optional*, defaults to `True`):
|
| 88 |
+
Whether to use normalization in QK calculation. Defaults to `True`.
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
def __init__(
|
| 92 |
+
self,
|
| 93 |
+
dim: int,
|
| 94 |
+
num_attention_heads: int,
|
| 95 |
+
cross_attention_dim: int = 1024,
|
| 96 |
+
dropout=0.0,
|
| 97 |
+
activation_fn: str = "geglu",
|
| 98 |
+
norm_elementwise_affine: bool = True,
|
| 99 |
+
norm_eps: float = 1e-6,
|
| 100 |
+
final_dropout: bool = False,
|
| 101 |
+
ff_inner_dim: Optional[int] = None,
|
| 102 |
+
ff_bias: bool = True,
|
| 103 |
+
skip: bool = False,
|
| 104 |
+
qk_norm: bool = True,
|
| 105 |
+
):
|
| 106 |
+
super().__init__()
|
| 107 |
+
|
| 108 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 109 |
+
# NOTE: when new version comes, check norm2 and norm 3
|
| 110 |
+
# 1. Self-Attn
|
| 111 |
+
self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 112 |
+
|
| 113 |
+
self.attn1 = Attention(
|
| 114 |
+
query_dim=dim,
|
| 115 |
+
cross_attention_dim=None,
|
| 116 |
+
dim_head=dim // num_attention_heads,
|
| 117 |
+
heads=num_attention_heads,
|
| 118 |
+
qk_norm="layer_norm" if qk_norm else None,
|
| 119 |
+
eps=1e-6,
|
| 120 |
+
bias=True,
|
| 121 |
+
processor=HunyuanAttnProcessor2_0(),
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
# 2. Cross-Attn
|
| 125 |
+
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 126 |
+
|
| 127 |
+
self.attn2 = Attention(
|
| 128 |
+
query_dim=dim,
|
| 129 |
+
cross_attention_dim=cross_attention_dim,
|
| 130 |
+
dim_head=dim // num_attention_heads,
|
| 131 |
+
heads=num_attention_heads,
|
| 132 |
+
qk_norm="layer_norm" if qk_norm else None,
|
| 133 |
+
eps=1e-6,
|
| 134 |
+
bias=True,
|
| 135 |
+
processor=HunyuanAttnProcessor2_0(),
|
| 136 |
+
)
|
| 137 |
+
# 3. Feed-forward
|
| 138 |
+
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 139 |
+
|
| 140 |
+
self.ff = FeedForward(
|
| 141 |
+
dim,
|
| 142 |
+
dropout=dropout, ### 0.0
|
| 143 |
+
activation_fn=activation_fn, ### approx GeLU
|
| 144 |
+
final_dropout=final_dropout, ### 0.0
|
| 145 |
+
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio)
|
| 146 |
+
bias=ff_bias,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# 4. Skip Connection
|
| 150 |
+
if skip:
|
| 151 |
+
self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True)
|
| 152 |
+
self.skip_linear = nn.Linear(2 * dim, dim)
|
| 153 |
+
else:
|
| 154 |
+
self.skip_linear = None
|
| 155 |
+
|
| 156 |
+
# let chunk size default to None
|
| 157 |
+
self._chunk_size = None
|
| 158 |
+
self._chunk_dim = 0
|
| 159 |
+
|
| 160 |
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
| 161 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
| 162 |
+
# Sets chunk feed-forward
|
| 163 |
+
self._chunk_size = chunk_size
|
| 164 |
+
self._chunk_dim = dim
|
| 165 |
+
|
| 166 |
+
def forward(
|
| 167 |
+
self,
|
| 168 |
+
hidden_states: torch.Tensor,
|
| 169 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 170 |
+
temb: Optional[torch.Tensor] = None,
|
| 171 |
+
image_rotary_emb=None,
|
| 172 |
+
skip=None,
|
| 173 |
+
) -> torch.Tensor:
|
| 174 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 175 |
+
# 0. Long Skip Connection
|
| 176 |
+
if self.skip_linear is not None:
|
| 177 |
+
cat = torch.cat([hidden_states, skip], dim=-1)
|
| 178 |
+
cat = self.skip_norm(cat)
|
| 179 |
+
hidden_states = self.skip_linear(cat)
|
| 180 |
+
|
| 181 |
+
# 1. Self-Attention
|
| 182 |
+
norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct
|
| 183 |
+
attn_output = self.attn1(
|
| 184 |
+
norm_hidden_states,
|
| 185 |
+
image_rotary_emb=image_rotary_emb,
|
| 186 |
+
)
|
| 187 |
+
hidden_states = hidden_states + attn_output
|
| 188 |
+
|
| 189 |
+
# 2. Cross-Attention
|
| 190 |
+
hidden_states = hidden_states + self.attn2(
|
| 191 |
+
self.norm2(hidden_states),
|
| 192 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 193 |
+
image_rotary_emb=image_rotary_emb,
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict
|
| 197 |
+
mlp_inputs = self.norm3(hidden_states)
|
| 198 |
+
hidden_states = hidden_states + self.ff(mlp_inputs)
|
| 199 |
+
|
| 200 |
+
return hidden_states
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class HunyuanDiT2DModel(ModelMixin, ConfigMixin):
|
| 204 |
+
"""
|
| 205 |
+
HunYuanDiT: Diffusion model with a Transformer backbone.
|
| 206 |
+
|
| 207 |
+
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
| 208 |
+
|
| 209 |
+
Parameters:
|
| 210 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
| 211 |
+
The number of heads to use for multi-head attention.
|
| 212 |
+
attention_head_dim (`int`, *optional*, defaults to 88):
|
| 213 |
+
The number of channels in each head.
|
| 214 |
+
in_channels (`int`, *optional*):
|
| 215 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
| 216 |
+
patch_size (`int`, *optional*):
|
| 217 |
+
The size of the patch to use for the input.
|
| 218 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
| 219 |
+
Activation function to use in feed-forward.
|
| 220 |
+
sample_size (`int`, *optional*):
|
| 221 |
+
The width of the latent images. This is fixed during training since it is used to learn a number of
|
| 222 |
+
position embeddings.
|
| 223 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 224 |
+
The dropout probability to use.
|
| 225 |
+
cross_attention_dim (`int`, *optional*):
|
| 226 |
+
The number of dimension in the clip text embedding.
|
| 227 |
+
hidden_size (`int`, *optional*):
|
| 228 |
+
The size of hidden layer in the conditioning embedding layers.
|
| 229 |
+
num_layers (`int`, *optional*, defaults to 1):
|
| 230 |
+
The number of layers of Transformer blocks to use.
|
| 231 |
+
mlp_ratio (`float`, *optional*, defaults to 4.0):
|
| 232 |
+
The ratio of the hidden layer size to the input size.
|
| 233 |
+
learn_sigma (`bool`, *optional*, defaults to `True`):
|
| 234 |
+
Whether to predict variance.
|
| 235 |
+
cross_attention_dim_t5 (`int`, *optional*):
|
| 236 |
+
The number dimensions in t5 text embedding.
|
| 237 |
+
pooled_projection_dim (`int`, *optional*):
|
| 238 |
+
The size of the pooled projection.
|
| 239 |
+
text_len (`int`, *optional*):
|
| 240 |
+
The length of the clip text embedding.
|
| 241 |
+
text_len_t5 (`int`, *optional*):
|
| 242 |
+
The length of the T5 text embedding.
|
| 243 |
+
use_style_cond_and_image_meta_size (`bool`, *optional*):
|
| 244 |
+
Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm", "pooler"]
|
| 248 |
+
_supports_group_offloading = False
|
| 249 |
+
|
| 250 |
+
@register_to_config
|
| 251 |
+
def __init__(
|
| 252 |
+
self,
|
| 253 |
+
num_attention_heads: int = 16,
|
| 254 |
+
attention_head_dim: int = 88,
|
| 255 |
+
in_channels: Optional[int] = None,
|
| 256 |
+
patch_size: Optional[int] = None,
|
| 257 |
+
activation_fn: str = "gelu-approximate",
|
| 258 |
+
sample_size=32,
|
| 259 |
+
hidden_size=1152,
|
| 260 |
+
num_layers: int = 28,
|
| 261 |
+
mlp_ratio: float = 4.0,
|
| 262 |
+
learn_sigma: bool = True,
|
| 263 |
+
cross_attention_dim: int = 1024,
|
| 264 |
+
norm_type: str = "layer_norm",
|
| 265 |
+
cross_attention_dim_t5: int = 2048,
|
| 266 |
+
pooled_projection_dim: int = 1024,
|
| 267 |
+
text_len: int = 77,
|
| 268 |
+
text_len_t5: int = 256,
|
| 269 |
+
use_style_cond_and_image_meta_size: bool = True,
|
| 270 |
+
):
|
| 271 |
+
super().__init__()
|
| 272 |
+
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
| 273 |
+
self.num_heads = num_attention_heads
|
| 274 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 275 |
+
|
| 276 |
+
self.text_embedder = PixArtAlphaTextProjection(
|
| 277 |
+
in_features=cross_attention_dim_t5,
|
| 278 |
+
hidden_size=cross_attention_dim_t5 * 4,
|
| 279 |
+
out_features=cross_attention_dim,
|
| 280 |
+
act_fn="silu_fp32",
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
self.text_embedding_padding = nn.Parameter(torch.randn(text_len + text_len_t5, cross_attention_dim))
|
| 284 |
+
|
| 285 |
+
self.pos_embed = PatchEmbed(
|
| 286 |
+
height=sample_size,
|
| 287 |
+
width=sample_size,
|
| 288 |
+
in_channels=in_channels,
|
| 289 |
+
embed_dim=hidden_size,
|
| 290 |
+
patch_size=patch_size,
|
| 291 |
+
pos_embed_type=None,
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding(
|
| 295 |
+
hidden_size,
|
| 296 |
+
pooled_projection_dim=pooled_projection_dim,
|
| 297 |
+
seq_len=text_len_t5,
|
| 298 |
+
cross_attention_dim=cross_attention_dim_t5,
|
| 299 |
+
use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size,
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# HunyuanDiT Blocks
|
| 303 |
+
self.blocks = nn.ModuleList(
|
| 304 |
+
[
|
| 305 |
+
HunyuanDiTBlock(
|
| 306 |
+
dim=self.inner_dim,
|
| 307 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 308 |
+
activation_fn=activation_fn,
|
| 309 |
+
ff_inner_dim=int(self.inner_dim * mlp_ratio),
|
| 310 |
+
cross_attention_dim=cross_attention_dim,
|
| 311 |
+
qk_norm=True, # See https://huggingface.co/papers/2302.05442 for details.
|
| 312 |
+
skip=layer > num_layers // 2,
|
| 313 |
+
)
|
| 314 |
+
for layer in range(num_layers)
|
| 315 |
+
]
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 319 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 320 |
+
|
| 321 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedHunyuanAttnProcessor2_0
|
| 322 |
+
def fuse_qkv_projections(self):
|
| 323 |
+
"""
|
| 324 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 325 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 326 |
+
|
| 327 |
+
<Tip warning={true}>
|
| 328 |
+
|
| 329 |
+
This API is 🧪 experimental.
|
| 330 |
+
|
| 331 |
+
</Tip>
|
| 332 |
+
"""
|
| 333 |
+
self.original_attn_processors = None
|
| 334 |
+
|
| 335 |
+
for _, attn_processor in self.attn_processors.items():
|
| 336 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 337 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 338 |
+
|
| 339 |
+
self.original_attn_processors = self.attn_processors
|
| 340 |
+
|
| 341 |
+
for module in self.modules():
|
| 342 |
+
if isinstance(module, Attention):
|
| 343 |
+
module.fuse_projections(fuse=True)
|
| 344 |
+
|
| 345 |
+
self.set_attn_processor(FusedHunyuanAttnProcessor2_0())
|
| 346 |
+
|
| 347 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 348 |
+
def unfuse_qkv_projections(self):
|
| 349 |
+
"""Disables the fused QKV projection if enabled.
|
| 350 |
+
|
| 351 |
+
<Tip warning={true}>
|
| 352 |
+
|
| 353 |
+
This API is 🧪 experimental.
|
| 354 |
+
|
| 355 |
+
</Tip>
|
| 356 |
+
|
| 357 |
+
"""
|
| 358 |
+
if self.original_attn_processors is not None:
|
| 359 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 360 |
+
|
| 361 |
+
@property
|
| 362 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 363 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 364 |
+
r"""
|
| 365 |
+
Returns:
|
| 366 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 367 |
+
indexed by its weight name.
|
| 368 |
+
"""
|
| 369 |
+
# set recursively
|
| 370 |
+
processors = {}
|
| 371 |
+
|
| 372 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 373 |
+
if hasattr(module, "get_processor"):
|
| 374 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 375 |
+
|
| 376 |
+
for sub_name, child in module.named_children():
|
| 377 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 378 |
+
|
| 379 |
+
return processors
|
| 380 |
+
|
| 381 |
+
for name, module in self.named_children():
|
| 382 |
+
fn_recursive_add_processors(name, module, processors)
|
| 383 |
+
|
| 384 |
+
return processors
|
| 385 |
+
|
| 386 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 387 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 388 |
+
r"""
|
| 389 |
+
Sets the attention processor to use to compute attention.
|
| 390 |
+
|
| 391 |
+
Parameters:
|
| 392 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 393 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 394 |
+
for **all** `Attention` layers.
|
| 395 |
+
|
| 396 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 397 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 398 |
+
|
| 399 |
+
"""
|
| 400 |
+
count = len(self.attn_processors.keys())
|
| 401 |
+
|
| 402 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 403 |
+
raise ValueError(
|
| 404 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 405 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 409 |
+
if hasattr(module, "set_processor"):
|
| 410 |
+
if not isinstance(processor, dict):
|
| 411 |
+
module.set_processor(processor)
|
| 412 |
+
else:
|
| 413 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 414 |
+
|
| 415 |
+
for sub_name, child in module.named_children():
|
| 416 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 417 |
+
|
| 418 |
+
for name, module in self.named_children():
|
| 419 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 420 |
+
|
| 421 |
+
def set_default_attn_processor(self):
|
| 422 |
+
"""
|
| 423 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 424 |
+
"""
|
| 425 |
+
self.set_attn_processor(HunyuanAttnProcessor2_0())
|
| 426 |
+
|
| 427 |
+
def forward(
|
| 428 |
+
self,
|
| 429 |
+
hidden_states,
|
| 430 |
+
timestep,
|
| 431 |
+
encoder_hidden_states=None,
|
| 432 |
+
text_embedding_mask=None,
|
| 433 |
+
encoder_hidden_states_t5=None,
|
| 434 |
+
text_embedding_mask_t5=None,
|
| 435 |
+
image_meta_size=None,
|
| 436 |
+
style=None,
|
| 437 |
+
image_rotary_emb=None,
|
| 438 |
+
controlnet_block_samples=None,
|
| 439 |
+
return_dict=True,
|
| 440 |
+
):
|
| 441 |
+
"""
|
| 442 |
+
The [`HunyuanDiT2DModel`] forward method.
|
| 443 |
+
|
| 444 |
+
Args:
|
| 445 |
+
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
|
| 446 |
+
The input tensor.
|
| 447 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 448 |
+
Used to indicate denoising step.
|
| 449 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 450 |
+
Conditional embeddings for cross attention layer. This is the output of `BertModel`.
|
| 451 |
+
text_embedding_mask: torch.Tensor
|
| 452 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
| 453 |
+
of `BertModel`.
|
| 454 |
+
encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 455 |
+
Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder.
|
| 456 |
+
text_embedding_mask_t5: torch.Tensor
|
| 457 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output
|
| 458 |
+
of T5 Text Encoder.
|
| 459 |
+
image_meta_size (torch.Tensor):
|
| 460 |
+
Conditional embedding indicate the image sizes
|
| 461 |
+
style: torch.Tensor:
|
| 462 |
+
Conditional embedding indicate the style
|
| 463 |
+
image_rotary_emb (`torch.Tensor`):
|
| 464 |
+
The image rotary embeddings to apply on query and key tensors during attention calculation.
|
| 465 |
+
return_dict: bool
|
| 466 |
+
Whether to return a dictionary.
|
| 467 |
+
"""
|
| 468 |
+
|
| 469 |
+
height, width = hidden_states.shape[-2:]
|
| 470 |
+
|
| 471 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 472 |
+
|
| 473 |
+
temb = self.time_extra_emb(
|
| 474 |
+
timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype
|
| 475 |
+
) # [B, D]
|
| 476 |
+
|
| 477 |
+
# text projection
|
| 478 |
+
batch_size, sequence_length, _ = encoder_hidden_states_t5.shape
|
| 479 |
+
encoder_hidden_states_t5 = self.text_embedder(
|
| 480 |
+
encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1])
|
| 481 |
+
)
|
| 482 |
+
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1)
|
| 483 |
+
|
| 484 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1)
|
| 485 |
+
text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1)
|
| 486 |
+
text_embedding_mask = text_embedding_mask.unsqueeze(2).bool()
|
| 487 |
+
|
| 488 |
+
encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding)
|
| 489 |
+
|
| 490 |
+
skips = []
|
| 491 |
+
for layer, block in enumerate(self.blocks):
|
| 492 |
+
if layer > self.config.num_layers // 2:
|
| 493 |
+
if controlnet_block_samples is not None:
|
| 494 |
+
skip = skips.pop() + controlnet_block_samples.pop()
|
| 495 |
+
else:
|
| 496 |
+
skip = skips.pop()
|
| 497 |
+
hidden_states = block(
|
| 498 |
+
hidden_states,
|
| 499 |
+
temb=temb,
|
| 500 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 501 |
+
image_rotary_emb=image_rotary_emb,
|
| 502 |
+
skip=skip,
|
| 503 |
+
) # (N, L, D)
|
| 504 |
+
else:
|
| 505 |
+
hidden_states = block(
|
| 506 |
+
hidden_states,
|
| 507 |
+
temb=temb,
|
| 508 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 509 |
+
image_rotary_emb=image_rotary_emb,
|
| 510 |
+
) # (N, L, D)
|
| 511 |
+
|
| 512 |
+
if layer < (self.config.num_layers // 2 - 1):
|
| 513 |
+
skips.append(hidden_states)
|
| 514 |
+
|
| 515 |
+
if controlnet_block_samples is not None and len(controlnet_block_samples) != 0:
|
| 516 |
+
raise ValueError("The number of controls is not equal to the number of skip connections.")
|
| 517 |
+
|
| 518 |
+
# final layer
|
| 519 |
+
hidden_states = self.norm_out(hidden_states, temb.to(torch.float32))
|
| 520 |
+
hidden_states = self.proj_out(hidden_states)
|
| 521 |
+
# (N, L, patch_size ** 2 * out_channels)
|
| 522 |
+
|
| 523 |
+
# unpatchify: (N, out_channels, H, W)
|
| 524 |
+
patch_size = self.pos_embed.patch_size
|
| 525 |
+
height = height // patch_size
|
| 526 |
+
width = width // patch_size
|
| 527 |
+
|
| 528 |
+
hidden_states = hidden_states.reshape(
|
| 529 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
| 530 |
+
)
|
| 531 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 532 |
+
output = hidden_states.reshape(
|
| 533 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
| 534 |
+
)
|
| 535 |
+
if not return_dict:
|
| 536 |
+
return (output,)
|
| 537 |
+
return Transformer2DModelOutput(sample=output)
|
| 538 |
+
|
| 539 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
| 540 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
| 541 |
+
"""
|
| 542 |
+
Sets the attention processor to use [feed forward
|
| 543 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
| 544 |
+
|
| 545 |
+
Parameters:
|
| 546 |
+
chunk_size (`int`, *optional*):
|
| 547 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
| 548 |
+
over each tensor of dim=`dim`.
|
| 549 |
+
dim (`int`, *optional*, defaults to `0`):
|
| 550 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
| 551 |
+
or dim=1 (sequence length).
|
| 552 |
+
"""
|
| 553 |
+
if dim not in [0, 1]:
|
| 554 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
| 555 |
+
|
| 556 |
+
# By default chunk size is 1
|
| 557 |
+
chunk_size = chunk_size or 1
|
| 558 |
+
|
| 559 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 560 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 561 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 562 |
+
|
| 563 |
+
for child in module.children():
|
| 564 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 565 |
+
|
| 566 |
+
for module in self.children():
|
| 567 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
| 568 |
+
|
| 569 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
| 570 |
+
def disable_forward_chunking(self):
|
| 571 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 572 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 573 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 574 |
+
|
| 575 |
+
for child in module.children():
|
| 576 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 577 |
+
|
| 578 |
+
for module in self.children():
|
| 579 |
+
fn_recursive_feed_forward(module, None, 0)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/latte_transformer_3d.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 the Latte Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ..attention import BasicTransformerBlock
|
| 22 |
+
from ..cache_utils import CacheMixin
|
| 23 |
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection, get_1d_sincos_pos_embed_from_grid
|
| 24 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 25 |
+
from ..modeling_utils import ModelMixin
|
| 26 |
+
from ..normalization import AdaLayerNormSingle
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class LatteTransformer3DModel(ModelMixin, ConfigMixin, CacheMixin):
|
| 30 |
+
_supports_gradient_checkpointing = True
|
| 31 |
+
|
| 32 |
+
"""
|
| 33 |
+
A 3D Transformer model for video-like data, paper: https://huggingface.co/papers/2401.03048, official code:
|
| 34 |
+
https://github.com/Vchitect/Latte
|
| 35 |
+
|
| 36 |
+
Parameters:
|
| 37 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 38 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 39 |
+
in_channels (`int`, *optional*):
|
| 40 |
+
The number of channels in the input.
|
| 41 |
+
out_channels (`int`, *optional*):
|
| 42 |
+
The number of channels in the output.
|
| 43 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 44 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 45 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 46 |
+
attention_bias (`bool`, *optional*):
|
| 47 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
| 48 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
| 49 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
| 50 |
+
patch_size (`int`, *optional*):
|
| 51 |
+
The size of the patches to use in the patch embedding layer.
|
| 52 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
| 53 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
| 54 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
| 55 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
| 56 |
+
added to the hidden states. During inference, you can denoise for up to but not more steps than
|
| 57 |
+
`num_embeds_ada_norm`.
|
| 58 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
| 59 |
+
The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`.
|
| 60 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
| 61 |
+
Whether or not to use elementwise affine in normalization layers.
|
| 62 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers.
|
| 63 |
+
caption_channels (`int`, *optional*):
|
| 64 |
+
The number of channels in the caption embeddings.
|
| 65 |
+
video_length (`int`, *optional*):
|
| 66 |
+
The number of frames in the video-like data.
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 70 |
+
|
| 71 |
+
@register_to_config
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
num_attention_heads: int = 16,
|
| 75 |
+
attention_head_dim: int = 88,
|
| 76 |
+
in_channels: Optional[int] = None,
|
| 77 |
+
out_channels: Optional[int] = None,
|
| 78 |
+
num_layers: int = 1,
|
| 79 |
+
dropout: float = 0.0,
|
| 80 |
+
cross_attention_dim: Optional[int] = None,
|
| 81 |
+
attention_bias: bool = False,
|
| 82 |
+
sample_size: int = 64,
|
| 83 |
+
patch_size: Optional[int] = None,
|
| 84 |
+
activation_fn: str = "geglu",
|
| 85 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 86 |
+
norm_type: str = "layer_norm",
|
| 87 |
+
norm_elementwise_affine: bool = True,
|
| 88 |
+
norm_eps: float = 1e-5,
|
| 89 |
+
caption_channels: int = None,
|
| 90 |
+
video_length: int = 16,
|
| 91 |
+
):
|
| 92 |
+
super().__init__()
|
| 93 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 94 |
+
|
| 95 |
+
# 1. Define input layers
|
| 96 |
+
self.height = sample_size
|
| 97 |
+
self.width = sample_size
|
| 98 |
+
|
| 99 |
+
interpolation_scale = self.config.sample_size // 64
|
| 100 |
+
interpolation_scale = max(interpolation_scale, 1)
|
| 101 |
+
self.pos_embed = PatchEmbed(
|
| 102 |
+
height=sample_size,
|
| 103 |
+
width=sample_size,
|
| 104 |
+
patch_size=patch_size,
|
| 105 |
+
in_channels=in_channels,
|
| 106 |
+
embed_dim=inner_dim,
|
| 107 |
+
interpolation_scale=interpolation_scale,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# 2. Define spatial transformers blocks
|
| 111 |
+
self.transformer_blocks = nn.ModuleList(
|
| 112 |
+
[
|
| 113 |
+
BasicTransformerBlock(
|
| 114 |
+
inner_dim,
|
| 115 |
+
num_attention_heads,
|
| 116 |
+
attention_head_dim,
|
| 117 |
+
dropout=dropout,
|
| 118 |
+
cross_attention_dim=cross_attention_dim,
|
| 119 |
+
activation_fn=activation_fn,
|
| 120 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 121 |
+
attention_bias=attention_bias,
|
| 122 |
+
norm_type=norm_type,
|
| 123 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 124 |
+
norm_eps=norm_eps,
|
| 125 |
+
)
|
| 126 |
+
for d in range(num_layers)
|
| 127 |
+
]
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# 3. Define temporal transformers blocks
|
| 131 |
+
self.temporal_transformer_blocks = nn.ModuleList(
|
| 132 |
+
[
|
| 133 |
+
BasicTransformerBlock(
|
| 134 |
+
inner_dim,
|
| 135 |
+
num_attention_heads,
|
| 136 |
+
attention_head_dim,
|
| 137 |
+
dropout=dropout,
|
| 138 |
+
cross_attention_dim=None,
|
| 139 |
+
activation_fn=activation_fn,
|
| 140 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
| 141 |
+
attention_bias=attention_bias,
|
| 142 |
+
norm_type=norm_type,
|
| 143 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 144 |
+
norm_eps=norm_eps,
|
| 145 |
+
)
|
| 146 |
+
for d in range(num_layers)
|
| 147 |
+
]
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# 4. Define output layers
|
| 151 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 152 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
| 153 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
| 154 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
| 155 |
+
|
| 156 |
+
# 5. Latte other blocks.
|
| 157 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False)
|
| 158 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
| 159 |
+
|
| 160 |
+
# define temporal positional embedding
|
| 161 |
+
temp_pos_embed = get_1d_sincos_pos_embed_from_grid(
|
| 162 |
+
inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt"
|
| 163 |
+
) # 1152 hidden size
|
| 164 |
+
self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False)
|
| 165 |
+
|
| 166 |
+
self.gradient_checkpointing = False
|
| 167 |
+
|
| 168 |
+
def forward(
|
| 169 |
+
self,
|
| 170 |
+
hidden_states: torch.Tensor,
|
| 171 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 172 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 173 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 174 |
+
enable_temporal_attentions: bool = True,
|
| 175 |
+
return_dict: bool = True,
|
| 176 |
+
):
|
| 177 |
+
"""
|
| 178 |
+
The [`LatteTransformer3DModel`] forward method.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
hidden_states shape `(batch size, channel, num_frame, height, width)`:
|
| 182 |
+
Input `hidden_states`.
|
| 183 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 184 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 185 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 186 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 187 |
+
self-attention.
|
| 188 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 189 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 190 |
+
|
| 191 |
+
* Mask `(batcheight, sequence_length)` True = keep, False = discard.
|
| 192 |
+
* Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 193 |
+
|
| 194 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 195 |
+
above. This bias will be added to the cross-attention scores.
|
| 196 |
+
enable_temporal_attentions:
|
| 197 |
+
(`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions.
|
| 198 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 199 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 200 |
+
tuple.
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 204 |
+
`tuple` where the first element is the sample tensor.
|
| 205 |
+
"""
|
| 206 |
+
|
| 207 |
+
# Reshape hidden states
|
| 208 |
+
batch_size, channels, num_frame, height, width = hidden_states.shape
|
| 209 |
+
# batch_size channels num_frame height width -> (batch_size * num_frame) channels height width
|
| 210 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width)
|
| 211 |
+
|
| 212 |
+
# Input
|
| 213 |
+
height, width = (
|
| 214 |
+
hidden_states.shape[-2] // self.config.patch_size,
|
| 215 |
+
hidden_states.shape[-1] // self.config.patch_size,
|
| 216 |
+
)
|
| 217 |
+
num_patches = height * width
|
| 218 |
+
|
| 219 |
+
hidden_states = self.pos_embed(hidden_states) # already add positional embeddings
|
| 220 |
+
|
| 221 |
+
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
| 222 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 223 |
+
timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Prepare text embeddings for spatial block
|
| 227 |
+
# batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size
|
| 228 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152
|
| 229 |
+
encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(
|
| 230 |
+
num_frame, dim=0, output_size=encoder_hidden_states.shape[0] * num_frame
|
| 231 |
+
).view(-1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1])
|
| 232 |
+
|
| 233 |
+
# Prepare timesteps for spatial and temporal block
|
| 234 |
+
timestep_spatial = timestep.repeat_interleave(
|
| 235 |
+
num_frame, dim=0, output_size=timestep.shape[0] * num_frame
|
| 236 |
+
).view(-1, timestep.shape[-1])
|
| 237 |
+
timestep_temp = timestep.repeat_interleave(
|
| 238 |
+
num_patches, dim=0, output_size=timestep.shape[0] * num_patches
|
| 239 |
+
).view(-1, timestep.shape[-1])
|
| 240 |
+
|
| 241 |
+
# Spatial and temporal transformer blocks
|
| 242 |
+
for i, (spatial_block, temp_block) in enumerate(
|
| 243 |
+
zip(self.transformer_blocks, self.temporal_transformer_blocks)
|
| 244 |
+
):
|
| 245 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 246 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 247 |
+
spatial_block,
|
| 248 |
+
hidden_states,
|
| 249 |
+
None, # attention_mask
|
| 250 |
+
encoder_hidden_states_spatial,
|
| 251 |
+
encoder_attention_mask,
|
| 252 |
+
timestep_spatial,
|
| 253 |
+
None, # cross_attention_kwargs
|
| 254 |
+
None, # class_labels
|
| 255 |
+
)
|
| 256 |
+
else:
|
| 257 |
+
hidden_states = spatial_block(
|
| 258 |
+
hidden_states,
|
| 259 |
+
None, # attention_mask
|
| 260 |
+
encoder_hidden_states_spatial,
|
| 261 |
+
encoder_attention_mask,
|
| 262 |
+
timestep_spatial,
|
| 263 |
+
None, # cross_attention_kwargs
|
| 264 |
+
None, # class_labels
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
if enable_temporal_attentions:
|
| 268 |
+
# (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size
|
| 269 |
+
hidden_states = hidden_states.reshape(
|
| 270 |
+
batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]
|
| 271 |
+
).permute(0, 2, 1, 3)
|
| 272 |
+
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1])
|
| 273 |
+
|
| 274 |
+
if i == 0 and num_frame > 1:
|
| 275 |
+
hidden_states = hidden_states + self.temp_pos_embed.to(hidden_states.dtype)
|
| 276 |
+
|
| 277 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 278 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 279 |
+
temp_block,
|
| 280 |
+
hidden_states,
|
| 281 |
+
None, # attention_mask
|
| 282 |
+
None, # encoder_hidden_states
|
| 283 |
+
None, # encoder_attention_mask
|
| 284 |
+
timestep_temp,
|
| 285 |
+
None, # cross_attention_kwargs
|
| 286 |
+
None, # class_labels
|
| 287 |
+
)
|
| 288 |
+
else:
|
| 289 |
+
hidden_states = temp_block(
|
| 290 |
+
hidden_states,
|
| 291 |
+
None, # attention_mask
|
| 292 |
+
None, # encoder_hidden_states
|
| 293 |
+
None, # encoder_attention_mask
|
| 294 |
+
timestep_temp,
|
| 295 |
+
None, # cross_attention_kwargs
|
| 296 |
+
None, # class_labels
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size
|
| 300 |
+
hidden_states = hidden_states.reshape(
|
| 301 |
+
batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1]
|
| 302 |
+
).permute(0, 2, 1, 3)
|
| 303 |
+
hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1])
|
| 304 |
+
|
| 305 |
+
embedded_timestep = embedded_timestep.repeat_interleave(
|
| 306 |
+
num_frame, dim=0, output_size=embedded_timestep.shape[0] * num_frame
|
| 307 |
+
).view(-1, embedded_timestep.shape[-1])
|
| 308 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
| 309 |
+
hidden_states = self.norm_out(hidden_states)
|
| 310 |
+
# Modulation
|
| 311 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 312 |
+
hidden_states = self.proj_out(hidden_states)
|
| 313 |
+
|
| 314 |
+
# unpatchify
|
| 315 |
+
if self.adaln_single is None:
|
| 316 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
| 317 |
+
hidden_states = hidden_states.reshape(
|
| 318 |
+
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
| 319 |
+
)
|
| 320 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 321 |
+
output = hidden_states.reshape(
|
| 322 |
+
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
| 323 |
+
)
|
| 324 |
+
output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute(
|
| 325 |
+
0, 2, 1, 3, 4
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
if not return_dict:
|
| 329 |
+
return (output,)
|
| 330 |
+
|
| 331 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/lumina_nextdit2d.py
ADDED
|
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Alpha-VLLM Authors and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Any, Dict, Optional
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ...utils import logging
|
| 22 |
+
from ..attention import LuminaFeedForward
|
| 23 |
+
from ..attention_processor import Attention, LuminaAttnProcessor2_0
|
| 24 |
+
from ..embeddings import (
|
| 25 |
+
LuminaCombinedTimestepCaptionEmbedding,
|
| 26 |
+
LuminaPatchEmbed,
|
| 27 |
+
)
|
| 28 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 29 |
+
from ..modeling_utils import ModelMixin
|
| 30 |
+
from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class LuminaNextDiTBlock(nn.Module):
|
| 37 |
+
"""
|
| 38 |
+
A LuminaNextDiTBlock for LuminaNextDiT2DModel.
|
| 39 |
+
|
| 40 |
+
Parameters:
|
| 41 |
+
dim (`int`): Embedding dimension of the input features.
|
| 42 |
+
num_attention_heads (`int`): Number of attention heads.
|
| 43 |
+
num_kv_heads (`int`):
|
| 44 |
+
Number of attention heads in key and value features (if using GQA), or set to None for the same as query.
|
| 45 |
+
multiple_of (`int`): The number of multiple of ffn layer.
|
| 46 |
+
ffn_dim_multiplier (`float`): The multiplier factor of ffn layer dimension.
|
| 47 |
+
norm_eps (`float`): The eps for norm layer.
|
| 48 |
+
qk_norm (`bool`): normalization for query and key.
|
| 49 |
+
cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states.
|
| 50 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to True),
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
def __init__(
|
| 54 |
+
self,
|
| 55 |
+
dim: int,
|
| 56 |
+
num_attention_heads: int,
|
| 57 |
+
num_kv_heads: int,
|
| 58 |
+
multiple_of: int,
|
| 59 |
+
ffn_dim_multiplier: float,
|
| 60 |
+
norm_eps: float,
|
| 61 |
+
qk_norm: bool,
|
| 62 |
+
cross_attention_dim: int,
|
| 63 |
+
norm_elementwise_affine: bool = True,
|
| 64 |
+
) -> None:
|
| 65 |
+
super().__init__()
|
| 66 |
+
self.head_dim = dim // num_attention_heads
|
| 67 |
+
|
| 68 |
+
self.gate = nn.Parameter(torch.zeros([num_attention_heads]))
|
| 69 |
+
|
| 70 |
+
# Self-attention
|
| 71 |
+
self.attn1 = Attention(
|
| 72 |
+
query_dim=dim,
|
| 73 |
+
cross_attention_dim=None,
|
| 74 |
+
dim_head=dim // num_attention_heads,
|
| 75 |
+
qk_norm="layer_norm_across_heads" if qk_norm else None,
|
| 76 |
+
heads=num_attention_heads,
|
| 77 |
+
kv_heads=num_kv_heads,
|
| 78 |
+
eps=1e-5,
|
| 79 |
+
bias=False,
|
| 80 |
+
out_bias=False,
|
| 81 |
+
processor=LuminaAttnProcessor2_0(),
|
| 82 |
+
)
|
| 83 |
+
self.attn1.to_out = nn.Identity()
|
| 84 |
+
|
| 85 |
+
# Cross-attention
|
| 86 |
+
self.attn2 = Attention(
|
| 87 |
+
query_dim=dim,
|
| 88 |
+
cross_attention_dim=cross_attention_dim,
|
| 89 |
+
dim_head=dim // num_attention_heads,
|
| 90 |
+
qk_norm="layer_norm_across_heads" if qk_norm else None,
|
| 91 |
+
heads=num_attention_heads,
|
| 92 |
+
kv_heads=num_kv_heads,
|
| 93 |
+
eps=1e-5,
|
| 94 |
+
bias=False,
|
| 95 |
+
out_bias=False,
|
| 96 |
+
processor=LuminaAttnProcessor2_0(),
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
self.feed_forward = LuminaFeedForward(
|
| 100 |
+
dim=dim,
|
| 101 |
+
inner_dim=int(4 * 2 * dim / 3),
|
| 102 |
+
multiple_of=multiple_of,
|
| 103 |
+
ffn_dim_multiplier=ffn_dim_multiplier,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
self.norm1 = LuminaRMSNormZero(
|
| 107 |
+
embedding_dim=dim,
|
| 108 |
+
norm_eps=norm_eps,
|
| 109 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 110 |
+
)
|
| 111 |
+
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
| 112 |
+
|
| 113 |
+
self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
| 114 |
+
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
| 115 |
+
|
| 116 |
+
self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
|
| 117 |
+
|
| 118 |
+
def forward(
|
| 119 |
+
self,
|
| 120 |
+
hidden_states: torch.Tensor,
|
| 121 |
+
attention_mask: torch.Tensor,
|
| 122 |
+
image_rotary_emb: torch.Tensor,
|
| 123 |
+
encoder_hidden_states: torch.Tensor,
|
| 124 |
+
encoder_mask: torch.Tensor,
|
| 125 |
+
temb: torch.Tensor,
|
| 126 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 127 |
+
):
|
| 128 |
+
"""
|
| 129 |
+
Perform a forward pass through the LuminaNextDiTBlock.
|
| 130 |
+
|
| 131 |
+
Parameters:
|
| 132 |
+
hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock.
|
| 133 |
+
attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask.
|
| 134 |
+
image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies.
|
| 135 |
+
encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder.
|
| 136 |
+
encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask.
|
| 137 |
+
temb (`torch.Tensor`): Timestep embedding with text prompt embedding.
|
| 138 |
+
cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention.
|
| 139 |
+
"""
|
| 140 |
+
residual = hidden_states
|
| 141 |
+
|
| 142 |
+
# Self-attention
|
| 143 |
+
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
| 144 |
+
self_attn_output = self.attn1(
|
| 145 |
+
hidden_states=norm_hidden_states,
|
| 146 |
+
encoder_hidden_states=norm_hidden_states,
|
| 147 |
+
attention_mask=attention_mask,
|
| 148 |
+
query_rotary_emb=image_rotary_emb,
|
| 149 |
+
key_rotary_emb=image_rotary_emb,
|
| 150 |
+
**cross_attention_kwargs,
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Cross-attention
|
| 154 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states)
|
| 155 |
+
cross_attn_output = self.attn2(
|
| 156 |
+
hidden_states=norm_hidden_states,
|
| 157 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 158 |
+
attention_mask=encoder_mask,
|
| 159 |
+
query_rotary_emb=image_rotary_emb,
|
| 160 |
+
key_rotary_emb=None,
|
| 161 |
+
**cross_attention_kwargs,
|
| 162 |
+
)
|
| 163 |
+
cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1)
|
| 164 |
+
mixed_attn_output = self_attn_output + cross_attn_output
|
| 165 |
+
mixed_attn_output = mixed_attn_output.flatten(-2)
|
| 166 |
+
# linear proj
|
| 167 |
+
hidden_states = self.attn2.to_out[0](mixed_attn_output)
|
| 168 |
+
|
| 169 |
+
hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states)
|
| 170 |
+
|
| 171 |
+
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
|
| 172 |
+
|
| 173 |
+
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
|
| 174 |
+
|
| 175 |
+
return hidden_states
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin):
|
| 179 |
+
"""
|
| 180 |
+
LuminaNextDiT: Diffusion model with a Transformer backbone.
|
| 181 |
+
|
| 182 |
+
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
|
| 183 |
+
|
| 184 |
+
Parameters:
|
| 185 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
| 186 |
+
it is used to learn a number of position embeddings.
|
| 187 |
+
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2):
|
| 188 |
+
The size of each patch in the image. This parameter defines the resolution of patches fed into the model.
|
| 189 |
+
in_channels (`int`, *optional*, defaults to 4):
|
| 190 |
+
The number of input channels for the model. Typically, this matches the number of channels in the input
|
| 191 |
+
images.
|
| 192 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 193 |
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
| 194 |
+
hidden representations.
|
| 195 |
+
num_layers (`int`, *optional*, default to 32):
|
| 196 |
+
The number of layers in the model. This defines the depth of the neural network.
|
| 197 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 198 |
+
The number of attention heads in each attention layer. This parameter specifies how many separate attention
|
| 199 |
+
mechanisms are used.
|
| 200 |
+
num_kv_heads (`int`, *optional*, defaults to 8):
|
| 201 |
+
The number of key-value heads in the attention mechanism, if different from the number of attention heads.
|
| 202 |
+
If None, it defaults to num_attention_heads.
|
| 203 |
+
multiple_of (`int`, *optional*, defaults to 256):
|
| 204 |
+
A factor that the hidden size should be a multiple of. This can help optimize certain hardware
|
| 205 |
+
configurations.
|
| 206 |
+
ffn_dim_multiplier (`float`, *optional*):
|
| 207 |
+
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on
|
| 208 |
+
the model configuration.
|
| 209 |
+
norm_eps (`float`, *optional*, defaults to 1e-5):
|
| 210 |
+
A small value added to the denominator for numerical stability in normalization layers.
|
| 211 |
+
learn_sigma (`bool`, *optional*, defaults to True):
|
| 212 |
+
Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in
|
| 213 |
+
predictions.
|
| 214 |
+
qk_norm (`bool`, *optional*, defaults to True):
|
| 215 |
+
Indicates if the queries and keys in the attention mechanism should be normalized.
|
| 216 |
+
cross_attention_dim (`int`, *optional*, defaults to 2048):
|
| 217 |
+
The dimensionality of the text embeddings. This parameter defines the size of the text representations used
|
| 218 |
+
in the model.
|
| 219 |
+
scaling_factor (`float`, *optional*, defaults to 1.0):
|
| 220 |
+
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the
|
| 221 |
+
overall scale of the model's operations.
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
_skip_layerwise_casting_patterns = ["patch_embedder", "norm", "ffn_norm"]
|
| 225 |
+
|
| 226 |
+
@register_to_config
|
| 227 |
+
def __init__(
|
| 228 |
+
self,
|
| 229 |
+
sample_size: int = 128,
|
| 230 |
+
patch_size: Optional[int] = 2,
|
| 231 |
+
in_channels: Optional[int] = 4,
|
| 232 |
+
hidden_size: Optional[int] = 2304,
|
| 233 |
+
num_layers: Optional[int] = 32,
|
| 234 |
+
num_attention_heads: Optional[int] = 32,
|
| 235 |
+
num_kv_heads: Optional[int] = None,
|
| 236 |
+
multiple_of: Optional[int] = 256,
|
| 237 |
+
ffn_dim_multiplier: Optional[float] = None,
|
| 238 |
+
norm_eps: Optional[float] = 1e-5,
|
| 239 |
+
learn_sigma: Optional[bool] = True,
|
| 240 |
+
qk_norm: Optional[bool] = True,
|
| 241 |
+
cross_attention_dim: Optional[int] = 2048,
|
| 242 |
+
scaling_factor: Optional[float] = 1.0,
|
| 243 |
+
) -> None:
|
| 244 |
+
super().__init__()
|
| 245 |
+
self.sample_size = sample_size
|
| 246 |
+
self.patch_size = patch_size
|
| 247 |
+
self.in_channels = in_channels
|
| 248 |
+
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
| 249 |
+
self.hidden_size = hidden_size
|
| 250 |
+
self.num_attention_heads = num_attention_heads
|
| 251 |
+
self.head_dim = hidden_size // num_attention_heads
|
| 252 |
+
self.scaling_factor = scaling_factor
|
| 253 |
+
|
| 254 |
+
self.patch_embedder = LuminaPatchEmbed(
|
| 255 |
+
patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
self.pad_token = nn.Parameter(torch.empty(hidden_size))
|
| 259 |
+
|
| 260 |
+
self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding(
|
| 261 |
+
hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
self.layers = nn.ModuleList(
|
| 265 |
+
[
|
| 266 |
+
LuminaNextDiTBlock(
|
| 267 |
+
hidden_size,
|
| 268 |
+
num_attention_heads,
|
| 269 |
+
num_kv_heads,
|
| 270 |
+
multiple_of,
|
| 271 |
+
ffn_dim_multiplier,
|
| 272 |
+
norm_eps,
|
| 273 |
+
qk_norm,
|
| 274 |
+
cross_attention_dim,
|
| 275 |
+
)
|
| 276 |
+
for _ in range(num_layers)
|
| 277 |
+
]
|
| 278 |
+
)
|
| 279 |
+
self.norm_out = LuminaLayerNormContinuous(
|
| 280 |
+
embedding_dim=hidden_size,
|
| 281 |
+
conditioning_embedding_dim=min(hidden_size, 1024),
|
| 282 |
+
elementwise_affine=False,
|
| 283 |
+
eps=1e-6,
|
| 284 |
+
bias=True,
|
| 285 |
+
out_dim=patch_size * patch_size * self.out_channels,
|
| 286 |
+
)
|
| 287 |
+
# self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels)
|
| 288 |
+
|
| 289 |
+
assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
|
| 290 |
+
|
| 291 |
+
def forward(
|
| 292 |
+
self,
|
| 293 |
+
hidden_states: torch.Tensor,
|
| 294 |
+
timestep: torch.Tensor,
|
| 295 |
+
encoder_hidden_states: torch.Tensor,
|
| 296 |
+
encoder_mask: torch.Tensor,
|
| 297 |
+
image_rotary_emb: torch.Tensor,
|
| 298 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 299 |
+
return_dict=True,
|
| 300 |
+
) -> torch.Tensor:
|
| 301 |
+
"""
|
| 302 |
+
Forward pass of LuminaNextDiT.
|
| 303 |
+
|
| 304 |
+
Parameters:
|
| 305 |
+
hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W).
|
| 306 |
+
timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,).
|
| 307 |
+
encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D).
|
| 308 |
+
encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L).
|
| 309 |
+
"""
|
| 310 |
+
hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb)
|
| 311 |
+
image_rotary_emb = image_rotary_emb.to(hidden_states.device)
|
| 312 |
+
|
| 313 |
+
temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask)
|
| 314 |
+
|
| 315 |
+
encoder_mask = encoder_mask.bool()
|
| 316 |
+
for layer in self.layers:
|
| 317 |
+
hidden_states = layer(
|
| 318 |
+
hidden_states,
|
| 319 |
+
mask,
|
| 320 |
+
image_rotary_emb,
|
| 321 |
+
encoder_hidden_states,
|
| 322 |
+
encoder_mask,
|
| 323 |
+
temb=temb,
|
| 324 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 328 |
+
|
| 329 |
+
# unpatchify
|
| 330 |
+
height_tokens = width_tokens = self.patch_size
|
| 331 |
+
height, width = img_size[0]
|
| 332 |
+
batch_size = hidden_states.size(0)
|
| 333 |
+
sequence_length = (height // height_tokens) * (width // width_tokens)
|
| 334 |
+
hidden_states = hidden_states[:, :sequence_length].view(
|
| 335 |
+
batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels
|
| 336 |
+
)
|
| 337 |
+
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3)
|
| 338 |
+
|
| 339 |
+
if not return_dict:
|
| 340 |
+
return (output,)
|
| 341 |
+
|
| 342 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/pixart_transformer_2d.py
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, Optional, Union
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
from torch import nn
|
| 18 |
+
|
| 19 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 20 |
+
from ...utils import logging
|
| 21 |
+
from ..attention import BasicTransformerBlock
|
| 22 |
+
from ..attention_processor import Attention, AttentionProcessor, AttnProcessor, FusedAttnProcessor2_0
|
| 23 |
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
| 24 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 25 |
+
from ..modeling_utils import ModelMixin
|
| 26 |
+
from ..normalization import AdaLayerNormSingle
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class PixArtTransformer2DModel(ModelMixin, ConfigMixin):
|
| 33 |
+
r"""
|
| 34 |
+
A 2D Transformer model as introduced in PixArt family of models (https://huggingface.co/papers/2310.00426,
|
| 35 |
+
https://huggingface.co/papers/2403.04692).
|
| 36 |
+
|
| 37 |
+
Parameters:
|
| 38 |
+
num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention.
|
| 39 |
+
attention_head_dim (int, optional, defaults to 72): The number of channels in each head.
|
| 40 |
+
in_channels (int, defaults to 4): The number of channels in the input.
|
| 41 |
+
out_channels (int, optional):
|
| 42 |
+
The number of channels in the output. Specify this parameter if the output channel number differs from the
|
| 43 |
+
input.
|
| 44 |
+
num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use.
|
| 45 |
+
dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks.
|
| 46 |
+
norm_num_groups (int, optional, defaults to 32):
|
| 47 |
+
Number of groups for group normalization within Transformer blocks.
|
| 48 |
+
cross_attention_dim (int, optional):
|
| 49 |
+
The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension.
|
| 50 |
+
attention_bias (bool, optional, defaults to True):
|
| 51 |
+
Configure if the Transformer blocks' attention should contain a bias parameter.
|
| 52 |
+
sample_size (int, defaults to 128):
|
| 53 |
+
The width of the latent images. This parameter is fixed during training.
|
| 54 |
+
patch_size (int, defaults to 2):
|
| 55 |
+
Size of the patches the model processes, relevant for architectures working on non-sequential data.
|
| 56 |
+
activation_fn (str, optional, defaults to "gelu-approximate"):
|
| 57 |
+
Activation function to use in feed-forward networks within Transformer blocks.
|
| 58 |
+
num_embeds_ada_norm (int, optional, defaults to 1000):
|
| 59 |
+
Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during
|
| 60 |
+
inference.
|
| 61 |
+
upcast_attention (bool, optional, defaults to False):
|
| 62 |
+
If true, upcasts the attention mechanism dimensions for potentially improved performance.
|
| 63 |
+
norm_type (str, optional, defaults to "ada_norm_zero"):
|
| 64 |
+
Specifies the type of normalization used, can be 'ada_norm_zero'.
|
| 65 |
+
norm_elementwise_affine (bool, optional, defaults to False):
|
| 66 |
+
If true, enables element-wise affine parameters in the normalization layers.
|
| 67 |
+
norm_eps (float, optional, defaults to 1e-6):
|
| 68 |
+
A small constant added to the denominator in normalization layers to prevent division by zero.
|
| 69 |
+
interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings.
|
| 70 |
+
use_additional_conditions (bool, optional): If we're using additional conditions as inputs.
|
| 71 |
+
attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used.
|
| 72 |
+
caption_channels (int, optional, defaults to None):
|
| 73 |
+
Number of channels to use for projecting the caption embeddings.
|
| 74 |
+
use_linear_projection (bool, optional, defaults to False):
|
| 75 |
+
Deprecated argument. Will be removed in a future version.
|
| 76 |
+
num_vector_embeds (bool, optional, defaults to False):
|
| 77 |
+
Deprecated argument. Will be removed in a future version.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
_supports_gradient_checkpointing = True
|
| 81 |
+
_no_split_modules = ["BasicTransformerBlock", "PatchEmbed"]
|
| 82 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm", "adaln_single"]
|
| 83 |
+
|
| 84 |
+
@register_to_config
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
num_attention_heads: int = 16,
|
| 88 |
+
attention_head_dim: int = 72,
|
| 89 |
+
in_channels: int = 4,
|
| 90 |
+
out_channels: Optional[int] = 8,
|
| 91 |
+
num_layers: int = 28,
|
| 92 |
+
dropout: float = 0.0,
|
| 93 |
+
norm_num_groups: int = 32,
|
| 94 |
+
cross_attention_dim: Optional[int] = 1152,
|
| 95 |
+
attention_bias: bool = True,
|
| 96 |
+
sample_size: int = 128,
|
| 97 |
+
patch_size: int = 2,
|
| 98 |
+
activation_fn: str = "gelu-approximate",
|
| 99 |
+
num_embeds_ada_norm: Optional[int] = 1000,
|
| 100 |
+
upcast_attention: bool = False,
|
| 101 |
+
norm_type: str = "ada_norm_single",
|
| 102 |
+
norm_elementwise_affine: bool = False,
|
| 103 |
+
norm_eps: float = 1e-6,
|
| 104 |
+
interpolation_scale: Optional[int] = None,
|
| 105 |
+
use_additional_conditions: Optional[bool] = None,
|
| 106 |
+
caption_channels: Optional[int] = None,
|
| 107 |
+
attention_type: Optional[str] = "default",
|
| 108 |
+
):
|
| 109 |
+
super().__init__()
|
| 110 |
+
|
| 111 |
+
# Validate inputs.
|
| 112 |
+
if norm_type != "ada_norm_single":
|
| 113 |
+
raise NotImplementedError(
|
| 114 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
| 115 |
+
)
|
| 116 |
+
elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None:
|
| 117 |
+
raise ValueError(
|
| 118 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Set some common variables used across the board.
|
| 122 |
+
self.attention_head_dim = attention_head_dim
|
| 123 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 124 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 125 |
+
if use_additional_conditions is None:
|
| 126 |
+
if sample_size == 128:
|
| 127 |
+
use_additional_conditions = True
|
| 128 |
+
else:
|
| 129 |
+
use_additional_conditions = False
|
| 130 |
+
self.use_additional_conditions = use_additional_conditions
|
| 131 |
+
|
| 132 |
+
self.gradient_checkpointing = False
|
| 133 |
+
|
| 134 |
+
# 2. Initialize the position embedding and transformer blocks.
|
| 135 |
+
self.height = self.config.sample_size
|
| 136 |
+
self.width = self.config.sample_size
|
| 137 |
+
|
| 138 |
+
interpolation_scale = (
|
| 139 |
+
self.config.interpolation_scale
|
| 140 |
+
if self.config.interpolation_scale is not None
|
| 141 |
+
else max(self.config.sample_size // 64, 1)
|
| 142 |
+
)
|
| 143 |
+
self.pos_embed = PatchEmbed(
|
| 144 |
+
height=self.config.sample_size,
|
| 145 |
+
width=self.config.sample_size,
|
| 146 |
+
patch_size=self.config.patch_size,
|
| 147 |
+
in_channels=self.config.in_channels,
|
| 148 |
+
embed_dim=self.inner_dim,
|
| 149 |
+
interpolation_scale=interpolation_scale,
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
self.transformer_blocks = nn.ModuleList(
|
| 153 |
+
[
|
| 154 |
+
BasicTransformerBlock(
|
| 155 |
+
self.inner_dim,
|
| 156 |
+
self.config.num_attention_heads,
|
| 157 |
+
self.config.attention_head_dim,
|
| 158 |
+
dropout=self.config.dropout,
|
| 159 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 160 |
+
activation_fn=self.config.activation_fn,
|
| 161 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 162 |
+
attention_bias=self.config.attention_bias,
|
| 163 |
+
upcast_attention=self.config.upcast_attention,
|
| 164 |
+
norm_type=norm_type,
|
| 165 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 166 |
+
norm_eps=self.config.norm_eps,
|
| 167 |
+
attention_type=self.config.attention_type,
|
| 168 |
+
)
|
| 169 |
+
for _ in range(self.config.num_layers)
|
| 170 |
+
]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# 3. Output blocks.
|
| 174 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 175 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
| 176 |
+
self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels)
|
| 177 |
+
|
| 178 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 179 |
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 180 |
+
)
|
| 181 |
+
self.caption_projection = None
|
| 182 |
+
if self.config.caption_channels is not None:
|
| 183 |
+
self.caption_projection = PixArtAlphaTextProjection(
|
| 184 |
+
in_features=self.config.caption_channels, hidden_size=self.inner_dim
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
@property
|
| 188 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 189 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 190 |
+
r"""
|
| 191 |
+
Returns:
|
| 192 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 193 |
+
indexed by its weight name.
|
| 194 |
+
"""
|
| 195 |
+
# set recursively
|
| 196 |
+
processors = {}
|
| 197 |
+
|
| 198 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 199 |
+
if hasattr(module, "get_processor"):
|
| 200 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 201 |
+
|
| 202 |
+
for sub_name, child in module.named_children():
|
| 203 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 204 |
+
|
| 205 |
+
return processors
|
| 206 |
+
|
| 207 |
+
for name, module in self.named_children():
|
| 208 |
+
fn_recursive_add_processors(name, module, processors)
|
| 209 |
+
|
| 210 |
+
return processors
|
| 211 |
+
|
| 212 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 213 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 214 |
+
r"""
|
| 215 |
+
Sets the attention processor to use to compute attention.
|
| 216 |
+
|
| 217 |
+
Parameters:
|
| 218 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 219 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 220 |
+
for **all** `Attention` layers.
|
| 221 |
+
|
| 222 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 223 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 224 |
+
|
| 225 |
+
"""
|
| 226 |
+
count = len(self.attn_processors.keys())
|
| 227 |
+
|
| 228 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 229 |
+
raise ValueError(
|
| 230 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 231 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 235 |
+
if hasattr(module, "set_processor"):
|
| 236 |
+
if not isinstance(processor, dict):
|
| 237 |
+
module.set_processor(processor)
|
| 238 |
+
else:
|
| 239 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 240 |
+
|
| 241 |
+
for sub_name, child in module.named_children():
|
| 242 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 243 |
+
|
| 244 |
+
for name, module in self.named_children():
|
| 245 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 246 |
+
|
| 247 |
+
def set_default_attn_processor(self):
|
| 248 |
+
"""
|
| 249 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 250 |
+
|
| 251 |
+
Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model.
|
| 252 |
+
"""
|
| 253 |
+
self.set_attn_processor(AttnProcessor())
|
| 254 |
+
|
| 255 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 256 |
+
def fuse_qkv_projections(self):
|
| 257 |
+
"""
|
| 258 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 259 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 260 |
+
|
| 261 |
+
<Tip warning={true}>
|
| 262 |
+
|
| 263 |
+
This API is 🧪 experimental.
|
| 264 |
+
|
| 265 |
+
</Tip>
|
| 266 |
+
"""
|
| 267 |
+
self.original_attn_processors = None
|
| 268 |
+
|
| 269 |
+
for _, attn_processor in self.attn_processors.items():
|
| 270 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 271 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 272 |
+
|
| 273 |
+
self.original_attn_processors = self.attn_processors
|
| 274 |
+
|
| 275 |
+
for module in self.modules():
|
| 276 |
+
if isinstance(module, Attention):
|
| 277 |
+
module.fuse_projections(fuse=True)
|
| 278 |
+
|
| 279 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
| 280 |
+
|
| 281 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 282 |
+
def unfuse_qkv_projections(self):
|
| 283 |
+
"""Disables the fused QKV projection if enabled.
|
| 284 |
+
|
| 285 |
+
<Tip warning={true}>
|
| 286 |
+
|
| 287 |
+
This API is 🧪 experimental.
|
| 288 |
+
|
| 289 |
+
</Tip>
|
| 290 |
+
|
| 291 |
+
"""
|
| 292 |
+
if self.original_attn_processors is not None:
|
| 293 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 294 |
+
|
| 295 |
+
def forward(
|
| 296 |
+
self,
|
| 297 |
+
hidden_states: torch.Tensor,
|
| 298 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 299 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 300 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 301 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 302 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 303 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 304 |
+
return_dict: bool = True,
|
| 305 |
+
):
|
| 306 |
+
"""
|
| 307 |
+
The [`PixArtTransformer2DModel`] forward method.
|
| 308 |
+
|
| 309 |
+
Args:
|
| 310 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 311 |
+
Input `hidden_states`.
|
| 312 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 313 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 314 |
+
self-attention.
|
| 315 |
+
timestep (`torch.LongTensor`, *optional*):
|
| 316 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 317 |
+
added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs.
|
| 318 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 319 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 320 |
+
`self.processor` in
|
| 321 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 322 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
| 323 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 324 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 325 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 326 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 327 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 328 |
+
|
| 329 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 330 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 331 |
+
|
| 332 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 333 |
+
above. This bias will be added to the cross-attention scores.
|
| 334 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 335 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 336 |
+
tuple.
|
| 337 |
+
|
| 338 |
+
Returns:
|
| 339 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 340 |
+
`tuple` where the first element is the sample tensor.
|
| 341 |
+
"""
|
| 342 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
| 343 |
+
raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.")
|
| 344 |
+
|
| 345 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 346 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 347 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 348 |
+
# expects mask of shape:
|
| 349 |
+
# [batch, key_tokens]
|
| 350 |
+
# adds singleton query_tokens dimension:
|
| 351 |
+
# [batch, 1, key_tokens]
|
| 352 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 353 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 354 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 355 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 356 |
+
# assume that mask is expressed as:
|
| 357 |
+
# (1 = keep, 0 = discard)
|
| 358 |
+
# convert mask into a bias that can be added to attention scores:
|
| 359 |
+
# (keep = +0, discard = -10000.0)
|
| 360 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 361 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 362 |
+
|
| 363 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 364 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 365 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 366 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 367 |
+
|
| 368 |
+
# 1. Input
|
| 369 |
+
batch_size = hidden_states.shape[0]
|
| 370 |
+
height, width = (
|
| 371 |
+
hidden_states.shape[-2] // self.config.patch_size,
|
| 372 |
+
hidden_states.shape[-1] // self.config.patch_size,
|
| 373 |
+
)
|
| 374 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 375 |
+
|
| 376 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 377 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
if self.caption_projection is not None:
|
| 381 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 382 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 383 |
+
|
| 384 |
+
# 2. Blocks
|
| 385 |
+
for block in self.transformer_blocks:
|
| 386 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 387 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 388 |
+
block,
|
| 389 |
+
hidden_states,
|
| 390 |
+
attention_mask,
|
| 391 |
+
encoder_hidden_states,
|
| 392 |
+
encoder_attention_mask,
|
| 393 |
+
timestep,
|
| 394 |
+
cross_attention_kwargs,
|
| 395 |
+
None,
|
| 396 |
+
)
|
| 397 |
+
else:
|
| 398 |
+
hidden_states = block(
|
| 399 |
+
hidden_states,
|
| 400 |
+
attention_mask=attention_mask,
|
| 401 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 402 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 403 |
+
timestep=timestep,
|
| 404 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 405 |
+
class_labels=None,
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
# 3. Output
|
| 409 |
+
shift, scale = (
|
| 410 |
+
self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device)
|
| 411 |
+
).chunk(2, dim=1)
|
| 412 |
+
hidden_states = self.norm_out(hidden_states)
|
| 413 |
+
# Modulation
|
| 414 |
+
hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device)
|
| 415 |
+
hidden_states = self.proj_out(hidden_states)
|
| 416 |
+
hidden_states = hidden_states.squeeze(1)
|
| 417 |
+
|
| 418 |
+
# unpatchify
|
| 419 |
+
hidden_states = hidden_states.reshape(
|
| 420 |
+
shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels)
|
| 421 |
+
)
|
| 422 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 423 |
+
output = hidden_states.reshape(
|
| 424 |
+
shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size)
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if not return_dict:
|
| 428 |
+
return (output,)
|
| 429 |
+
|
| 430 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/prior_transformer.py
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import Dict, Optional, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from torch import nn
|
| 7 |
+
|
| 8 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 9 |
+
from ...loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
| 10 |
+
from ...utils import BaseOutput
|
| 11 |
+
from ..attention import BasicTransformerBlock
|
| 12 |
+
from ..attention_processor import (
|
| 13 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
| 14 |
+
CROSS_ATTENTION_PROCESSORS,
|
| 15 |
+
AttentionProcessor,
|
| 16 |
+
AttnAddedKVProcessor,
|
| 17 |
+
AttnProcessor,
|
| 18 |
+
)
|
| 19 |
+
from ..embeddings import TimestepEmbedding, Timesteps
|
| 20 |
+
from ..modeling_utils import ModelMixin
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@dataclass
|
| 24 |
+
class PriorTransformerOutput(BaseOutput):
|
| 25 |
+
"""
|
| 26 |
+
The output of [`PriorTransformer`].
|
| 27 |
+
|
| 28 |
+
Args:
|
| 29 |
+
predicted_image_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`):
|
| 30 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
predicted_image_embedding: torch.Tensor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
|
| 37 |
+
"""
|
| 38 |
+
A Prior Transformer model.
|
| 39 |
+
|
| 40 |
+
Parameters:
|
| 41 |
+
num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
|
| 42 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 43 |
+
num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
|
| 44 |
+
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
|
| 45 |
+
num_embeddings (`int`, *optional*, defaults to 77):
|
| 46 |
+
The number of embeddings of the model input `hidden_states`
|
| 47 |
+
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
|
| 48 |
+
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
|
| 49 |
+
additional_embeddings`.
|
| 50 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 51 |
+
time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
|
| 52 |
+
The activation function to use to create timestep embeddings.
|
| 53 |
+
norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
|
| 54 |
+
passing to Transformer blocks. Set it to `None` if normalization is not needed.
|
| 55 |
+
embedding_proj_norm_type (`str`, *optional*, defaults to None):
|
| 56 |
+
The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
|
| 57 |
+
needed.
|
| 58 |
+
encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
|
| 59 |
+
The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
|
| 60 |
+
`encoder_hidden_states` is `None`.
|
| 61 |
+
added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
|
| 62 |
+
Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
|
| 63 |
+
product between the text embedding and image embedding as proposed in the unclip paper
|
| 64 |
+
https://huggingface.co/papers/2204.06125 If it is `None`, no additional embeddings will be prepended.
|
| 65 |
+
time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
|
| 66 |
+
If None, will be set to `num_attention_heads * attention_head_dim`
|
| 67 |
+
embedding_proj_dim (`int`, *optional*, default to None):
|
| 68 |
+
The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
|
| 69 |
+
clip_embed_dim (`int`, *optional*, default to None):
|
| 70 |
+
The dimension of the output. If None, will be set to `embedding_dim`.
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
@register_to_config
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
num_attention_heads: int = 32,
|
| 77 |
+
attention_head_dim: int = 64,
|
| 78 |
+
num_layers: int = 20,
|
| 79 |
+
embedding_dim: int = 768,
|
| 80 |
+
num_embeddings=77,
|
| 81 |
+
additional_embeddings=4,
|
| 82 |
+
dropout: float = 0.0,
|
| 83 |
+
time_embed_act_fn: str = "silu",
|
| 84 |
+
norm_in_type: Optional[str] = None, # layer
|
| 85 |
+
embedding_proj_norm_type: Optional[str] = None, # layer
|
| 86 |
+
encoder_hid_proj_type: Optional[str] = "linear", # linear
|
| 87 |
+
added_emb_type: Optional[str] = "prd", # prd
|
| 88 |
+
time_embed_dim: Optional[int] = None,
|
| 89 |
+
embedding_proj_dim: Optional[int] = None,
|
| 90 |
+
clip_embed_dim: Optional[int] = None,
|
| 91 |
+
):
|
| 92 |
+
super().__init__()
|
| 93 |
+
self.num_attention_heads = num_attention_heads
|
| 94 |
+
self.attention_head_dim = attention_head_dim
|
| 95 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 96 |
+
self.additional_embeddings = additional_embeddings
|
| 97 |
+
|
| 98 |
+
time_embed_dim = time_embed_dim or inner_dim
|
| 99 |
+
embedding_proj_dim = embedding_proj_dim or embedding_dim
|
| 100 |
+
clip_embed_dim = clip_embed_dim or embedding_dim
|
| 101 |
+
|
| 102 |
+
self.time_proj = Timesteps(inner_dim, True, 0)
|
| 103 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)
|
| 104 |
+
|
| 105 |
+
self.proj_in = nn.Linear(embedding_dim, inner_dim)
|
| 106 |
+
|
| 107 |
+
if embedding_proj_norm_type is None:
|
| 108 |
+
self.embedding_proj_norm = None
|
| 109 |
+
elif embedding_proj_norm_type == "layer":
|
| 110 |
+
self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
|
| 111 |
+
else:
|
| 112 |
+
raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")
|
| 113 |
+
|
| 114 |
+
self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)
|
| 115 |
+
|
| 116 |
+
if encoder_hid_proj_type is None:
|
| 117 |
+
self.encoder_hidden_states_proj = None
|
| 118 |
+
elif encoder_hid_proj_type == "linear":
|
| 119 |
+
self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
|
| 120 |
+
else:
|
| 121 |
+
raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")
|
| 122 |
+
|
| 123 |
+
self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))
|
| 124 |
+
|
| 125 |
+
if added_emb_type == "prd":
|
| 126 |
+
self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
|
| 127 |
+
elif added_emb_type is None:
|
| 128 |
+
self.prd_embedding = None
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError(
|
| 131 |
+
f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
self.transformer_blocks = nn.ModuleList(
|
| 135 |
+
[
|
| 136 |
+
BasicTransformerBlock(
|
| 137 |
+
inner_dim,
|
| 138 |
+
num_attention_heads,
|
| 139 |
+
attention_head_dim,
|
| 140 |
+
dropout=dropout,
|
| 141 |
+
activation_fn="gelu",
|
| 142 |
+
attention_bias=True,
|
| 143 |
+
)
|
| 144 |
+
for d in range(num_layers)
|
| 145 |
+
]
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
if norm_in_type == "layer":
|
| 149 |
+
self.norm_in = nn.LayerNorm(inner_dim)
|
| 150 |
+
elif norm_in_type is None:
|
| 151 |
+
self.norm_in = None
|
| 152 |
+
else:
|
| 153 |
+
raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")
|
| 154 |
+
|
| 155 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
| 156 |
+
|
| 157 |
+
self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
|
| 158 |
+
|
| 159 |
+
causal_attention_mask = torch.full(
|
| 160 |
+
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
|
| 161 |
+
)
|
| 162 |
+
causal_attention_mask.triu_(1)
|
| 163 |
+
causal_attention_mask = causal_attention_mask[None, ...]
|
| 164 |
+
self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)
|
| 165 |
+
|
| 166 |
+
self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
|
| 167 |
+
self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))
|
| 168 |
+
|
| 169 |
+
@property
|
| 170 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 171 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 172 |
+
r"""
|
| 173 |
+
Returns:
|
| 174 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 175 |
+
indexed by its weight name.
|
| 176 |
+
"""
|
| 177 |
+
# set recursively
|
| 178 |
+
processors = {}
|
| 179 |
+
|
| 180 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 181 |
+
if hasattr(module, "get_processor"):
|
| 182 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 183 |
+
|
| 184 |
+
for sub_name, child in module.named_children():
|
| 185 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 186 |
+
|
| 187 |
+
return processors
|
| 188 |
+
|
| 189 |
+
for name, module in self.named_children():
|
| 190 |
+
fn_recursive_add_processors(name, module, processors)
|
| 191 |
+
|
| 192 |
+
return processors
|
| 193 |
+
|
| 194 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 195 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 196 |
+
r"""
|
| 197 |
+
Sets the attention processor to use to compute attention.
|
| 198 |
+
|
| 199 |
+
Parameters:
|
| 200 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 201 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 202 |
+
for **all** `Attention` layers.
|
| 203 |
+
|
| 204 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 205 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 206 |
+
|
| 207 |
+
"""
|
| 208 |
+
count = len(self.attn_processors.keys())
|
| 209 |
+
|
| 210 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 211 |
+
raise ValueError(
|
| 212 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 213 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 217 |
+
if hasattr(module, "set_processor"):
|
| 218 |
+
if not isinstance(processor, dict):
|
| 219 |
+
module.set_processor(processor)
|
| 220 |
+
else:
|
| 221 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 222 |
+
|
| 223 |
+
for sub_name, child in module.named_children():
|
| 224 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 225 |
+
|
| 226 |
+
for name, module in self.named_children():
|
| 227 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 228 |
+
|
| 229 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
| 230 |
+
def set_default_attn_processor(self):
|
| 231 |
+
"""
|
| 232 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 233 |
+
"""
|
| 234 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 235 |
+
processor = AttnAddedKVProcessor()
|
| 236 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
| 237 |
+
processor = AttnProcessor()
|
| 238 |
+
else:
|
| 239 |
+
raise ValueError(
|
| 240 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
self.set_attn_processor(processor)
|
| 244 |
+
|
| 245 |
+
def forward(
|
| 246 |
+
self,
|
| 247 |
+
hidden_states,
|
| 248 |
+
timestep: Union[torch.Tensor, float, int],
|
| 249 |
+
proj_embedding: torch.Tensor,
|
| 250 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 251 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
| 252 |
+
return_dict: bool = True,
|
| 253 |
+
):
|
| 254 |
+
"""
|
| 255 |
+
The [`PriorTransformer`] forward method.
|
| 256 |
+
|
| 257 |
+
Args:
|
| 258 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, embedding_dim)`):
|
| 259 |
+
The currently predicted image embeddings.
|
| 260 |
+
timestep (`torch.LongTensor`):
|
| 261 |
+
Current denoising step.
|
| 262 |
+
proj_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`):
|
| 263 |
+
Projected embedding vector the denoising process is conditioned on.
|
| 264 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
|
| 265 |
+
Hidden states of the text embeddings the denoising process is conditioned on.
|
| 266 |
+
attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
|
| 267 |
+
Text mask for the text embeddings.
|
| 268 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 269 |
+
Whether or not to return a [`~models.transformers.prior_transformer.PriorTransformerOutput`] instead of
|
| 270 |
+
a plain tuple.
|
| 271 |
+
|
| 272 |
+
Returns:
|
| 273 |
+
[`~models.transformers.prior_transformer.PriorTransformerOutput`] or `tuple`:
|
| 274 |
+
If return_dict is True, a [`~models.transformers.prior_transformer.PriorTransformerOutput`] is
|
| 275 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
| 276 |
+
"""
|
| 277 |
+
batch_size = hidden_states.shape[0]
|
| 278 |
+
|
| 279 |
+
timesteps = timestep
|
| 280 |
+
if not torch.is_tensor(timesteps):
|
| 281 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
|
| 282 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
| 283 |
+
timesteps = timesteps[None].to(hidden_states.device)
|
| 284 |
+
|
| 285 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 286 |
+
timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)
|
| 287 |
+
|
| 288 |
+
timesteps_projected = self.time_proj(timesteps)
|
| 289 |
+
|
| 290 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 291 |
+
# but time_embedding might be fp16, so we need to cast here.
|
| 292 |
+
timesteps_projected = timesteps_projected.to(dtype=self.dtype)
|
| 293 |
+
time_embeddings = self.time_embedding(timesteps_projected)
|
| 294 |
+
|
| 295 |
+
if self.embedding_proj_norm is not None:
|
| 296 |
+
proj_embedding = self.embedding_proj_norm(proj_embedding)
|
| 297 |
+
|
| 298 |
+
proj_embeddings = self.embedding_proj(proj_embedding)
|
| 299 |
+
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
|
| 300 |
+
encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
|
| 301 |
+
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
|
| 302 |
+
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")
|
| 303 |
+
|
| 304 |
+
hidden_states = self.proj_in(hidden_states)
|
| 305 |
+
|
| 306 |
+
positional_embeddings = self.positional_embedding.to(hidden_states.dtype)
|
| 307 |
+
|
| 308 |
+
additional_embeds = []
|
| 309 |
+
additional_embeddings_len = 0
|
| 310 |
+
|
| 311 |
+
if encoder_hidden_states is not None:
|
| 312 |
+
additional_embeds.append(encoder_hidden_states)
|
| 313 |
+
additional_embeddings_len += encoder_hidden_states.shape[1]
|
| 314 |
+
|
| 315 |
+
if len(proj_embeddings.shape) == 2:
|
| 316 |
+
proj_embeddings = proj_embeddings[:, None, :]
|
| 317 |
+
|
| 318 |
+
if len(hidden_states.shape) == 2:
|
| 319 |
+
hidden_states = hidden_states[:, None, :]
|
| 320 |
+
|
| 321 |
+
additional_embeds = additional_embeds + [
|
| 322 |
+
proj_embeddings,
|
| 323 |
+
time_embeddings[:, None, :],
|
| 324 |
+
hidden_states,
|
| 325 |
+
]
|
| 326 |
+
|
| 327 |
+
if self.prd_embedding is not None:
|
| 328 |
+
prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
|
| 329 |
+
additional_embeds.append(prd_embedding)
|
| 330 |
+
|
| 331 |
+
hidden_states = torch.cat(
|
| 332 |
+
additional_embeds,
|
| 333 |
+
dim=1,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
|
| 337 |
+
additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
|
| 338 |
+
if positional_embeddings.shape[1] < hidden_states.shape[1]:
|
| 339 |
+
positional_embeddings = F.pad(
|
| 340 |
+
positional_embeddings,
|
| 341 |
+
(
|
| 342 |
+
0,
|
| 343 |
+
0,
|
| 344 |
+
additional_embeddings_len,
|
| 345 |
+
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
|
| 346 |
+
),
|
| 347 |
+
value=0.0,
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
hidden_states = hidden_states + positional_embeddings
|
| 351 |
+
|
| 352 |
+
if attention_mask is not None:
|
| 353 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 354 |
+
attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
|
| 355 |
+
attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
|
| 356 |
+
attention_mask = attention_mask.repeat_interleave(
|
| 357 |
+
self.config.num_attention_heads,
|
| 358 |
+
dim=0,
|
| 359 |
+
output_size=attention_mask.shape[0] * self.config.num_attention_heads,
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
if self.norm_in is not None:
|
| 363 |
+
hidden_states = self.norm_in(hidden_states)
|
| 364 |
+
|
| 365 |
+
for block in self.transformer_blocks:
|
| 366 |
+
hidden_states = block(hidden_states, attention_mask=attention_mask)
|
| 367 |
+
|
| 368 |
+
hidden_states = self.norm_out(hidden_states)
|
| 369 |
+
|
| 370 |
+
if self.prd_embedding is not None:
|
| 371 |
+
hidden_states = hidden_states[:, -1]
|
| 372 |
+
else:
|
| 373 |
+
hidden_states = hidden_states[:, additional_embeddings_len:]
|
| 374 |
+
|
| 375 |
+
predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
|
| 376 |
+
|
| 377 |
+
if not return_dict:
|
| 378 |
+
return (predicted_image_embedding,)
|
| 379 |
+
|
| 380 |
+
return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)
|
| 381 |
+
|
| 382 |
+
def post_process_latents(self, prior_latents):
|
| 383 |
+
prior_latents = (prior_latents * self.clip_std) + self.clip_mean
|
| 384 |
+
return prior_latents
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/sana_transformer.py
ADDED
|
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn.functional as F
|
| 19 |
+
from torch import nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ..attention_processor import (
|
| 25 |
+
Attention,
|
| 26 |
+
AttentionProcessor,
|
| 27 |
+
SanaLinearAttnProcessor2_0,
|
| 28 |
+
)
|
| 29 |
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection, TimestepEmbedding, Timesteps
|
| 30 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 31 |
+
from ..modeling_utils import ModelMixin
|
| 32 |
+
from ..normalization import AdaLayerNormSingle, RMSNorm
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class GLUMBConv(nn.Module):
|
| 39 |
+
def __init__(
|
| 40 |
+
self,
|
| 41 |
+
in_channels: int,
|
| 42 |
+
out_channels: int,
|
| 43 |
+
expand_ratio: float = 4,
|
| 44 |
+
norm_type: Optional[str] = None,
|
| 45 |
+
residual_connection: bool = True,
|
| 46 |
+
) -> None:
|
| 47 |
+
super().__init__()
|
| 48 |
+
|
| 49 |
+
hidden_channels = int(expand_ratio * in_channels)
|
| 50 |
+
self.norm_type = norm_type
|
| 51 |
+
self.residual_connection = residual_connection
|
| 52 |
+
|
| 53 |
+
self.nonlinearity = nn.SiLU()
|
| 54 |
+
self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
|
| 55 |
+
self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
|
| 56 |
+
self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
|
| 57 |
+
|
| 58 |
+
self.norm = None
|
| 59 |
+
if norm_type == "rms_norm":
|
| 60 |
+
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
|
| 61 |
+
|
| 62 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 63 |
+
if self.residual_connection:
|
| 64 |
+
residual = hidden_states
|
| 65 |
+
|
| 66 |
+
hidden_states = self.conv_inverted(hidden_states)
|
| 67 |
+
hidden_states = self.nonlinearity(hidden_states)
|
| 68 |
+
|
| 69 |
+
hidden_states = self.conv_depth(hidden_states)
|
| 70 |
+
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
|
| 71 |
+
hidden_states = hidden_states * self.nonlinearity(gate)
|
| 72 |
+
|
| 73 |
+
hidden_states = self.conv_point(hidden_states)
|
| 74 |
+
|
| 75 |
+
if self.norm_type == "rms_norm":
|
| 76 |
+
# move channel to the last dimension so we apply RMSnorm across channel dimension
|
| 77 |
+
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
| 78 |
+
|
| 79 |
+
if self.residual_connection:
|
| 80 |
+
hidden_states = hidden_states + residual
|
| 81 |
+
|
| 82 |
+
return hidden_states
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class SanaModulatedNorm(nn.Module):
|
| 86 |
+
def __init__(self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6):
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=elementwise_affine, eps=eps)
|
| 89 |
+
|
| 90 |
+
def forward(
|
| 91 |
+
self, hidden_states: torch.Tensor, temb: torch.Tensor, scale_shift_table: torch.Tensor
|
| 92 |
+
) -> torch.Tensor:
|
| 93 |
+
hidden_states = self.norm(hidden_states)
|
| 94 |
+
shift, scale = (scale_shift_table[None] + temb[:, None].to(scale_shift_table.device)).chunk(2, dim=1)
|
| 95 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 96 |
+
return hidden_states
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class SanaCombinedTimestepGuidanceEmbeddings(nn.Module):
|
| 100 |
+
def __init__(self, embedding_dim):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 103 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 104 |
+
|
| 105 |
+
self.guidance_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 106 |
+
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 107 |
+
|
| 108 |
+
self.silu = nn.SiLU()
|
| 109 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
| 110 |
+
|
| 111 |
+
def forward(self, timestep: torch.Tensor, guidance: torch.Tensor = None, hidden_dtype: torch.dtype = None):
|
| 112 |
+
timesteps_proj = self.time_proj(timestep)
|
| 113 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
| 114 |
+
|
| 115 |
+
guidance_proj = self.guidance_condition_proj(guidance)
|
| 116 |
+
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=hidden_dtype))
|
| 117 |
+
conditioning = timesteps_emb + guidance_emb
|
| 118 |
+
|
| 119 |
+
return self.linear(self.silu(conditioning)), conditioning
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class SanaAttnProcessor2_0:
|
| 123 |
+
r"""
|
| 124 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
def __init__(self):
|
| 128 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 129 |
+
raise ImportError("SanaAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 130 |
+
|
| 131 |
+
def __call__(
|
| 132 |
+
self,
|
| 133 |
+
attn: Attention,
|
| 134 |
+
hidden_states: torch.Tensor,
|
| 135 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 136 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 137 |
+
) -> torch.Tensor:
|
| 138 |
+
batch_size, sequence_length, _ = (
|
| 139 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
if attention_mask is not None:
|
| 143 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 144 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
| 145 |
+
# (batch, heads, source_length, target_length)
|
| 146 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 147 |
+
|
| 148 |
+
query = attn.to_q(hidden_states)
|
| 149 |
+
|
| 150 |
+
if encoder_hidden_states is None:
|
| 151 |
+
encoder_hidden_states = hidden_states
|
| 152 |
+
|
| 153 |
+
key = attn.to_k(encoder_hidden_states)
|
| 154 |
+
value = attn.to_v(encoder_hidden_states)
|
| 155 |
+
|
| 156 |
+
if attn.norm_q is not None:
|
| 157 |
+
query = attn.norm_q(query)
|
| 158 |
+
if attn.norm_k is not None:
|
| 159 |
+
key = attn.norm_k(key)
|
| 160 |
+
|
| 161 |
+
inner_dim = key.shape[-1]
|
| 162 |
+
head_dim = inner_dim // attn.heads
|
| 163 |
+
|
| 164 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 165 |
+
|
| 166 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 167 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 168 |
+
|
| 169 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 170 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 171 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 172 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 176 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 177 |
+
|
| 178 |
+
# linear proj
|
| 179 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 180 |
+
# dropout
|
| 181 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 182 |
+
|
| 183 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
| 184 |
+
|
| 185 |
+
return hidden_states
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class SanaTransformerBlock(nn.Module):
|
| 189 |
+
r"""
|
| 190 |
+
Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629).
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
def __init__(
|
| 194 |
+
self,
|
| 195 |
+
dim: int = 2240,
|
| 196 |
+
num_attention_heads: int = 70,
|
| 197 |
+
attention_head_dim: int = 32,
|
| 198 |
+
dropout: float = 0.0,
|
| 199 |
+
num_cross_attention_heads: Optional[int] = 20,
|
| 200 |
+
cross_attention_head_dim: Optional[int] = 112,
|
| 201 |
+
cross_attention_dim: Optional[int] = 2240,
|
| 202 |
+
attention_bias: bool = True,
|
| 203 |
+
norm_elementwise_affine: bool = False,
|
| 204 |
+
norm_eps: float = 1e-6,
|
| 205 |
+
attention_out_bias: bool = True,
|
| 206 |
+
mlp_ratio: float = 2.5,
|
| 207 |
+
qk_norm: Optional[str] = None,
|
| 208 |
+
) -> None:
|
| 209 |
+
super().__init__()
|
| 210 |
+
|
| 211 |
+
# 1. Self Attention
|
| 212 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps)
|
| 213 |
+
self.attn1 = Attention(
|
| 214 |
+
query_dim=dim,
|
| 215 |
+
heads=num_attention_heads,
|
| 216 |
+
dim_head=attention_head_dim,
|
| 217 |
+
kv_heads=num_attention_heads if qk_norm is not None else None,
|
| 218 |
+
qk_norm=qk_norm,
|
| 219 |
+
dropout=dropout,
|
| 220 |
+
bias=attention_bias,
|
| 221 |
+
cross_attention_dim=None,
|
| 222 |
+
processor=SanaLinearAttnProcessor2_0(),
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# 2. Cross Attention
|
| 226 |
+
if cross_attention_dim is not None:
|
| 227 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 228 |
+
self.attn2 = Attention(
|
| 229 |
+
query_dim=dim,
|
| 230 |
+
qk_norm=qk_norm,
|
| 231 |
+
kv_heads=num_cross_attention_heads if qk_norm is not None else None,
|
| 232 |
+
cross_attention_dim=cross_attention_dim,
|
| 233 |
+
heads=num_cross_attention_heads,
|
| 234 |
+
dim_head=cross_attention_head_dim,
|
| 235 |
+
dropout=dropout,
|
| 236 |
+
bias=True,
|
| 237 |
+
out_bias=attention_out_bias,
|
| 238 |
+
processor=SanaAttnProcessor2_0(),
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
# 3. Feed-forward
|
| 242 |
+
self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False)
|
| 243 |
+
|
| 244 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
| 245 |
+
|
| 246 |
+
def forward(
|
| 247 |
+
self,
|
| 248 |
+
hidden_states: torch.Tensor,
|
| 249 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 250 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 251 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 252 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 253 |
+
height: int = None,
|
| 254 |
+
width: int = None,
|
| 255 |
+
) -> torch.Tensor:
|
| 256 |
+
batch_size = hidden_states.shape[0]
|
| 257 |
+
|
| 258 |
+
# 1. Modulation
|
| 259 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 260 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
| 261 |
+
).chunk(6, dim=1)
|
| 262 |
+
|
| 263 |
+
# 2. Self Attention
|
| 264 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 265 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 266 |
+
norm_hidden_states = norm_hidden_states.to(hidden_states.dtype)
|
| 267 |
+
|
| 268 |
+
attn_output = self.attn1(norm_hidden_states)
|
| 269 |
+
hidden_states = hidden_states + gate_msa * attn_output
|
| 270 |
+
|
| 271 |
+
# 3. Cross Attention
|
| 272 |
+
if self.attn2 is not None:
|
| 273 |
+
attn_output = self.attn2(
|
| 274 |
+
hidden_states,
|
| 275 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 276 |
+
attention_mask=encoder_attention_mask,
|
| 277 |
+
)
|
| 278 |
+
hidden_states = attn_output + hidden_states
|
| 279 |
+
|
| 280 |
+
# 4. Feed-forward
|
| 281 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 282 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 283 |
+
|
| 284 |
+
norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2)
|
| 285 |
+
ff_output = self.ff(norm_hidden_states)
|
| 286 |
+
ff_output = ff_output.flatten(2, 3).permute(0, 2, 1)
|
| 287 |
+
hidden_states = hidden_states + gate_mlp * ff_output
|
| 288 |
+
|
| 289 |
+
return hidden_states
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 293 |
+
r"""
|
| 294 |
+
A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models.
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
in_channels (`int`, defaults to `32`):
|
| 298 |
+
The number of channels in the input.
|
| 299 |
+
out_channels (`int`, *optional*, defaults to `32`):
|
| 300 |
+
The number of channels in the output.
|
| 301 |
+
num_attention_heads (`int`, defaults to `70`):
|
| 302 |
+
The number of heads to use for multi-head attention.
|
| 303 |
+
attention_head_dim (`int`, defaults to `32`):
|
| 304 |
+
The number of channels in each head.
|
| 305 |
+
num_layers (`int`, defaults to `20`):
|
| 306 |
+
The number of layers of Transformer blocks to use.
|
| 307 |
+
num_cross_attention_heads (`int`, *optional*, defaults to `20`):
|
| 308 |
+
The number of heads to use for cross-attention.
|
| 309 |
+
cross_attention_head_dim (`int`, *optional*, defaults to `112`):
|
| 310 |
+
The number of channels in each head for cross-attention.
|
| 311 |
+
cross_attention_dim (`int`, *optional*, defaults to `2240`):
|
| 312 |
+
The number of channels in the cross-attention output.
|
| 313 |
+
caption_channels (`int`, defaults to `2304`):
|
| 314 |
+
The number of channels in the caption embeddings.
|
| 315 |
+
mlp_ratio (`float`, defaults to `2.5`):
|
| 316 |
+
The expansion ratio to use in the GLUMBConv layer.
|
| 317 |
+
dropout (`float`, defaults to `0.0`):
|
| 318 |
+
The dropout probability.
|
| 319 |
+
attention_bias (`bool`, defaults to `False`):
|
| 320 |
+
Whether to use bias in the attention layer.
|
| 321 |
+
sample_size (`int`, defaults to `32`):
|
| 322 |
+
The base size of the input latent.
|
| 323 |
+
patch_size (`int`, defaults to `1`):
|
| 324 |
+
The size of the patches to use in the patch embedding layer.
|
| 325 |
+
norm_elementwise_affine (`bool`, defaults to `False`):
|
| 326 |
+
Whether to use elementwise affinity in the normalization layer.
|
| 327 |
+
norm_eps (`float`, defaults to `1e-6`):
|
| 328 |
+
The epsilon value for the normalization layer.
|
| 329 |
+
qk_norm (`str`, *optional*, defaults to `None`):
|
| 330 |
+
The normalization to use for the query and key.
|
| 331 |
+
timestep_scale (`float`, defaults to `1.0`):
|
| 332 |
+
The scale to use for the timesteps.
|
| 333 |
+
"""
|
| 334 |
+
|
| 335 |
+
_supports_gradient_checkpointing = True
|
| 336 |
+
_no_split_modules = ["SanaTransformerBlock", "PatchEmbed", "SanaModulatedNorm"]
|
| 337 |
+
_skip_layerwise_casting_patterns = ["patch_embed", "norm"]
|
| 338 |
+
|
| 339 |
+
@register_to_config
|
| 340 |
+
def __init__(
|
| 341 |
+
self,
|
| 342 |
+
in_channels: int = 32,
|
| 343 |
+
out_channels: Optional[int] = 32,
|
| 344 |
+
num_attention_heads: int = 70,
|
| 345 |
+
attention_head_dim: int = 32,
|
| 346 |
+
num_layers: int = 20,
|
| 347 |
+
num_cross_attention_heads: Optional[int] = 20,
|
| 348 |
+
cross_attention_head_dim: Optional[int] = 112,
|
| 349 |
+
cross_attention_dim: Optional[int] = 2240,
|
| 350 |
+
caption_channels: int = 2304,
|
| 351 |
+
mlp_ratio: float = 2.5,
|
| 352 |
+
dropout: float = 0.0,
|
| 353 |
+
attention_bias: bool = False,
|
| 354 |
+
sample_size: int = 32,
|
| 355 |
+
patch_size: int = 1,
|
| 356 |
+
norm_elementwise_affine: bool = False,
|
| 357 |
+
norm_eps: float = 1e-6,
|
| 358 |
+
interpolation_scale: Optional[int] = None,
|
| 359 |
+
guidance_embeds: bool = False,
|
| 360 |
+
guidance_embeds_scale: float = 0.1,
|
| 361 |
+
qk_norm: Optional[str] = None,
|
| 362 |
+
timestep_scale: float = 1.0,
|
| 363 |
+
) -> None:
|
| 364 |
+
super().__init__()
|
| 365 |
+
|
| 366 |
+
out_channels = out_channels or in_channels
|
| 367 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 368 |
+
|
| 369 |
+
# 1. Patch Embedding
|
| 370 |
+
self.patch_embed = PatchEmbed(
|
| 371 |
+
height=sample_size,
|
| 372 |
+
width=sample_size,
|
| 373 |
+
patch_size=patch_size,
|
| 374 |
+
in_channels=in_channels,
|
| 375 |
+
embed_dim=inner_dim,
|
| 376 |
+
interpolation_scale=interpolation_scale,
|
| 377 |
+
pos_embed_type="sincos" if interpolation_scale is not None else None,
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
# 2. Additional condition embeddings
|
| 381 |
+
if guidance_embeds:
|
| 382 |
+
self.time_embed = SanaCombinedTimestepGuidanceEmbeddings(inner_dim)
|
| 383 |
+
else:
|
| 384 |
+
self.time_embed = AdaLayerNormSingle(inner_dim)
|
| 385 |
+
|
| 386 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
| 387 |
+
self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True)
|
| 388 |
+
|
| 389 |
+
# 3. Transformer blocks
|
| 390 |
+
self.transformer_blocks = nn.ModuleList(
|
| 391 |
+
[
|
| 392 |
+
SanaTransformerBlock(
|
| 393 |
+
inner_dim,
|
| 394 |
+
num_attention_heads,
|
| 395 |
+
attention_head_dim,
|
| 396 |
+
dropout=dropout,
|
| 397 |
+
num_cross_attention_heads=num_cross_attention_heads,
|
| 398 |
+
cross_attention_head_dim=cross_attention_head_dim,
|
| 399 |
+
cross_attention_dim=cross_attention_dim,
|
| 400 |
+
attention_bias=attention_bias,
|
| 401 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 402 |
+
norm_eps=norm_eps,
|
| 403 |
+
mlp_ratio=mlp_ratio,
|
| 404 |
+
qk_norm=qk_norm,
|
| 405 |
+
)
|
| 406 |
+
for _ in range(num_layers)
|
| 407 |
+
]
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
# 4. Output blocks
|
| 411 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
| 412 |
+
self.norm_out = SanaModulatedNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
| 413 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
| 414 |
+
|
| 415 |
+
self.gradient_checkpointing = False
|
| 416 |
+
|
| 417 |
+
@property
|
| 418 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 419 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 420 |
+
r"""
|
| 421 |
+
Returns:
|
| 422 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 423 |
+
indexed by its weight name.
|
| 424 |
+
"""
|
| 425 |
+
# set recursively
|
| 426 |
+
processors = {}
|
| 427 |
+
|
| 428 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 429 |
+
if hasattr(module, "get_processor"):
|
| 430 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 431 |
+
|
| 432 |
+
for sub_name, child in module.named_children():
|
| 433 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 434 |
+
|
| 435 |
+
return processors
|
| 436 |
+
|
| 437 |
+
for name, module in self.named_children():
|
| 438 |
+
fn_recursive_add_processors(name, module, processors)
|
| 439 |
+
|
| 440 |
+
return processors
|
| 441 |
+
|
| 442 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 443 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 444 |
+
r"""
|
| 445 |
+
Sets the attention processor to use to compute attention.
|
| 446 |
+
|
| 447 |
+
Parameters:
|
| 448 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 449 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 450 |
+
for **all** `Attention` layers.
|
| 451 |
+
|
| 452 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 453 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 454 |
+
|
| 455 |
+
"""
|
| 456 |
+
count = len(self.attn_processors.keys())
|
| 457 |
+
|
| 458 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 459 |
+
raise ValueError(
|
| 460 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 461 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 465 |
+
if hasattr(module, "set_processor"):
|
| 466 |
+
if not isinstance(processor, dict):
|
| 467 |
+
module.set_processor(processor)
|
| 468 |
+
else:
|
| 469 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 470 |
+
|
| 471 |
+
for sub_name, child in module.named_children():
|
| 472 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 473 |
+
|
| 474 |
+
for name, module in self.named_children():
|
| 475 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 476 |
+
|
| 477 |
+
def forward(
|
| 478 |
+
self,
|
| 479 |
+
hidden_states: torch.Tensor,
|
| 480 |
+
encoder_hidden_states: torch.Tensor,
|
| 481 |
+
timestep: torch.Tensor,
|
| 482 |
+
guidance: Optional[torch.Tensor] = None,
|
| 483 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 484 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 485 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 486 |
+
controlnet_block_samples: Optional[Tuple[torch.Tensor]] = None,
|
| 487 |
+
return_dict: bool = True,
|
| 488 |
+
) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]:
|
| 489 |
+
if attention_kwargs is not None:
|
| 490 |
+
attention_kwargs = attention_kwargs.copy()
|
| 491 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 492 |
+
else:
|
| 493 |
+
lora_scale = 1.0
|
| 494 |
+
|
| 495 |
+
if USE_PEFT_BACKEND:
|
| 496 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 497 |
+
scale_lora_layers(self, lora_scale)
|
| 498 |
+
else:
|
| 499 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 500 |
+
logger.warning(
|
| 501 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 505 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 506 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 507 |
+
# expects mask of shape:
|
| 508 |
+
# [batch, key_tokens]
|
| 509 |
+
# adds singleton query_tokens dimension:
|
| 510 |
+
# [batch, 1, key_tokens]
|
| 511 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 512 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 513 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 514 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 515 |
+
# assume that mask is expressed as:
|
| 516 |
+
# (1 = keep, 0 = discard)
|
| 517 |
+
# convert mask into a bias that can be added to attention scores:
|
| 518 |
+
# (keep = +0, discard = -10000.0)
|
| 519 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 520 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 521 |
+
|
| 522 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 523 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 524 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 525 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 526 |
+
|
| 527 |
+
# 1. Input
|
| 528 |
+
batch_size, num_channels, height, width = hidden_states.shape
|
| 529 |
+
p = self.config.patch_size
|
| 530 |
+
post_patch_height, post_patch_width = height // p, width // p
|
| 531 |
+
|
| 532 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 533 |
+
|
| 534 |
+
if guidance is not None:
|
| 535 |
+
timestep, embedded_timestep = self.time_embed(
|
| 536 |
+
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
|
| 537 |
+
)
|
| 538 |
+
else:
|
| 539 |
+
timestep, embedded_timestep = self.time_embed(
|
| 540 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 544 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 545 |
+
|
| 546 |
+
encoder_hidden_states = self.caption_norm(encoder_hidden_states)
|
| 547 |
+
|
| 548 |
+
# 2. Transformer blocks
|
| 549 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 550 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 551 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 552 |
+
block,
|
| 553 |
+
hidden_states,
|
| 554 |
+
attention_mask,
|
| 555 |
+
encoder_hidden_states,
|
| 556 |
+
encoder_attention_mask,
|
| 557 |
+
timestep,
|
| 558 |
+
post_patch_height,
|
| 559 |
+
post_patch_width,
|
| 560 |
+
)
|
| 561 |
+
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
|
| 562 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
|
| 563 |
+
|
| 564 |
+
else:
|
| 565 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 566 |
+
hidden_states = block(
|
| 567 |
+
hidden_states,
|
| 568 |
+
attention_mask,
|
| 569 |
+
encoder_hidden_states,
|
| 570 |
+
encoder_attention_mask,
|
| 571 |
+
timestep,
|
| 572 |
+
post_patch_height,
|
| 573 |
+
post_patch_width,
|
| 574 |
+
)
|
| 575 |
+
if controlnet_block_samples is not None and 0 < index_block <= len(controlnet_block_samples):
|
| 576 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block - 1]
|
| 577 |
+
|
| 578 |
+
# 3. Normalization
|
| 579 |
+
hidden_states = self.norm_out(hidden_states, embedded_timestep, self.scale_shift_table)
|
| 580 |
+
|
| 581 |
+
hidden_states = self.proj_out(hidden_states)
|
| 582 |
+
|
| 583 |
+
# 5. Unpatchify
|
| 584 |
+
hidden_states = hidden_states.reshape(
|
| 585 |
+
batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1
|
| 586 |
+
)
|
| 587 |
+
hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4)
|
| 588 |
+
output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p)
|
| 589 |
+
|
| 590 |
+
if USE_PEFT_BACKEND:
|
| 591 |
+
# remove `lora_scale` from each PEFT layer
|
| 592 |
+
unscale_lora_layers(self, lora_scale)
|
| 593 |
+
|
| 594 |
+
if not return_dict:
|
| 595 |
+
return (output,)
|
| 596 |
+
|
| 597 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/stable_audio_transformer.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Stability AI and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Dict, Optional, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.utils.checkpoint
|
| 22 |
+
|
| 23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from ...utils import logging
|
| 25 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 26 |
+
from ..attention import FeedForward
|
| 27 |
+
from ..attention_processor import Attention, AttentionProcessor, StableAudioAttnProcessor2_0
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from ..transformers.transformer_2d import Transformer2DModelOutput
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class StableAudioGaussianFourierProjection(nn.Module):
|
| 36 |
+
"""Gaussian Fourier embeddings for noise levels."""
|
| 37 |
+
|
| 38 |
+
# Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__
|
| 39 |
+
def __init__(
|
| 40 |
+
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
|
| 41 |
+
):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
| 44 |
+
self.log = log
|
| 45 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
| 46 |
+
|
| 47 |
+
if set_W_to_weight:
|
| 48 |
+
# to delete later
|
| 49 |
+
del self.weight
|
| 50 |
+
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
|
| 51 |
+
self.weight = self.W
|
| 52 |
+
del self.W
|
| 53 |
+
|
| 54 |
+
def forward(self, x):
|
| 55 |
+
if self.log:
|
| 56 |
+
x = torch.log(x)
|
| 57 |
+
|
| 58 |
+
x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :]
|
| 59 |
+
|
| 60 |
+
if self.flip_sin_to_cos:
|
| 61 |
+
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
|
| 62 |
+
else:
|
| 63 |
+
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
|
| 64 |
+
return out
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@maybe_allow_in_graph
|
| 68 |
+
class StableAudioDiTBlock(nn.Module):
|
| 69 |
+
r"""
|
| 70 |
+
Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip
|
| 71 |
+
connection and QKNorm
|
| 72 |
+
|
| 73 |
+
Parameters:
|
| 74 |
+
dim (`int`): The number of channels in the input and output.
|
| 75 |
+
num_attention_heads (`int`): The number of heads to use for the query states.
|
| 76 |
+
num_key_value_attention_heads (`int`): The number of heads to use for the key and value states.
|
| 77 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 78 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 79 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 80 |
+
upcast_attention (`bool`, *optional*):
|
| 81 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(
|
| 85 |
+
self,
|
| 86 |
+
dim: int,
|
| 87 |
+
num_attention_heads: int,
|
| 88 |
+
num_key_value_attention_heads: int,
|
| 89 |
+
attention_head_dim: int,
|
| 90 |
+
dropout=0.0,
|
| 91 |
+
cross_attention_dim: Optional[int] = None,
|
| 92 |
+
upcast_attention: bool = False,
|
| 93 |
+
norm_eps: float = 1e-5,
|
| 94 |
+
ff_inner_dim: Optional[int] = None,
|
| 95 |
+
):
|
| 96 |
+
super().__init__()
|
| 97 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 98 |
+
# 1. Self-Attn
|
| 99 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps)
|
| 100 |
+
self.attn1 = Attention(
|
| 101 |
+
query_dim=dim,
|
| 102 |
+
heads=num_attention_heads,
|
| 103 |
+
dim_head=attention_head_dim,
|
| 104 |
+
dropout=dropout,
|
| 105 |
+
bias=False,
|
| 106 |
+
upcast_attention=upcast_attention,
|
| 107 |
+
out_bias=False,
|
| 108 |
+
processor=StableAudioAttnProcessor2_0(),
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# 2. Cross-Attn
|
| 112 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, True)
|
| 113 |
+
|
| 114 |
+
self.attn2 = Attention(
|
| 115 |
+
query_dim=dim,
|
| 116 |
+
cross_attention_dim=cross_attention_dim,
|
| 117 |
+
heads=num_attention_heads,
|
| 118 |
+
dim_head=attention_head_dim,
|
| 119 |
+
kv_heads=num_key_value_attention_heads,
|
| 120 |
+
dropout=dropout,
|
| 121 |
+
bias=False,
|
| 122 |
+
upcast_attention=upcast_attention,
|
| 123 |
+
out_bias=False,
|
| 124 |
+
processor=StableAudioAttnProcessor2_0(),
|
| 125 |
+
) # is self-attn if encoder_hidden_states is none
|
| 126 |
+
|
| 127 |
+
# 3. Feed-forward
|
| 128 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, True)
|
| 129 |
+
self.ff = FeedForward(
|
| 130 |
+
dim,
|
| 131 |
+
dropout=dropout,
|
| 132 |
+
activation_fn="swiglu",
|
| 133 |
+
final_dropout=False,
|
| 134 |
+
inner_dim=ff_inner_dim,
|
| 135 |
+
bias=True,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# let chunk size default to None
|
| 139 |
+
self._chunk_size = None
|
| 140 |
+
self._chunk_dim = 0
|
| 141 |
+
|
| 142 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
| 143 |
+
# Sets chunk feed-forward
|
| 144 |
+
self._chunk_size = chunk_size
|
| 145 |
+
self._chunk_dim = dim
|
| 146 |
+
|
| 147 |
+
def forward(
|
| 148 |
+
self,
|
| 149 |
+
hidden_states: torch.Tensor,
|
| 150 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 151 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 152 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 153 |
+
rotary_embedding: Optional[torch.FloatTensor] = None,
|
| 154 |
+
) -> torch.Tensor:
|
| 155 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 156 |
+
# 0. Self-Attention
|
| 157 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 158 |
+
|
| 159 |
+
attn_output = self.attn1(
|
| 160 |
+
norm_hidden_states,
|
| 161 |
+
attention_mask=attention_mask,
|
| 162 |
+
rotary_emb=rotary_embedding,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
hidden_states = attn_output + hidden_states
|
| 166 |
+
|
| 167 |
+
# 2. Cross-Attention
|
| 168 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 169 |
+
|
| 170 |
+
attn_output = self.attn2(
|
| 171 |
+
norm_hidden_states,
|
| 172 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 173 |
+
attention_mask=encoder_attention_mask,
|
| 174 |
+
)
|
| 175 |
+
hidden_states = attn_output + hidden_states
|
| 176 |
+
|
| 177 |
+
# 3. Feed-forward
|
| 178 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 179 |
+
ff_output = self.ff(norm_hidden_states)
|
| 180 |
+
|
| 181 |
+
hidden_states = ff_output + hidden_states
|
| 182 |
+
|
| 183 |
+
return hidden_states
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class StableAudioDiTModel(ModelMixin, ConfigMixin):
|
| 187 |
+
"""
|
| 188 |
+
The Diffusion Transformer model introduced in Stable Audio.
|
| 189 |
+
|
| 190 |
+
Reference: https://github.com/Stability-AI/stable-audio-tools
|
| 191 |
+
|
| 192 |
+
Parameters:
|
| 193 |
+
sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample.
|
| 194 |
+
in_channels (`int`, *optional*, defaults to 64): The number of channels in the input.
|
| 195 |
+
num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use.
|
| 196 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 197 |
+
num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states.
|
| 198 |
+
num_key_value_attention_heads (`int`, *optional*, defaults to 12):
|
| 199 |
+
The number of heads to use for the key and value states.
|
| 200 |
+
out_channels (`int`, defaults to 64): Number of output channels.
|
| 201 |
+
cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection.
|
| 202 |
+
time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection.
|
| 203 |
+
global_states_input_dim ( `int`, *optional*, defaults to 1536):
|
| 204 |
+
Input dimension of the global hidden states projection.
|
| 205 |
+
cross_attention_input_dim ( `int`, *optional*, defaults to 768):
|
| 206 |
+
Input dimension of the cross-attention projection
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
_supports_gradient_checkpointing = True
|
| 210 |
+
_skip_layerwise_casting_patterns = ["preprocess_conv", "postprocess_conv", "^proj_in$", "^proj_out$", "norm"]
|
| 211 |
+
|
| 212 |
+
@register_to_config
|
| 213 |
+
def __init__(
|
| 214 |
+
self,
|
| 215 |
+
sample_size: int = 1024,
|
| 216 |
+
in_channels: int = 64,
|
| 217 |
+
num_layers: int = 24,
|
| 218 |
+
attention_head_dim: int = 64,
|
| 219 |
+
num_attention_heads: int = 24,
|
| 220 |
+
num_key_value_attention_heads: int = 12,
|
| 221 |
+
out_channels: int = 64,
|
| 222 |
+
cross_attention_dim: int = 768,
|
| 223 |
+
time_proj_dim: int = 256,
|
| 224 |
+
global_states_input_dim: int = 1536,
|
| 225 |
+
cross_attention_input_dim: int = 768,
|
| 226 |
+
):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.sample_size = sample_size
|
| 229 |
+
self.out_channels = out_channels
|
| 230 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 231 |
+
|
| 232 |
+
self.time_proj = StableAudioGaussianFourierProjection(
|
| 233 |
+
embedding_size=time_proj_dim // 2,
|
| 234 |
+
flip_sin_to_cos=True,
|
| 235 |
+
log=False,
|
| 236 |
+
set_W_to_weight=False,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
self.timestep_proj = nn.Sequential(
|
| 240 |
+
nn.Linear(time_proj_dim, self.inner_dim, bias=True),
|
| 241 |
+
nn.SiLU(),
|
| 242 |
+
nn.Linear(self.inner_dim, self.inner_dim, bias=True),
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
self.global_proj = nn.Sequential(
|
| 246 |
+
nn.Linear(global_states_input_dim, self.inner_dim, bias=False),
|
| 247 |
+
nn.SiLU(),
|
| 248 |
+
nn.Linear(self.inner_dim, self.inner_dim, bias=False),
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self.cross_attention_proj = nn.Sequential(
|
| 252 |
+
nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False),
|
| 253 |
+
nn.SiLU(),
|
| 254 |
+
nn.Linear(cross_attention_dim, cross_attention_dim, bias=False),
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False)
|
| 258 |
+
self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False)
|
| 259 |
+
|
| 260 |
+
self.transformer_blocks = nn.ModuleList(
|
| 261 |
+
[
|
| 262 |
+
StableAudioDiTBlock(
|
| 263 |
+
dim=self.inner_dim,
|
| 264 |
+
num_attention_heads=num_attention_heads,
|
| 265 |
+
num_key_value_attention_heads=num_key_value_attention_heads,
|
| 266 |
+
attention_head_dim=attention_head_dim,
|
| 267 |
+
cross_attention_dim=cross_attention_dim,
|
| 268 |
+
)
|
| 269 |
+
for i in range(num_layers)
|
| 270 |
+
]
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False)
|
| 274 |
+
self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False)
|
| 275 |
+
|
| 276 |
+
self.gradient_checkpointing = False
|
| 277 |
+
|
| 278 |
+
@property
|
| 279 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 280 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 281 |
+
r"""
|
| 282 |
+
Returns:
|
| 283 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 284 |
+
indexed by its weight name.
|
| 285 |
+
"""
|
| 286 |
+
# set recursively
|
| 287 |
+
processors = {}
|
| 288 |
+
|
| 289 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 290 |
+
if hasattr(module, "get_processor"):
|
| 291 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 292 |
+
|
| 293 |
+
for sub_name, child in module.named_children():
|
| 294 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 295 |
+
|
| 296 |
+
return processors
|
| 297 |
+
|
| 298 |
+
for name, module in self.named_children():
|
| 299 |
+
fn_recursive_add_processors(name, module, processors)
|
| 300 |
+
|
| 301 |
+
return processors
|
| 302 |
+
|
| 303 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 304 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 305 |
+
r"""
|
| 306 |
+
Sets the attention processor to use to compute attention.
|
| 307 |
+
|
| 308 |
+
Parameters:
|
| 309 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 310 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 311 |
+
for **all** `Attention` layers.
|
| 312 |
+
|
| 313 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 314 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 315 |
+
|
| 316 |
+
"""
|
| 317 |
+
count = len(self.attn_processors.keys())
|
| 318 |
+
|
| 319 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 320 |
+
raise ValueError(
|
| 321 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 322 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 326 |
+
if hasattr(module, "set_processor"):
|
| 327 |
+
if not isinstance(processor, dict):
|
| 328 |
+
module.set_processor(processor)
|
| 329 |
+
else:
|
| 330 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 331 |
+
|
| 332 |
+
for sub_name, child in module.named_children():
|
| 333 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 334 |
+
|
| 335 |
+
for name, module in self.named_children():
|
| 336 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 337 |
+
|
| 338 |
+
# Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio
|
| 339 |
+
def set_default_attn_processor(self):
|
| 340 |
+
"""
|
| 341 |
+
Disables custom attention processors and sets the default attention implementation.
|
| 342 |
+
"""
|
| 343 |
+
self.set_attn_processor(StableAudioAttnProcessor2_0())
|
| 344 |
+
|
| 345 |
+
def forward(
|
| 346 |
+
self,
|
| 347 |
+
hidden_states: torch.FloatTensor,
|
| 348 |
+
timestep: torch.LongTensor = None,
|
| 349 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 350 |
+
global_hidden_states: torch.FloatTensor = None,
|
| 351 |
+
rotary_embedding: torch.FloatTensor = None,
|
| 352 |
+
return_dict: bool = True,
|
| 353 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 354 |
+
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
| 355 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 356 |
+
"""
|
| 357 |
+
The [`StableAudioDiTModel`] forward method.
|
| 358 |
+
|
| 359 |
+
Args:
|
| 360 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`):
|
| 361 |
+
Input `hidden_states`.
|
| 362 |
+
timestep ( `torch.LongTensor`):
|
| 363 |
+
Used to indicate denoising step.
|
| 364 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`):
|
| 365 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 366 |
+
global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`):
|
| 367 |
+
Global embeddings that will be prepended to the hidden states.
|
| 368 |
+
rotary_embedding (`torch.Tensor`):
|
| 369 |
+
The rotary embeddings to apply on query and key tensors during attention calculation.
|
| 370 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 371 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 372 |
+
tuple.
|
| 373 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
|
| 374 |
+
Mask to avoid performing attention on padding token indices, formed by concatenating the attention
|
| 375 |
+
masks
|
| 376 |
+
for the two text encoders together. Mask values selected in `[0, 1]`:
|
| 377 |
+
|
| 378 |
+
- 1 for tokens that are **not masked**,
|
| 379 |
+
- 0 for tokens that are **masked**.
|
| 380 |
+
encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*):
|
| 381 |
+
Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating
|
| 382 |
+
the attention masks
|
| 383 |
+
for the two text encoders together. Mask values selected in `[0, 1]`:
|
| 384 |
+
|
| 385 |
+
- 1 for tokens that are **not masked**,
|
| 386 |
+
- 0 for tokens that are **masked**.
|
| 387 |
+
Returns:
|
| 388 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 389 |
+
`tuple` where the first element is the sample tensor.
|
| 390 |
+
"""
|
| 391 |
+
cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states)
|
| 392 |
+
global_hidden_states = self.global_proj(global_hidden_states)
|
| 393 |
+
time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype)))
|
| 394 |
+
|
| 395 |
+
global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1)
|
| 396 |
+
|
| 397 |
+
hidden_states = self.preprocess_conv(hidden_states) + hidden_states
|
| 398 |
+
# (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim)
|
| 399 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 400 |
+
|
| 401 |
+
hidden_states = self.proj_in(hidden_states)
|
| 402 |
+
|
| 403 |
+
# prepend global states to hidden states
|
| 404 |
+
hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2)
|
| 405 |
+
if attention_mask is not None:
|
| 406 |
+
prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool)
|
| 407 |
+
attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1)
|
| 408 |
+
|
| 409 |
+
for block in self.transformer_blocks:
|
| 410 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 411 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 412 |
+
block,
|
| 413 |
+
hidden_states,
|
| 414 |
+
attention_mask,
|
| 415 |
+
cross_attention_hidden_states,
|
| 416 |
+
encoder_attention_mask,
|
| 417 |
+
rotary_embedding,
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
else:
|
| 421 |
+
hidden_states = block(
|
| 422 |
+
hidden_states=hidden_states,
|
| 423 |
+
attention_mask=attention_mask,
|
| 424 |
+
encoder_hidden_states=cross_attention_hidden_states,
|
| 425 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 426 |
+
rotary_embedding=rotary_embedding,
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
hidden_states = self.proj_out(hidden_states)
|
| 430 |
+
|
| 431 |
+
# (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length)
|
| 432 |
+
# remove prepend length that has been added by global hidden states
|
| 433 |
+
hidden_states = hidden_states.transpose(1, 2)[:, :, 1:]
|
| 434 |
+
hidden_states = self.postprocess_conv(hidden_states) + hidden_states
|
| 435 |
+
|
| 436 |
+
if not return_dict:
|
| 437 |
+
return (hidden_states,)
|
| 438 |
+
|
| 439 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/t5_film_transformer.py
ADDED
|
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
import math
|
| 15 |
+
from typing import Optional, Tuple
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 21 |
+
from ..attention_processor import Attention
|
| 22 |
+
from ..embeddings import get_timestep_embedding
|
| 23 |
+
from ..modeling_utils import ModelMixin
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class T5FilmDecoder(ModelMixin, ConfigMixin):
|
| 27 |
+
r"""
|
| 28 |
+
T5 style decoder with FiLM conditioning.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
input_dims (`int`, *optional*, defaults to `128`):
|
| 32 |
+
The number of input dimensions.
|
| 33 |
+
targets_length (`int`, *optional*, defaults to `256`):
|
| 34 |
+
The length of the targets.
|
| 35 |
+
d_model (`int`, *optional*, defaults to `768`):
|
| 36 |
+
Size of the input hidden states.
|
| 37 |
+
num_layers (`int`, *optional*, defaults to `12`):
|
| 38 |
+
The number of `DecoderLayer`'s to use.
|
| 39 |
+
num_heads (`int`, *optional*, defaults to `12`):
|
| 40 |
+
The number of attention heads to use.
|
| 41 |
+
d_kv (`int`, *optional*, defaults to `64`):
|
| 42 |
+
Size of the key-value projection vectors.
|
| 43 |
+
d_ff (`int`, *optional*, defaults to `2048`):
|
| 44 |
+
The number of dimensions in the intermediate feed-forward layer of `DecoderLayer`'s.
|
| 45 |
+
dropout_rate (`float`, *optional*, defaults to `0.1`):
|
| 46 |
+
Dropout probability.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
@register_to_config
|
| 50 |
+
def __init__(
|
| 51 |
+
self,
|
| 52 |
+
input_dims: int = 128,
|
| 53 |
+
targets_length: int = 256,
|
| 54 |
+
max_decoder_noise_time: float = 2000.0,
|
| 55 |
+
d_model: int = 768,
|
| 56 |
+
num_layers: int = 12,
|
| 57 |
+
num_heads: int = 12,
|
| 58 |
+
d_kv: int = 64,
|
| 59 |
+
d_ff: int = 2048,
|
| 60 |
+
dropout_rate: float = 0.1,
|
| 61 |
+
):
|
| 62 |
+
super().__init__()
|
| 63 |
+
|
| 64 |
+
self.conditioning_emb = nn.Sequential(
|
| 65 |
+
nn.Linear(d_model, d_model * 4, bias=False),
|
| 66 |
+
nn.SiLU(),
|
| 67 |
+
nn.Linear(d_model * 4, d_model * 4, bias=False),
|
| 68 |
+
nn.SiLU(),
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
self.position_encoding = nn.Embedding(targets_length, d_model)
|
| 72 |
+
self.position_encoding.weight.requires_grad = False
|
| 73 |
+
|
| 74 |
+
self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False)
|
| 75 |
+
|
| 76 |
+
self.dropout = nn.Dropout(p=dropout_rate)
|
| 77 |
+
|
| 78 |
+
self.decoders = nn.ModuleList()
|
| 79 |
+
for lyr_num in range(num_layers):
|
| 80 |
+
# FiLM conditional T5 decoder
|
| 81 |
+
lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate)
|
| 82 |
+
self.decoders.append(lyr)
|
| 83 |
+
|
| 84 |
+
self.decoder_norm = T5LayerNorm(d_model)
|
| 85 |
+
|
| 86 |
+
self.post_dropout = nn.Dropout(p=dropout_rate)
|
| 87 |
+
self.spec_out = nn.Linear(d_model, input_dims, bias=False)
|
| 88 |
+
|
| 89 |
+
def encoder_decoder_mask(self, query_input: torch.Tensor, key_input: torch.Tensor) -> torch.Tensor:
|
| 90 |
+
mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2))
|
| 91 |
+
return mask.unsqueeze(-3)
|
| 92 |
+
|
| 93 |
+
def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time):
|
| 94 |
+
batch, _, _ = decoder_input_tokens.shape
|
| 95 |
+
assert decoder_noise_time.shape == (batch,)
|
| 96 |
+
|
| 97 |
+
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
|
| 98 |
+
time_steps = get_timestep_embedding(
|
| 99 |
+
decoder_noise_time * self.config.max_decoder_noise_time,
|
| 100 |
+
embedding_dim=self.config.d_model,
|
| 101 |
+
max_period=self.config.max_decoder_noise_time,
|
| 102 |
+
).to(dtype=self.dtype)
|
| 103 |
+
|
| 104 |
+
conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1)
|
| 105 |
+
|
| 106 |
+
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
|
| 107 |
+
|
| 108 |
+
seq_length = decoder_input_tokens.shape[1]
|
| 109 |
+
|
| 110 |
+
# If we want to use relative positions for audio context, we can just offset
|
| 111 |
+
# this sequence by the length of encodings_and_masks.
|
| 112 |
+
decoder_positions = torch.broadcast_to(
|
| 113 |
+
torch.arange(seq_length, device=decoder_input_tokens.device),
|
| 114 |
+
(batch, seq_length),
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
position_encodings = self.position_encoding(decoder_positions)
|
| 118 |
+
|
| 119 |
+
inputs = self.continuous_inputs_projection(decoder_input_tokens)
|
| 120 |
+
inputs += position_encodings
|
| 121 |
+
y = self.dropout(inputs)
|
| 122 |
+
|
| 123 |
+
# decoder: No padding present.
|
| 124 |
+
decoder_mask = torch.ones(
|
| 125 |
+
decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Translate encoding masks to encoder-decoder masks.
|
| 129 |
+
encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for x, y in encodings_and_masks]
|
| 130 |
+
|
| 131 |
+
# cross attend style: concat encodings
|
| 132 |
+
encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1)
|
| 133 |
+
encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1)
|
| 134 |
+
|
| 135 |
+
for lyr in self.decoders:
|
| 136 |
+
y = lyr(
|
| 137 |
+
y,
|
| 138 |
+
conditioning_emb=conditioning_emb,
|
| 139 |
+
encoder_hidden_states=encoded,
|
| 140 |
+
encoder_attention_mask=encoder_decoder_mask,
|
| 141 |
+
)[0]
|
| 142 |
+
|
| 143 |
+
y = self.decoder_norm(y)
|
| 144 |
+
y = self.post_dropout(y)
|
| 145 |
+
|
| 146 |
+
spec_out = self.spec_out(y)
|
| 147 |
+
return spec_out
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class DecoderLayer(nn.Module):
|
| 151 |
+
r"""
|
| 152 |
+
T5 decoder layer.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
d_model (`int`):
|
| 156 |
+
Size of the input hidden states.
|
| 157 |
+
d_kv (`int`):
|
| 158 |
+
Size of the key-value projection vectors.
|
| 159 |
+
num_heads (`int`):
|
| 160 |
+
Number of attention heads.
|
| 161 |
+
d_ff (`int`):
|
| 162 |
+
Size of the intermediate feed-forward layer.
|
| 163 |
+
dropout_rate (`float`):
|
| 164 |
+
Dropout probability.
|
| 165 |
+
layer_norm_epsilon (`float`, *optional*, defaults to `1e-6`):
|
| 166 |
+
A small value used for numerical stability to avoid dividing by zero.
|
| 167 |
+
"""
|
| 168 |
+
|
| 169 |
+
def __init__(
|
| 170 |
+
self, d_model: int, d_kv: int, num_heads: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float = 1e-6
|
| 171 |
+
):
|
| 172 |
+
super().__init__()
|
| 173 |
+
self.layer = nn.ModuleList()
|
| 174 |
+
|
| 175 |
+
# cond self attention: layer 0
|
| 176 |
+
self.layer.append(
|
| 177 |
+
T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate)
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# cross attention: layer 1
|
| 181 |
+
self.layer.append(
|
| 182 |
+
T5LayerCrossAttention(
|
| 183 |
+
d_model=d_model,
|
| 184 |
+
d_kv=d_kv,
|
| 185 |
+
num_heads=num_heads,
|
| 186 |
+
dropout_rate=dropout_rate,
|
| 187 |
+
layer_norm_epsilon=layer_norm_epsilon,
|
| 188 |
+
)
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
# Film Cond MLP + dropout: last layer
|
| 192 |
+
self.layer.append(
|
| 193 |
+
T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon)
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
def forward(
|
| 197 |
+
self,
|
| 198 |
+
hidden_states: torch.Tensor,
|
| 199 |
+
conditioning_emb: Optional[torch.Tensor] = None,
|
| 200 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 201 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 202 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 203 |
+
encoder_decoder_position_bias=None,
|
| 204 |
+
) -> Tuple[torch.Tensor]:
|
| 205 |
+
hidden_states = self.layer[0](
|
| 206 |
+
hidden_states,
|
| 207 |
+
conditioning_emb=conditioning_emb,
|
| 208 |
+
attention_mask=attention_mask,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if encoder_hidden_states is not None:
|
| 212 |
+
encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -1e10).to(
|
| 213 |
+
encoder_hidden_states.dtype
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
hidden_states = self.layer[1](
|
| 217 |
+
hidden_states,
|
| 218 |
+
key_value_states=encoder_hidden_states,
|
| 219 |
+
attention_mask=encoder_extended_attention_mask,
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# Apply Film Conditional Feed Forward layer
|
| 223 |
+
hidden_states = self.layer[-1](hidden_states, conditioning_emb)
|
| 224 |
+
|
| 225 |
+
return (hidden_states,)
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
class T5LayerSelfAttentionCond(nn.Module):
|
| 229 |
+
r"""
|
| 230 |
+
T5 style self-attention layer with conditioning.
|
| 231 |
+
|
| 232 |
+
Args:
|
| 233 |
+
d_model (`int`):
|
| 234 |
+
Size of the input hidden states.
|
| 235 |
+
d_kv (`int`):
|
| 236 |
+
Size of the key-value projection vectors.
|
| 237 |
+
num_heads (`int`):
|
| 238 |
+
Number of attention heads.
|
| 239 |
+
dropout_rate (`float`):
|
| 240 |
+
Dropout probability.
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float):
|
| 244 |
+
super().__init__()
|
| 245 |
+
self.layer_norm = T5LayerNorm(d_model)
|
| 246 |
+
self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
|
| 247 |
+
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
|
| 248 |
+
self.dropout = nn.Dropout(dropout_rate)
|
| 249 |
+
|
| 250 |
+
def forward(
|
| 251 |
+
self,
|
| 252 |
+
hidden_states: torch.Tensor,
|
| 253 |
+
conditioning_emb: Optional[torch.Tensor] = None,
|
| 254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 255 |
+
) -> torch.Tensor:
|
| 256 |
+
# pre_self_attention_layer_norm
|
| 257 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
| 258 |
+
|
| 259 |
+
if conditioning_emb is not None:
|
| 260 |
+
normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb)
|
| 261 |
+
|
| 262 |
+
# Self-attention block
|
| 263 |
+
attention_output = self.attention(normed_hidden_states)
|
| 264 |
+
|
| 265 |
+
hidden_states = hidden_states + self.dropout(attention_output)
|
| 266 |
+
|
| 267 |
+
return hidden_states
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
class T5LayerCrossAttention(nn.Module):
|
| 271 |
+
r"""
|
| 272 |
+
T5 style cross-attention layer.
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
d_model (`int`):
|
| 276 |
+
Size of the input hidden states.
|
| 277 |
+
d_kv (`int`):
|
| 278 |
+
Size of the key-value projection vectors.
|
| 279 |
+
num_heads (`int`):
|
| 280 |
+
Number of attention heads.
|
| 281 |
+
dropout_rate (`float`):
|
| 282 |
+
Dropout probability.
|
| 283 |
+
layer_norm_epsilon (`float`):
|
| 284 |
+
A small value used for numerical stability to avoid dividing by zero.
|
| 285 |
+
"""
|
| 286 |
+
|
| 287 |
+
def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float, layer_norm_epsilon: float):
|
| 288 |
+
super().__init__()
|
| 289 |
+
self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False)
|
| 290 |
+
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
|
| 291 |
+
self.dropout = nn.Dropout(dropout_rate)
|
| 292 |
+
|
| 293 |
+
def forward(
|
| 294 |
+
self,
|
| 295 |
+
hidden_states: torch.Tensor,
|
| 296 |
+
key_value_states: Optional[torch.Tensor] = None,
|
| 297 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 298 |
+
) -> torch.Tensor:
|
| 299 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
| 300 |
+
attention_output = self.attention(
|
| 301 |
+
normed_hidden_states,
|
| 302 |
+
encoder_hidden_states=key_value_states,
|
| 303 |
+
attention_mask=attention_mask.squeeze(1),
|
| 304 |
+
)
|
| 305 |
+
layer_output = hidden_states + self.dropout(attention_output)
|
| 306 |
+
return layer_output
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class T5LayerFFCond(nn.Module):
|
| 310 |
+
r"""
|
| 311 |
+
T5 style feed-forward conditional layer.
|
| 312 |
+
|
| 313 |
+
Args:
|
| 314 |
+
d_model (`int`):
|
| 315 |
+
Size of the input hidden states.
|
| 316 |
+
d_ff (`int`):
|
| 317 |
+
Size of the intermediate feed-forward layer.
|
| 318 |
+
dropout_rate (`float`):
|
| 319 |
+
Dropout probability.
|
| 320 |
+
layer_norm_epsilon (`float`):
|
| 321 |
+
A small value used for numerical stability to avoid dividing by zero.
|
| 322 |
+
"""
|
| 323 |
+
|
| 324 |
+
def __init__(self, d_model: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float):
|
| 325 |
+
super().__init__()
|
| 326 |
+
self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate)
|
| 327 |
+
self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model)
|
| 328 |
+
self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon)
|
| 329 |
+
self.dropout = nn.Dropout(dropout_rate)
|
| 330 |
+
|
| 331 |
+
def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
| 332 |
+
forwarded_states = self.layer_norm(hidden_states)
|
| 333 |
+
if conditioning_emb is not None:
|
| 334 |
+
forwarded_states = self.film(forwarded_states, conditioning_emb)
|
| 335 |
+
|
| 336 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
| 337 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
| 338 |
+
return hidden_states
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class T5DenseGatedActDense(nn.Module):
|
| 342 |
+
r"""
|
| 343 |
+
T5 style feed-forward layer with gated activations and dropout.
|
| 344 |
+
|
| 345 |
+
Args:
|
| 346 |
+
d_model (`int`):
|
| 347 |
+
Size of the input hidden states.
|
| 348 |
+
d_ff (`int`):
|
| 349 |
+
Size of the intermediate feed-forward layer.
|
| 350 |
+
dropout_rate (`float`):
|
| 351 |
+
Dropout probability.
|
| 352 |
+
"""
|
| 353 |
+
|
| 354 |
+
def __init__(self, d_model: int, d_ff: int, dropout_rate: float):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.wi_0 = nn.Linear(d_model, d_ff, bias=False)
|
| 357 |
+
self.wi_1 = nn.Linear(d_model, d_ff, bias=False)
|
| 358 |
+
self.wo = nn.Linear(d_ff, d_model, bias=False)
|
| 359 |
+
self.dropout = nn.Dropout(dropout_rate)
|
| 360 |
+
self.act = NewGELUActivation()
|
| 361 |
+
|
| 362 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 363 |
+
hidden_gelu = self.act(self.wi_0(hidden_states))
|
| 364 |
+
hidden_linear = self.wi_1(hidden_states)
|
| 365 |
+
hidden_states = hidden_gelu * hidden_linear
|
| 366 |
+
hidden_states = self.dropout(hidden_states)
|
| 367 |
+
|
| 368 |
+
hidden_states = self.wo(hidden_states)
|
| 369 |
+
return hidden_states
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
class T5LayerNorm(nn.Module):
|
| 373 |
+
r"""
|
| 374 |
+
T5 style layer normalization module.
|
| 375 |
+
|
| 376 |
+
Args:
|
| 377 |
+
hidden_size (`int`):
|
| 378 |
+
Size of the input hidden states.
|
| 379 |
+
eps (`float`, `optional`, defaults to `1e-6`):
|
| 380 |
+
A small value used for numerical stability to avoid dividing by zero.
|
| 381 |
+
"""
|
| 382 |
+
|
| 383 |
+
def __init__(self, hidden_size: int, eps: float = 1e-6):
|
| 384 |
+
"""
|
| 385 |
+
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
|
| 386 |
+
"""
|
| 387 |
+
super().__init__()
|
| 388 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 389 |
+
self.variance_epsilon = eps
|
| 390 |
+
|
| 391 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 392 |
+
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
|
| 393 |
+
# Square Layer Normalization https://huggingface.co/papers/1910.07467 thus variance is calculated
|
| 394 |
+
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
|
| 395 |
+
# half-precision inputs is done in fp32
|
| 396 |
+
|
| 397 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
| 398 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 399 |
+
|
| 400 |
+
# convert into half-precision if necessary
|
| 401 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
| 402 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
| 403 |
+
|
| 404 |
+
return self.weight * hidden_states
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
class NewGELUActivation(nn.Module):
|
| 408 |
+
"""
|
| 409 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
| 410 |
+
the Gaussian Error Linear Units paper: https://huggingface.co/papers/1606.08415
|
| 411 |
+
"""
|
| 412 |
+
|
| 413 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 414 |
+
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
class T5FiLMLayer(nn.Module):
|
| 418 |
+
"""
|
| 419 |
+
T5 style FiLM Layer.
|
| 420 |
+
|
| 421 |
+
Args:
|
| 422 |
+
in_features (`int`):
|
| 423 |
+
Number of input features.
|
| 424 |
+
out_features (`int`):
|
| 425 |
+
Number of output features.
|
| 426 |
+
"""
|
| 427 |
+
|
| 428 |
+
def __init__(self, in_features: int, out_features: int):
|
| 429 |
+
super().__init__()
|
| 430 |
+
self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False)
|
| 431 |
+
|
| 432 |
+
def forward(self, x: torch.Tensor, conditioning_emb: torch.Tensor) -> torch.Tensor:
|
| 433 |
+
emb = self.scale_bias(conditioning_emb)
|
| 434 |
+
scale, shift = torch.chunk(emb, 2, -1)
|
| 435 |
+
x = x * (1 + scale) + shift
|
| 436 |
+
return x
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_2d.py
ADDED
|
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, Optional
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from ...configuration_utils import LegacyConfigMixin, register_to_config
|
| 21 |
+
from ...utils import deprecate, logging
|
| 22 |
+
from ..attention import BasicTransformerBlock
|
| 23 |
+
from ..embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
|
| 24 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 25 |
+
from ..modeling_utils import LegacyModelMixin
|
| 26 |
+
from ..normalization import AdaLayerNormSingle
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Transformer2DModelOutput(Transformer2DModelOutput):
|
| 33 |
+
def __init__(self, *args, **kwargs):
|
| 34 |
+
deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead."
|
| 35 |
+
deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message)
|
| 36 |
+
super().__init__(*args, **kwargs)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin):
|
| 40 |
+
"""
|
| 41 |
+
A 2D Transformer model for image-like data.
|
| 42 |
+
|
| 43 |
+
Parameters:
|
| 44 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
| 45 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
| 46 |
+
in_channels (`int`, *optional*):
|
| 47 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
| 48 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
| 49 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 50 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 51 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
| 52 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
| 53 |
+
num_vector_embeds (`int`, *optional*):
|
| 54 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
| 55 |
+
Includes the class for the masked latent pixel.
|
| 56 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
| 57 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
| 58 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
| 59 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
| 60 |
+
added to the hidden states.
|
| 61 |
+
|
| 62 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
| 63 |
+
attention_bias (`bool`, *optional*):
|
| 64 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
_supports_gradient_checkpointing = True
|
| 68 |
+
_no_split_modules = ["BasicTransformerBlock"]
|
| 69 |
+
_skip_layerwise_casting_patterns = ["latent_image_embedding", "norm"]
|
| 70 |
+
|
| 71 |
+
@register_to_config
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
num_attention_heads: int = 16,
|
| 75 |
+
attention_head_dim: int = 88,
|
| 76 |
+
in_channels: Optional[int] = None,
|
| 77 |
+
out_channels: Optional[int] = None,
|
| 78 |
+
num_layers: int = 1,
|
| 79 |
+
dropout: float = 0.0,
|
| 80 |
+
norm_num_groups: int = 32,
|
| 81 |
+
cross_attention_dim: Optional[int] = None,
|
| 82 |
+
attention_bias: bool = False,
|
| 83 |
+
sample_size: Optional[int] = None,
|
| 84 |
+
num_vector_embeds: Optional[int] = None,
|
| 85 |
+
patch_size: Optional[int] = None,
|
| 86 |
+
activation_fn: str = "geglu",
|
| 87 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 88 |
+
use_linear_projection: bool = False,
|
| 89 |
+
only_cross_attention: bool = False,
|
| 90 |
+
double_self_attention: bool = False,
|
| 91 |
+
upcast_attention: bool = False,
|
| 92 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
| 93 |
+
norm_elementwise_affine: bool = True,
|
| 94 |
+
norm_eps: float = 1e-5,
|
| 95 |
+
attention_type: str = "default",
|
| 96 |
+
caption_channels: int = None,
|
| 97 |
+
interpolation_scale: float = None,
|
| 98 |
+
use_additional_conditions: Optional[bool] = None,
|
| 99 |
+
):
|
| 100 |
+
super().__init__()
|
| 101 |
+
|
| 102 |
+
# Validate inputs.
|
| 103 |
+
if patch_size is not None:
|
| 104 |
+
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
|
| 105 |
+
raise NotImplementedError(
|
| 106 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
| 107 |
+
)
|
| 108 |
+
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
|
| 109 |
+
raise ValueError(
|
| 110 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
| 114 |
+
# Define whether input is continuous or discrete depending on configuration
|
| 115 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
| 116 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
| 117 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
| 118 |
+
|
| 119 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
| 120 |
+
raise ValueError(
|
| 121 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
| 122 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
| 123 |
+
)
|
| 124 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
| 125 |
+
raise ValueError(
|
| 126 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
| 127 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
| 128 |
+
)
|
| 129 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
| 130 |
+
raise ValueError(
|
| 131 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
| 132 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
| 136 |
+
deprecation_message = (
|
| 137 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
| 138 |
+
" incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config."
|
| 139 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
| 140 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
| 141 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
| 142 |
+
)
|
| 143 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
| 144 |
+
norm_type = "ada_norm"
|
| 145 |
+
|
| 146 |
+
# Set some common variables used across the board.
|
| 147 |
+
self.use_linear_projection = use_linear_projection
|
| 148 |
+
self.interpolation_scale = interpolation_scale
|
| 149 |
+
self.caption_channels = caption_channels
|
| 150 |
+
self.num_attention_heads = num_attention_heads
|
| 151 |
+
self.attention_head_dim = attention_head_dim
|
| 152 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 153 |
+
self.in_channels = in_channels
|
| 154 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
| 155 |
+
self.gradient_checkpointing = False
|
| 156 |
+
|
| 157 |
+
if use_additional_conditions is None:
|
| 158 |
+
if norm_type == "ada_norm_single" and sample_size == 128:
|
| 159 |
+
use_additional_conditions = True
|
| 160 |
+
else:
|
| 161 |
+
use_additional_conditions = False
|
| 162 |
+
self.use_additional_conditions = use_additional_conditions
|
| 163 |
+
|
| 164 |
+
# 2. Initialize the right blocks.
|
| 165 |
+
# These functions follow a common structure:
|
| 166 |
+
# a. Initialize the input blocks. b. Initialize the transformer blocks.
|
| 167 |
+
# c. Initialize the output blocks and other projection blocks when necessary.
|
| 168 |
+
if self.is_input_continuous:
|
| 169 |
+
self._init_continuous_input(norm_type=norm_type)
|
| 170 |
+
elif self.is_input_vectorized:
|
| 171 |
+
self._init_vectorized_inputs(norm_type=norm_type)
|
| 172 |
+
elif self.is_input_patches:
|
| 173 |
+
self._init_patched_inputs(norm_type=norm_type)
|
| 174 |
+
|
| 175 |
+
def _init_continuous_input(self, norm_type):
|
| 176 |
+
self.norm = torch.nn.GroupNorm(
|
| 177 |
+
num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True
|
| 178 |
+
)
|
| 179 |
+
if self.use_linear_projection:
|
| 180 |
+
self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim)
|
| 181 |
+
else:
|
| 182 |
+
self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0)
|
| 183 |
+
|
| 184 |
+
self.transformer_blocks = nn.ModuleList(
|
| 185 |
+
[
|
| 186 |
+
BasicTransformerBlock(
|
| 187 |
+
self.inner_dim,
|
| 188 |
+
self.config.num_attention_heads,
|
| 189 |
+
self.config.attention_head_dim,
|
| 190 |
+
dropout=self.config.dropout,
|
| 191 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 192 |
+
activation_fn=self.config.activation_fn,
|
| 193 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 194 |
+
attention_bias=self.config.attention_bias,
|
| 195 |
+
only_cross_attention=self.config.only_cross_attention,
|
| 196 |
+
double_self_attention=self.config.double_self_attention,
|
| 197 |
+
upcast_attention=self.config.upcast_attention,
|
| 198 |
+
norm_type=norm_type,
|
| 199 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 200 |
+
norm_eps=self.config.norm_eps,
|
| 201 |
+
attention_type=self.config.attention_type,
|
| 202 |
+
)
|
| 203 |
+
for _ in range(self.config.num_layers)
|
| 204 |
+
]
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
if self.use_linear_projection:
|
| 208 |
+
self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels)
|
| 209 |
+
else:
|
| 210 |
+
self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0)
|
| 211 |
+
|
| 212 |
+
def _init_vectorized_inputs(self, norm_type):
|
| 213 |
+
assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
| 214 |
+
assert self.config.num_vector_embeds is not None, (
|
| 215 |
+
"Transformer2DModel over discrete input must provide num_embed"
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
self.height = self.config.sample_size
|
| 219 |
+
self.width = self.config.sample_size
|
| 220 |
+
self.num_latent_pixels = self.height * self.width
|
| 221 |
+
|
| 222 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
| 223 |
+
num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
self.transformer_blocks = nn.ModuleList(
|
| 227 |
+
[
|
| 228 |
+
BasicTransformerBlock(
|
| 229 |
+
self.inner_dim,
|
| 230 |
+
self.config.num_attention_heads,
|
| 231 |
+
self.config.attention_head_dim,
|
| 232 |
+
dropout=self.config.dropout,
|
| 233 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 234 |
+
activation_fn=self.config.activation_fn,
|
| 235 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 236 |
+
attention_bias=self.config.attention_bias,
|
| 237 |
+
only_cross_attention=self.config.only_cross_attention,
|
| 238 |
+
double_self_attention=self.config.double_self_attention,
|
| 239 |
+
upcast_attention=self.config.upcast_attention,
|
| 240 |
+
norm_type=norm_type,
|
| 241 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 242 |
+
norm_eps=self.config.norm_eps,
|
| 243 |
+
attention_type=self.config.attention_type,
|
| 244 |
+
)
|
| 245 |
+
for _ in range(self.config.num_layers)
|
| 246 |
+
]
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
self.norm_out = nn.LayerNorm(self.inner_dim)
|
| 250 |
+
self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1)
|
| 251 |
+
|
| 252 |
+
def _init_patched_inputs(self, norm_type):
|
| 253 |
+
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
| 254 |
+
|
| 255 |
+
self.height = self.config.sample_size
|
| 256 |
+
self.width = self.config.sample_size
|
| 257 |
+
|
| 258 |
+
self.patch_size = self.config.patch_size
|
| 259 |
+
interpolation_scale = (
|
| 260 |
+
self.config.interpolation_scale
|
| 261 |
+
if self.config.interpolation_scale is not None
|
| 262 |
+
else max(self.config.sample_size // 64, 1)
|
| 263 |
+
)
|
| 264 |
+
self.pos_embed = PatchEmbed(
|
| 265 |
+
height=self.config.sample_size,
|
| 266 |
+
width=self.config.sample_size,
|
| 267 |
+
patch_size=self.config.patch_size,
|
| 268 |
+
in_channels=self.in_channels,
|
| 269 |
+
embed_dim=self.inner_dim,
|
| 270 |
+
interpolation_scale=interpolation_scale,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
self.transformer_blocks = nn.ModuleList(
|
| 274 |
+
[
|
| 275 |
+
BasicTransformerBlock(
|
| 276 |
+
self.inner_dim,
|
| 277 |
+
self.config.num_attention_heads,
|
| 278 |
+
self.config.attention_head_dim,
|
| 279 |
+
dropout=self.config.dropout,
|
| 280 |
+
cross_attention_dim=self.config.cross_attention_dim,
|
| 281 |
+
activation_fn=self.config.activation_fn,
|
| 282 |
+
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
| 283 |
+
attention_bias=self.config.attention_bias,
|
| 284 |
+
only_cross_attention=self.config.only_cross_attention,
|
| 285 |
+
double_self_attention=self.config.double_self_attention,
|
| 286 |
+
upcast_attention=self.config.upcast_attention,
|
| 287 |
+
norm_type=norm_type,
|
| 288 |
+
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
| 289 |
+
norm_eps=self.config.norm_eps,
|
| 290 |
+
attention_type=self.config.attention_type,
|
| 291 |
+
)
|
| 292 |
+
for _ in range(self.config.num_layers)
|
| 293 |
+
]
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
if self.config.norm_type != "ada_norm_single":
|
| 297 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 298 |
+
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
| 299 |
+
self.proj_out_2 = nn.Linear(
|
| 300 |
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
| 301 |
+
)
|
| 302 |
+
elif self.config.norm_type == "ada_norm_single":
|
| 303 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 304 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
| 305 |
+
self.proj_out = nn.Linear(
|
| 306 |
+
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# PixArt-Alpha blocks.
|
| 310 |
+
self.adaln_single = None
|
| 311 |
+
if self.config.norm_type == "ada_norm_single":
|
| 312 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
| 313 |
+
# additional conditions until we find better name
|
| 314 |
+
self.adaln_single = AdaLayerNormSingle(
|
| 315 |
+
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
self.caption_projection = None
|
| 319 |
+
if self.caption_channels is not None:
|
| 320 |
+
self.caption_projection = PixArtAlphaTextProjection(
|
| 321 |
+
in_features=self.caption_channels, hidden_size=self.inner_dim
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
def forward(
|
| 325 |
+
self,
|
| 326 |
+
hidden_states: torch.Tensor,
|
| 327 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 328 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 329 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
| 330 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 331 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 332 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 333 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 334 |
+
return_dict: bool = True,
|
| 335 |
+
):
|
| 336 |
+
"""
|
| 337 |
+
The [`Transformer2DModel`] forward method.
|
| 338 |
+
|
| 339 |
+
Args:
|
| 340 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
|
| 341 |
+
Input `hidden_states`.
|
| 342 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
| 343 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
| 344 |
+
self-attention.
|
| 345 |
+
timestep ( `torch.LongTensor`, *optional*):
|
| 346 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
| 347 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
| 348 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
| 349 |
+
`AdaLayerZeroNorm`.
|
| 350 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
| 351 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 352 |
+
`self.processor` in
|
| 353 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 354 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
| 355 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
| 356 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
| 357 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
| 358 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
| 359 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
| 360 |
+
|
| 361 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
| 362 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
| 363 |
+
|
| 364 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
| 365 |
+
above. This bias will be added to the cross-attention scores.
|
| 366 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 367 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
| 368 |
+
tuple.
|
| 369 |
+
|
| 370 |
+
Returns:
|
| 371 |
+
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
|
| 372 |
+
otherwise a `tuple` where the first element is the sample tensor.
|
| 373 |
+
"""
|
| 374 |
+
if cross_attention_kwargs is not None:
|
| 375 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 376 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 377 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 378 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 379 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 380 |
+
# expects mask of shape:
|
| 381 |
+
# [batch, key_tokens]
|
| 382 |
+
# adds singleton query_tokens dimension:
|
| 383 |
+
# [batch, 1, key_tokens]
|
| 384 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 385 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 386 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
| 387 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
| 388 |
+
# assume that mask is expressed as:
|
| 389 |
+
# (1 = keep, 0 = discard)
|
| 390 |
+
# convert mask into a bias that can be added to attention scores:
|
| 391 |
+
# (keep = +0, discard = -10000.0)
|
| 392 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 393 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 394 |
+
|
| 395 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 396 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 397 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
| 398 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 399 |
+
|
| 400 |
+
# 1. Input
|
| 401 |
+
if self.is_input_continuous:
|
| 402 |
+
batch_size, _, height, width = hidden_states.shape
|
| 403 |
+
residual = hidden_states
|
| 404 |
+
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
|
| 405 |
+
elif self.is_input_vectorized:
|
| 406 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
| 407 |
+
elif self.is_input_patches:
|
| 408 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
| 409 |
+
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
|
| 410 |
+
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
# 2. Blocks
|
| 414 |
+
for block in self.transformer_blocks:
|
| 415 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 416 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 417 |
+
block,
|
| 418 |
+
hidden_states,
|
| 419 |
+
attention_mask,
|
| 420 |
+
encoder_hidden_states,
|
| 421 |
+
encoder_attention_mask,
|
| 422 |
+
timestep,
|
| 423 |
+
cross_attention_kwargs,
|
| 424 |
+
class_labels,
|
| 425 |
+
)
|
| 426 |
+
else:
|
| 427 |
+
hidden_states = block(
|
| 428 |
+
hidden_states,
|
| 429 |
+
attention_mask=attention_mask,
|
| 430 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 431 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 432 |
+
timestep=timestep,
|
| 433 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 434 |
+
class_labels=class_labels,
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
# 3. Output
|
| 438 |
+
if self.is_input_continuous:
|
| 439 |
+
output = self._get_output_for_continuous_inputs(
|
| 440 |
+
hidden_states=hidden_states,
|
| 441 |
+
residual=residual,
|
| 442 |
+
batch_size=batch_size,
|
| 443 |
+
height=height,
|
| 444 |
+
width=width,
|
| 445 |
+
inner_dim=inner_dim,
|
| 446 |
+
)
|
| 447 |
+
elif self.is_input_vectorized:
|
| 448 |
+
output = self._get_output_for_vectorized_inputs(hidden_states)
|
| 449 |
+
elif self.is_input_patches:
|
| 450 |
+
output = self._get_output_for_patched_inputs(
|
| 451 |
+
hidden_states=hidden_states,
|
| 452 |
+
timestep=timestep,
|
| 453 |
+
class_labels=class_labels,
|
| 454 |
+
embedded_timestep=embedded_timestep,
|
| 455 |
+
height=height,
|
| 456 |
+
width=width,
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
if not return_dict:
|
| 460 |
+
return (output,)
|
| 461 |
+
|
| 462 |
+
return Transformer2DModelOutput(sample=output)
|
| 463 |
+
|
| 464 |
+
def _operate_on_continuous_inputs(self, hidden_states):
|
| 465 |
+
batch, _, height, width = hidden_states.shape
|
| 466 |
+
hidden_states = self.norm(hidden_states)
|
| 467 |
+
|
| 468 |
+
if not self.use_linear_projection:
|
| 469 |
+
hidden_states = self.proj_in(hidden_states)
|
| 470 |
+
inner_dim = hidden_states.shape[1]
|
| 471 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
| 472 |
+
else:
|
| 473 |
+
inner_dim = hidden_states.shape[1]
|
| 474 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
| 475 |
+
hidden_states = self.proj_in(hidden_states)
|
| 476 |
+
|
| 477 |
+
return hidden_states, inner_dim
|
| 478 |
+
|
| 479 |
+
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs):
|
| 480 |
+
batch_size = hidden_states.shape[0]
|
| 481 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 482 |
+
embedded_timestep = None
|
| 483 |
+
|
| 484 |
+
if self.adaln_single is not None:
|
| 485 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
| 486 |
+
raise ValueError(
|
| 487 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
| 488 |
+
)
|
| 489 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 490 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
if self.caption_projection is not None:
|
| 494 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 495 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
| 496 |
+
|
| 497 |
+
return hidden_states, encoder_hidden_states, timestep, embedded_timestep
|
| 498 |
+
|
| 499 |
+
def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim):
|
| 500 |
+
if not self.use_linear_projection:
|
| 501 |
+
hidden_states = (
|
| 502 |
+
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 503 |
+
)
|
| 504 |
+
hidden_states = self.proj_out(hidden_states)
|
| 505 |
+
else:
|
| 506 |
+
hidden_states = self.proj_out(hidden_states)
|
| 507 |
+
hidden_states = (
|
| 508 |
+
hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
output = hidden_states + residual
|
| 512 |
+
return output
|
| 513 |
+
|
| 514 |
+
def _get_output_for_vectorized_inputs(self, hidden_states):
|
| 515 |
+
hidden_states = self.norm_out(hidden_states)
|
| 516 |
+
logits = self.out(hidden_states)
|
| 517 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
| 518 |
+
logits = logits.permute(0, 2, 1)
|
| 519 |
+
# log(p(x_0))
|
| 520 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
| 521 |
+
return output
|
| 522 |
+
|
| 523 |
+
def _get_output_for_patched_inputs(
|
| 524 |
+
self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None
|
| 525 |
+
):
|
| 526 |
+
if self.config.norm_type != "ada_norm_single":
|
| 527 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
| 528 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 529 |
+
)
|
| 530 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
| 531 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
| 532 |
+
hidden_states = self.proj_out_2(hidden_states)
|
| 533 |
+
elif self.config.norm_type == "ada_norm_single":
|
| 534 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
| 535 |
+
hidden_states = self.norm_out(hidden_states)
|
| 536 |
+
# Modulation
|
| 537 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 538 |
+
hidden_states = self.proj_out(hidden_states)
|
| 539 |
+
hidden_states = hidden_states.squeeze(1)
|
| 540 |
+
|
| 541 |
+
# unpatchify
|
| 542 |
+
if self.adaln_single is None:
|
| 543 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
| 544 |
+
hidden_states = hidden_states.reshape(
|
| 545 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
| 546 |
+
)
|
| 547 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 548 |
+
output = hidden_states.reshape(
|
| 549 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
| 550 |
+
)
|
| 551 |
+
return output
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_allegro.py
ADDED
|
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The RhymesAI and The HuggingFace Team.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from typing import Optional, Tuple
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...utils import logging
|
| 24 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 25 |
+
from ..attention import FeedForward
|
| 26 |
+
from ..attention_processor import AllegroAttnProcessor2_0, Attention
|
| 27 |
+
from ..cache_utils import CacheMixin
|
| 28 |
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
| 29 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 30 |
+
from ..modeling_utils import ModelMixin
|
| 31 |
+
from ..normalization import AdaLayerNormSingle
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@maybe_allow_in_graph
|
| 38 |
+
class AllegroTransformerBlock(nn.Module):
|
| 39 |
+
r"""
|
| 40 |
+
Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
dim (`int`):
|
| 44 |
+
The number of channels in the input and output.
|
| 45 |
+
num_attention_heads (`int`):
|
| 46 |
+
The number of heads to use for multi-head attention.
|
| 47 |
+
attention_head_dim (`int`):
|
| 48 |
+
The number of channels in each head.
|
| 49 |
+
dropout (`float`, defaults to `0.0`):
|
| 50 |
+
The dropout probability to use.
|
| 51 |
+
cross_attention_dim (`int`, defaults to `2304`):
|
| 52 |
+
The dimension of the cross attention features.
|
| 53 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 54 |
+
Activation function to be used in feed-forward.
|
| 55 |
+
attention_bias (`bool`, defaults to `False`):
|
| 56 |
+
Whether or not to use bias in attention projection layers.
|
| 57 |
+
only_cross_attention (`bool`, defaults to `False`):
|
| 58 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 59 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 60 |
+
norm_eps (`float`, defaults to `1e-5`):
|
| 61 |
+
Epsilon value for normalization layers.
|
| 62 |
+
final_dropout (`bool` defaults to `False`):
|
| 63 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
dim: int,
|
| 69 |
+
num_attention_heads: int,
|
| 70 |
+
attention_head_dim: int,
|
| 71 |
+
dropout=0.0,
|
| 72 |
+
cross_attention_dim: Optional[int] = None,
|
| 73 |
+
activation_fn: str = "geglu",
|
| 74 |
+
attention_bias: bool = False,
|
| 75 |
+
norm_elementwise_affine: bool = True,
|
| 76 |
+
norm_eps: float = 1e-5,
|
| 77 |
+
):
|
| 78 |
+
super().__init__()
|
| 79 |
+
|
| 80 |
+
# 1. Self Attention
|
| 81 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 82 |
+
|
| 83 |
+
self.attn1 = Attention(
|
| 84 |
+
query_dim=dim,
|
| 85 |
+
heads=num_attention_heads,
|
| 86 |
+
dim_head=attention_head_dim,
|
| 87 |
+
dropout=dropout,
|
| 88 |
+
bias=attention_bias,
|
| 89 |
+
cross_attention_dim=None,
|
| 90 |
+
processor=AllegroAttnProcessor2_0(),
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# 2. Cross Attention
|
| 94 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 95 |
+
self.attn2 = Attention(
|
| 96 |
+
query_dim=dim,
|
| 97 |
+
cross_attention_dim=cross_attention_dim,
|
| 98 |
+
heads=num_attention_heads,
|
| 99 |
+
dim_head=attention_head_dim,
|
| 100 |
+
dropout=dropout,
|
| 101 |
+
bias=attention_bias,
|
| 102 |
+
processor=AllegroAttnProcessor2_0(),
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# 3. Feed Forward
|
| 106 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 107 |
+
|
| 108 |
+
self.ff = FeedForward(
|
| 109 |
+
dim,
|
| 110 |
+
dropout=dropout,
|
| 111 |
+
activation_fn=activation_fn,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# 4. Scale-shift
|
| 115 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
| 116 |
+
|
| 117 |
+
def forward(
|
| 118 |
+
self,
|
| 119 |
+
hidden_states: torch.Tensor,
|
| 120 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 121 |
+
temb: Optional[torch.LongTensor] = None,
|
| 122 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 123 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 124 |
+
image_rotary_emb=None,
|
| 125 |
+
) -> torch.Tensor:
|
| 126 |
+
# 0. Self-Attention
|
| 127 |
+
batch_size = hidden_states.shape[0]
|
| 128 |
+
|
| 129 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 130 |
+
self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1)
|
| 131 |
+
).chunk(6, dim=1)
|
| 132 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 133 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 134 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
| 135 |
+
|
| 136 |
+
attn_output = self.attn1(
|
| 137 |
+
norm_hidden_states,
|
| 138 |
+
encoder_hidden_states=None,
|
| 139 |
+
attention_mask=attention_mask,
|
| 140 |
+
image_rotary_emb=image_rotary_emb,
|
| 141 |
+
)
|
| 142 |
+
attn_output = gate_msa * attn_output
|
| 143 |
+
|
| 144 |
+
hidden_states = attn_output + hidden_states
|
| 145 |
+
if hidden_states.ndim == 4:
|
| 146 |
+
hidden_states = hidden_states.squeeze(1)
|
| 147 |
+
|
| 148 |
+
# 1. Cross-Attention
|
| 149 |
+
if self.attn2 is not None:
|
| 150 |
+
norm_hidden_states = hidden_states
|
| 151 |
+
|
| 152 |
+
attn_output = self.attn2(
|
| 153 |
+
norm_hidden_states,
|
| 154 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 155 |
+
attention_mask=encoder_attention_mask,
|
| 156 |
+
image_rotary_emb=None,
|
| 157 |
+
)
|
| 158 |
+
hidden_states = attn_output + hidden_states
|
| 159 |
+
|
| 160 |
+
# 2. Feed-forward
|
| 161 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 162 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 163 |
+
|
| 164 |
+
ff_output = self.ff(norm_hidden_states)
|
| 165 |
+
ff_output = gate_mlp * ff_output
|
| 166 |
+
|
| 167 |
+
hidden_states = ff_output + hidden_states
|
| 168 |
+
|
| 169 |
+
# TODO(aryan): maybe following line is not required
|
| 170 |
+
if hidden_states.ndim == 4:
|
| 171 |
+
hidden_states = hidden_states.squeeze(1)
|
| 172 |
+
|
| 173 |
+
return hidden_states
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class AllegroTransformer3DModel(ModelMixin, ConfigMixin, CacheMixin):
|
| 177 |
+
_supports_gradient_checkpointing = True
|
| 178 |
+
|
| 179 |
+
"""
|
| 180 |
+
A 3D Transformer model for video-like data.
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
patch_size (`int`, defaults to `2`):
|
| 184 |
+
The size of spatial patches to use in the patch embedding layer.
|
| 185 |
+
patch_size_t (`int`, defaults to `1`):
|
| 186 |
+
The size of temporal patches to use in the patch embedding layer.
|
| 187 |
+
num_attention_heads (`int`, defaults to `24`):
|
| 188 |
+
The number of heads to use for multi-head attention.
|
| 189 |
+
attention_head_dim (`int`, defaults to `96`):
|
| 190 |
+
The number of channels in each head.
|
| 191 |
+
in_channels (`int`, defaults to `4`):
|
| 192 |
+
The number of channels in the input.
|
| 193 |
+
out_channels (`int`, *optional*, defaults to `4`):
|
| 194 |
+
The number of channels in the output.
|
| 195 |
+
num_layers (`int`, defaults to `32`):
|
| 196 |
+
The number of layers of Transformer blocks to use.
|
| 197 |
+
dropout (`float`, defaults to `0.0`):
|
| 198 |
+
The dropout probability to use.
|
| 199 |
+
cross_attention_dim (`int`, defaults to `2304`):
|
| 200 |
+
The dimension of the cross attention features.
|
| 201 |
+
attention_bias (`bool`, defaults to `True`):
|
| 202 |
+
Whether or not to use bias in the attention projection layers.
|
| 203 |
+
sample_height (`int`, defaults to `90`):
|
| 204 |
+
The height of the input latents.
|
| 205 |
+
sample_width (`int`, defaults to `160`):
|
| 206 |
+
The width of the input latents.
|
| 207 |
+
sample_frames (`int`, defaults to `22`):
|
| 208 |
+
The number of frames in the input latents.
|
| 209 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 210 |
+
Activation function to use in feed-forward.
|
| 211 |
+
norm_elementwise_affine (`bool`, defaults to `False`):
|
| 212 |
+
Whether or not to use elementwise affine in normalization layers.
|
| 213 |
+
norm_eps (`float`, defaults to `1e-6`):
|
| 214 |
+
The epsilon value to use in normalization layers.
|
| 215 |
+
caption_channels (`int`, defaults to `4096`):
|
| 216 |
+
Number of channels to use for projecting the caption embeddings.
|
| 217 |
+
interpolation_scale_h (`float`, defaults to `2.0`):
|
| 218 |
+
Scaling factor to apply in 3D positional embeddings across height dimension.
|
| 219 |
+
interpolation_scale_w (`float`, defaults to `2.0`):
|
| 220 |
+
Scaling factor to apply in 3D positional embeddings across width dimension.
|
| 221 |
+
interpolation_scale_t (`float`, defaults to `2.2`):
|
| 222 |
+
Scaling factor to apply in 3D positional embeddings across time dimension.
|
| 223 |
+
"""
|
| 224 |
+
|
| 225 |
+
_supports_gradient_checkpointing = True
|
| 226 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm", "adaln_single"]
|
| 227 |
+
|
| 228 |
+
@register_to_config
|
| 229 |
+
def __init__(
|
| 230 |
+
self,
|
| 231 |
+
patch_size: int = 2,
|
| 232 |
+
patch_size_t: int = 1,
|
| 233 |
+
num_attention_heads: int = 24,
|
| 234 |
+
attention_head_dim: int = 96,
|
| 235 |
+
in_channels: int = 4,
|
| 236 |
+
out_channels: int = 4,
|
| 237 |
+
num_layers: int = 32,
|
| 238 |
+
dropout: float = 0.0,
|
| 239 |
+
cross_attention_dim: int = 2304,
|
| 240 |
+
attention_bias: bool = True,
|
| 241 |
+
sample_height: int = 90,
|
| 242 |
+
sample_width: int = 160,
|
| 243 |
+
sample_frames: int = 22,
|
| 244 |
+
activation_fn: str = "gelu-approximate",
|
| 245 |
+
norm_elementwise_affine: bool = False,
|
| 246 |
+
norm_eps: float = 1e-6,
|
| 247 |
+
caption_channels: int = 4096,
|
| 248 |
+
interpolation_scale_h: float = 2.0,
|
| 249 |
+
interpolation_scale_w: float = 2.0,
|
| 250 |
+
interpolation_scale_t: float = 2.2,
|
| 251 |
+
):
|
| 252 |
+
super().__init__()
|
| 253 |
+
|
| 254 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 255 |
+
|
| 256 |
+
interpolation_scale_t = (
|
| 257 |
+
interpolation_scale_t
|
| 258 |
+
if interpolation_scale_t is not None
|
| 259 |
+
else ((sample_frames - 1) // 16 + 1)
|
| 260 |
+
if sample_frames % 2 == 1
|
| 261 |
+
else sample_frames // 16
|
| 262 |
+
)
|
| 263 |
+
interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30
|
| 264 |
+
interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40
|
| 265 |
+
|
| 266 |
+
# 1. Patch embedding
|
| 267 |
+
self.pos_embed = PatchEmbed(
|
| 268 |
+
height=sample_height,
|
| 269 |
+
width=sample_width,
|
| 270 |
+
patch_size=patch_size,
|
| 271 |
+
in_channels=in_channels,
|
| 272 |
+
embed_dim=self.inner_dim,
|
| 273 |
+
pos_embed_type=None,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# 2. Transformer blocks
|
| 277 |
+
self.transformer_blocks = nn.ModuleList(
|
| 278 |
+
[
|
| 279 |
+
AllegroTransformerBlock(
|
| 280 |
+
self.inner_dim,
|
| 281 |
+
num_attention_heads,
|
| 282 |
+
attention_head_dim,
|
| 283 |
+
dropout=dropout,
|
| 284 |
+
cross_attention_dim=cross_attention_dim,
|
| 285 |
+
activation_fn=activation_fn,
|
| 286 |
+
attention_bias=attention_bias,
|
| 287 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 288 |
+
norm_eps=norm_eps,
|
| 289 |
+
)
|
| 290 |
+
for _ in range(num_layers)
|
| 291 |
+
]
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# 3. Output projection & norm
|
| 295 |
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 296 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
| 297 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels)
|
| 298 |
+
|
| 299 |
+
# 4. Timestep embeddings
|
| 300 |
+
self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)
|
| 301 |
+
|
| 302 |
+
# 5. Caption projection
|
| 303 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim)
|
| 304 |
+
|
| 305 |
+
self.gradient_checkpointing = False
|
| 306 |
+
|
| 307 |
+
def forward(
|
| 308 |
+
self,
|
| 309 |
+
hidden_states: torch.Tensor,
|
| 310 |
+
encoder_hidden_states: torch.Tensor,
|
| 311 |
+
timestep: torch.LongTensor,
|
| 312 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 313 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 314 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 315 |
+
return_dict: bool = True,
|
| 316 |
+
):
|
| 317 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 318 |
+
p_t = self.config.patch_size_t
|
| 319 |
+
p = self.config.patch_size
|
| 320 |
+
|
| 321 |
+
post_patch_num_frames = num_frames // p_t
|
| 322 |
+
post_patch_height = height // p
|
| 323 |
+
post_patch_width = width // p
|
| 324 |
+
|
| 325 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
| 326 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
| 327 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
| 328 |
+
# expects mask of shape:
|
| 329 |
+
# [batch, key_tokens]
|
| 330 |
+
# adds singleton query_tokens dimension:
|
| 331 |
+
# [batch, 1, key_tokens]
|
| 332 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
| 333 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
| 334 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
|
| 335 |
+
if attention_mask is not None and attention_mask.ndim == 4:
|
| 336 |
+
# assume that mask is expressed as:
|
| 337 |
+
# (1 = keep, 0 = discard)
|
| 338 |
+
# convert mask into a bias that can be added to attention scores:
|
| 339 |
+
# (keep = +0, discard = -10000.0)
|
| 340 |
+
# b, frame+use_image_num, h, w -> a video with images
|
| 341 |
+
# b, 1, h, w -> only images
|
| 342 |
+
attention_mask = attention_mask.to(hidden_states.dtype)
|
| 343 |
+
attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width]
|
| 344 |
+
|
| 345 |
+
if attention_mask.numel() > 0:
|
| 346 |
+
attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width]
|
| 347 |
+
attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p))
|
| 348 |
+
attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1)
|
| 349 |
+
|
| 350 |
+
attention_mask = (
|
| 351 |
+
(1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
| 355 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
| 356 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
|
| 357 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
| 358 |
+
|
| 359 |
+
# 1. Timestep embeddings
|
| 360 |
+
timestep, embedded_timestep = self.adaln_single(
|
| 361 |
+
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
# 2. Patch embeddings
|
| 365 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
| 366 |
+
hidden_states = self.pos_embed(hidden_states)
|
| 367 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
|
| 368 |
+
|
| 369 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
| 370 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1])
|
| 371 |
+
|
| 372 |
+
# 3. Transformer blocks
|
| 373 |
+
for i, block in enumerate(self.transformer_blocks):
|
| 374 |
+
# TODO(aryan): Implement gradient checkpointing
|
| 375 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 376 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 377 |
+
block,
|
| 378 |
+
hidden_states,
|
| 379 |
+
encoder_hidden_states,
|
| 380 |
+
timestep,
|
| 381 |
+
attention_mask,
|
| 382 |
+
encoder_attention_mask,
|
| 383 |
+
image_rotary_emb,
|
| 384 |
+
)
|
| 385 |
+
else:
|
| 386 |
+
hidden_states = block(
|
| 387 |
+
hidden_states=hidden_states,
|
| 388 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 389 |
+
temb=timestep,
|
| 390 |
+
attention_mask=attention_mask,
|
| 391 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 392 |
+
image_rotary_emb=image_rotary_emb,
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# 4. Output normalization & projection
|
| 396 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
| 397 |
+
hidden_states = self.norm_out(hidden_states)
|
| 398 |
+
|
| 399 |
+
# Modulation
|
| 400 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 401 |
+
hidden_states = self.proj_out(hidden_states)
|
| 402 |
+
hidden_states = hidden_states.squeeze(1)
|
| 403 |
+
|
| 404 |
+
# 5. Unpatchify
|
| 405 |
+
hidden_states = hidden_states.reshape(
|
| 406 |
+
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1
|
| 407 |
+
)
|
| 408 |
+
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
|
| 409 |
+
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
|
| 410 |
+
|
| 411 |
+
if not return_dict:
|
| 412 |
+
return (output,)
|
| 413 |
+
|
| 414 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_bria.py
ADDED
|
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 10 |
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 11 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 12 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 13 |
+
from ..attention import AttentionModuleMixin, FeedForward
|
| 14 |
+
from ..attention_dispatch import dispatch_attention_fn
|
| 15 |
+
from ..cache_utils import CacheMixin
|
| 16 |
+
from ..embeddings import TimestepEmbedding, apply_rotary_emb, get_timestep_embedding
|
| 17 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 18 |
+
from ..modeling_utils import ModelMixin
|
| 19 |
+
from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _get_projections(attn: "BriaAttention", hidden_states, encoder_hidden_states=None):
|
| 26 |
+
query = attn.to_q(hidden_states)
|
| 27 |
+
key = attn.to_k(hidden_states)
|
| 28 |
+
value = attn.to_v(hidden_states)
|
| 29 |
+
|
| 30 |
+
encoder_query = encoder_key = encoder_value = None
|
| 31 |
+
if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
|
| 32 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
| 33 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
| 34 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
| 35 |
+
|
| 36 |
+
return query, key, value, encoder_query, encoder_key, encoder_value
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def _get_fused_projections(attn: "BriaAttention", hidden_states, encoder_hidden_states=None):
|
| 40 |
+
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
|
| 41 |
+
|
| 42 |
+
encoder_query = encoder_key = encoder_value = (None,)
|
| 43 |
+
if encoder_hidden_states is not None and hasattr(attn, "to_added_qkv"):
|
| 44 |
+
encoder_query, encoder_key, encoder_value = attn.to_added_qkv(encoder_hidden_states).chunk(3, dim=-1)
|
| 45 |
+
|
| 46 |
+
return query, key, value, encoder_query, encoder_key, encoder_value
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _get_qkv_projections(attn: "BriaAttention", hidden_states, encoder_hidden_states=None):
|
| 50 |
+
if attn.fused_projections:
|
| 51 |
+
return _get_fused_projections(attn, hidden_states, encoder_hidden_states)
|
| 52 |
+
return _get_projections(attn, hidden_states, encoder_hidden_states)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_1d_rotary_pos_embed(
|
| 56 |
+
dim: int,
|
| 57 |
+
pos: Union[np.ndarray, int],
|
| 58 |
+
theta: float = 10000.0,
|
| 59 |
+
use_real=False,
|
| 60 |
+
linear_factor=1.0,
|
| 61 |
+
ntk_factor=1.0,
|
| 62 |
+
repeat_interleave_real=True,
|
| 63 |
+
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
|
| 64 |
+
):
|
| 65 |
+
"""
|
| 66 |
+
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
| 67 |
+
|
| 68 |
+
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
|
| 69 |
+
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
|
| 70 |
+
data type.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
dim (`int`): Dimension of the frequency tensor.
|
| 74 |
+
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
|
| 75 |
+
theta (`float`, *optional*, defaults to 10000.0):
|
| 76 |
+
Scaling factor for frequency computation. Defaults to 10000.0.
|
| 77 |
+
use_real (`bool`, *optional*):
|
| 78 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
| 79 |
+
linear_factor (`float`, *optional*, defaults to 1.0):
|
| 80 |
+
Scaling factor for the context extrapolation. Defaults to 1.0.
|
| 81 |
+
ntk_factor (`float`, *optional*, defaults to 1.0):
|
| 82 |
+
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
|
| 83 |
+
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
|
| 84 |
+
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
|
| 85 |
+
Otherwise, they are concateanted with themselves.
|
| 86 |
+
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
|
| 87 |
+
the dtype of the frequency tensor.
|
| 88 |
+
Returns:
|
| 89 |
+
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
| 90 |
+
"""
|
| 91 |
+
assert dim % 2 == 0
|
| 92 |
+
|
| 93 |
+
if isinstance(pos, int):
|
| 94 |
+
pos = torch.arange(pos)
|
| 95 |
+
if isinstance(pos, np.ndarray):
|
| 96 |
+
pos = torch.from_numpy(pos) # type: ignore # [S]
|
| 97 |
+
|
| 98 |
+
theta = theta * ntk_factor
|
| 99 |
+
freqs = (
|
| 100 |
+
1.0
|
| 101 |
+
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
|
| 102 |
+
/ linear_factor
|
| 103 |
+
) # [D/2]
|
| 104 |
+
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
|
| 105 |
+
if use_real and repeat_interleave_real:
|
| 106 |
+
# bria
|
| 107 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
| 108 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
| 109 |
+
return freqs_cos, freqs_sin
|
| 110 |
+
elif use_real:
|
| 111 |
+
# stable audio, allegro
|
| 112 |
+
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
|
| 113 |
+
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
|
| 114 |
+
return freqs_cos, freqs_sin
|
| 115 |
+
else:
|
| 116 |
+
# lumina
|
| 117 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
|
| 118 |
+
return freqs_cis
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class BriaAttnProcessor:
|
| 122 |
+
_attention_backend = None
|
| 123 |
+
|
| 124 |
+
def __init__(self):
|
| 125 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 126 |
+
raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.")
|
| 127 |
+
|
| 128 |
+
def __call__(
|
| 129 |
+
self,
|
| 130 |
+
attn: "BriaAttention",
|
| 131 |
+
hidden_states: torch.Tensor,
|
| 132 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 133 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 134 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 135 |
+
) -> torch.Tensor:
|
| 136 |
+
query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
|
| 137 |
+
attn, hidden_states, encoder_hidden_states
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
query = query.unflatten(-1, (attn.heads, -1))
|
| 141 |
+
key = key.unflatten(-1, (attn.heads, -1))
|
| 142 |
+
value = value.unflatten(-1, (attn.heads, -1))
|
| 143 |
+
|
| 144 |
+
query = attn.norm_q(query)
|
| 145 |
+
key = attn.norm_k(key)
|
| 146 |
+
|
| 147 |
+
if attn.added_kv_proj_dim is not None:
|
| 148 |
+
encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
|
| 149 |
+
encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
|
| 150 |
+
encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))
|
| 151 |
+
|
| 152 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 153 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 154 |
+
|
| 155 |
+
query = torch.cat([encoder_query, query], dim=1)
|
| 156 |
+
key = torch.cat([encoder_key, key], dim=1)
|
| 157 |
+
value = torch.cat([encoder_value, value], dim=1)
|
| 158 |
+
|
| 159 |
+
if image_rotary_emb is not None:
|
| 160 |
+
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
|
| 161 |
+
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
|
| 162 |
+
|
| 163 |
+
hidden_states = dispatch_attention_fn(
|
| 164 |
+
query, key, value, attn_mask=attention_mask, backend=self._attention_backend
|
| 165 |
+
)
|
| 166 |
+
hidden_states = hidden_states.flatten(2, 3)
|
| 167 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 168 |
+
|
| 169 |
+
if encoder_hidden_states is not None:
|
| 170 |
+
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
|
| 171 |
+
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
|
| 172 |
+
)
|
| 173 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 174 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 175 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 176 |
+
|
| 177 |
+
return hidden_states, encoder_hidden_states
|
| 178 |
+
else:
|
| 179 |
+
return hidden_states
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class BriaAttention(torch.nn.Module, AttentionModuleMixin):
|
| 183 |
+
_default_processor_cls = BriaAttnProcessor
|
| 184 |
+
_available_processors = [
|
| 185 |
+
BriaAttnProcessor,
|
| 186 |
+
]
|
| 187 |
+
|
| 188 |
+
def __init__(
|
| 189 |
+
self,
|
| 190 |
+
query_dim: int,
|
| 191 |
+
heads: int = 8,
|
| 192 |
+
dim_head: int = 64,
|
| 193 |
+
dropout: float = 0.0,
|
| 194 |
+
bias: bool = False,
|
| 195 |
+
added_kv_proj_dim: Optional[int] = None,
|
| 196 |
+
added_proj_bias: Optional[bool] = True,
|
| 197 |
+
out_bias: bool = True,
|
| 198 |
+
eps: float = 1e-5,
|
| 199 |
+
out_dim: int = None,
|
| 200 |
+
context_pre_only: Optional[bool] = None,
|
| 201 |
+
pre_only: bool = False,
|
| 202 |
+
elementwise_affine: bool = True,
|
| 203 |
+
processor=None,
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
|
| 207 |
+
self.head_dim = dim_head
|
| 208 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
| 209 |
+
self.query_dim = query_dim
|
| 210 |
+
self.use_bias = bias
|
| 211 |
+
self.dropout = dropout
|
| 212 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
| 213 |
+
self.context_pre_only = context_pre_only
|
| 214 |
+
self.pre_only = pre_only
|
| 215 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
| 216 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
| 217 |
+
self.added_proj_bias = added_proj_bias
|
| 218 |
+
|
| 219 |
+
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
|
| 220 |
+
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
|
| 221 |
+
self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
|
| 222 |
+
self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
|
| 223 |
+
self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
|
| 224 |
+
|
| 225 |
+
if not self.pre_only:
|
| 226 |
+
self.to_out = torch.nn.ModuleList([])
|
| 227 |
+
self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
|
| 228 |
+
self.to_out.append(torch.nn.Dropout(dropout))
|
| 229 |
+
|
| 230 |
+
if added_kv_proj_dim is not None:
|
| 231 |
+
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
|
| 232 |
+
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
|
| 233 |
+
self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
| 234 |
+
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
| 235 |
+
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
| 236 |
+
self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias)
|
| 237 |
+
|
| 238 |
+
if processor is None:
|
| 239 |
+
processor = self._default_processor_cls()
|
| 240 |
+
self.set_processor(processor)
|
| 241 |
+
|
| 242 |
+
def forward(
|
| 243 |
+
self,
|
| 244 |
+
hidden_states: torch.Tensor,
|
| 245 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 246 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 247 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 248 |
+
**kwargs,
|
| 249 |
+
) -> torch.Tensor:
|
| 250 |
+
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
| 251 |
+
quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"}
|
| 252 |
+
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters]
|
| 253 |
+
if len(unused_kwargs) > 0:
|
| 254 |
+
logger.warning(
|
| 255 |
+
f"attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
| 256 |
+
)
|
| 257 |
+
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
|
| 258 |
+
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class BriaEmbedND(torch.nn.Module):
|
| 262 |
+
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
| 263 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.theta = theta
|
| 266 |
+
self.axes_dim = axes_dim
|
| 267 |
+
|
| 268 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
| 269 |
+
n_axes = ids.shape[-1]
|
| 270 |
+
cos_out = []
|
| 271 |
+
sin_out = []
|
| 272 |
+
pos = ids.float()
|
| 273 |
+
is_mps = ids.device.type == "mps"
|
| 274 |
+
freqs_dtype = torch.float32 if is_mps else torch.float64
|
| 275 |
+
for i in range(n_axes):
|
| 276 |
+
cos, sin = get_1d_rotary_pos_embed(
|
| 277 |
+
self.axes_dim[i],
|
| 278 |
+
pos[:, i],
|
| 279 |
+
theta=self.theta,
|
| 280 |
+
repeat_interleave_real=True,
|
| 281 |
+
use_real=True,
|
| 282 |
+
freqs_dtype=freqs_dtype,
|
| 283 |
+
)
|
| 284 |
+
cos_out.append(cos)
|
| 285 |
+
sin_out.append(sin)
|
| 286 |
+
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
| 287 |
+
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
| 288 |
+
return freqs_cos, freqs_sin
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class BriaTimesteps(nn.Module):
|
| 292 |
+
def __init__(
|
| 293 |
+
self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1, time_theta=10000
|
| 294 |
+
):
|
| 295 |
+
super().__init__()
|
| 296 |
+
self.num_channels = num_channels
|
| 297 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
| 298 |
+
self.downscale_freq_shift = downscale_freq_shift
|
| 299 |
+
self.scale = scale
|
| 300 |
+
self.time_theta = time_theta
|
| 301 |
+
|
| 302 |
+
def forward(self, timesteps):
|
| 303 |
+
t_emb = get_timestep_embedding(
|
| 304 |
+
timesteps,
|
| 305 |
+
self.num_channels,
|
| 306 |
+
flip_sin_to_cos=self.flip_sin_to_cos,
|
| 307 |
+
downscale_freq_shift=self.downscale_freq_shift,
|
| 308 |
+
scale=self.scale,
|
| 309 |
+
max_period=self.time_theta,
|
| 310 |
+
)
|
| 311 |
+
return t_emb
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class BriaTimestepProjEmbeddings(nn.Module):
|
| 315 |
+
def __init__(self, embedding_dim, time_theta):
|
| 316 |
+
super().__init__()
|
| 317 |
+
|
| 318 |
+
self.time_proj = BriaTimesteps(
|
| 319 |
+
num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, time_theta=time_theta
|
| 320 |
+
)
|
| 321 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
| 322 |
+
|
| 323 |
+
def forward(self, timestep, dtype):
|
| 324 |
+
timesteps_proj = self.time_proj(timestep)
|
| 325 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=dtype)) # (N, D)
|
| 326 |
+
return timesteps_emb
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
class BriaPosEmbed(torch.nn.Module):
|
| 330 |
+
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
| 331 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
| 332 |
+
super().__init__()
|
| 333 |
+
self.theta = theta
|
| 334 |
+
self.axes_dim = axes_dim
|
| 335 |
+
|
| 336 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
| 337 |
+
n_axes = ids.shape[-1]
|
| 338 |
+
cos_out = []
|
| 339 |
+
sin_out = []
|
| 340 |
+
pos = ids.float()
|
| 341 |
+
is_mps = ids.device.type == "mps"
|
| 342 |
+
freqs_dtype = torch.float32 if is_mps else torch.float64
|
| 343 |
+
for i in range(n_axes):
|
| 344 |
+
cos, sin = get_1d_rotary_pos_embed(
|
| 345 |
+
self.axes_dim[i],
|
| 346 |
+
pos[:, i],
|
| 347 |
+
theta=self.theta,
|
| 348 |
+
repeat_interleave_real=True,
|
| 349 |
+
use_real=True,
|
| 350 |
+
freqs_dtype=freqs_dtype,
|
| 351 |
+
)
|
| 352 |
+
cos_out.append(cos)
|
| 353 |
+
sin_out.append(sin)
|
| 354 |
+
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
| 355 |
+
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
| 356 |
+
return freqs_cos, freqs_sin
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
@maybe_allow_in_graph
|
| 360 |
+
class BriaTransformerBlock(nn.Module):
|
| 361 |
+
def __init__(
|
| 362 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
| 363 |
+
):
|
| 364 |
+
super().__init__()
|
| 365 |
+
|
| 366 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 367 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 368 |
+
|
| 369 |
+
self.attn = BriaAttention(
|
| 370 |
+
query_dim=dim,
|
| 371 |
+
added_kv_proj_dim=dim,
|
| 372 |
+
dim_head=attention_head_dim,
|
| 373 |
+
heads=num_attention_heads,
|
| 374 |
+
out_dim=dim,
|
| 375 |
+
context_pre_only=False,
|
| 376 |
+
bias=True,
|
| 377 |
+
processor=BriaAttnProcessor(),
|
| 378 |
+
eps=eps,
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 382 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 383 |
+
|
| 384 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 385 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 386 |
+
|
| 387 |
+
def forward(
|
| 388 |
+
self,
|
| 389 |
+
hidden_states: torch.Tensor,
|
| 390 |
+
encoder_hidden_states: torch.Tensor,
|
| 391 |
+
temb: torch.Tensor,
|
| 392 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 393 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 394 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 395 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 396 |
+
|
| 397 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 398 |
+
encoder_hidden_states, emb=temb
|
| 399 |
+
)
|
| 400 |
+
attention_kwargs = attention_kwargs or {}
|
| 401 |
+
|
| 402 |
+
# Attention.
|
| 403 |
+
attention_outputs = self.attn(
|
| 404 |
+
hidden_states=norm_hidden_states,
|
| 405 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 406 |
+
image_rotary_emb=image_rotary_emb,
|
| 407 |
+
**attention_kwargs,
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
if len(attention_outputs) == 2:
|
| 411 |
+
attn_output, context_attn_output = attention_outputs
|
| 412 |
+
elif len(attention_outputs) == 3:
|
| 413 |
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
| 414 |
+
|
| 415 |
+
# Process attention outputs for the `hidden_states`.
|
| 416 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 417 |
+
hidden_states = hidden_states + attn_output
|
| 418 |
+
|
| 419 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 420 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 421 |
+
|
| 422 |
+
ff_output = self.ff(norm_hidden_states)
|
| 423 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 424 |
+
|
| 425 |
+
hidden_states = hidden_states + ff_output
|
| 426 |
+
if len(attention_outputs) == 3:
|
| 427 |
+
hidden_states = hidden_states + ip_attn_output
|
| 428 |
+
|
| 429 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 430 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 431 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 432 |
+
|
| 433 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 434 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 435 |
+
|
| 436 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 437 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 438 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 439 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 440 |
+
|
| 441 |
+
return encoder_hidden_states, hidden_states
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
@maybe_allow_in_graph
|
| 445 |
+
class BriaSingleTransformerBlock(nn.Module):
|
| 446 |
+
def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0):
|
| 447 |
+
super().__init__()
|
| 448 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 449 |
+
|
| 450 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 451 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 452 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 453 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 454 |
+
|
| 455 |
+
processor = BriaAttnProcessor()
|
| 456 |
+
|
| 457 |
+
self.attn = BriaAttention(
|
| 458 |
+
query_dim=dim,
|
| 459 |
+
dim_head=attention_head_dim,
|
| 460 |
+
heads=num_attention_heads,
|
| 461 |
+
out_dim=dim,
|
| 462 |
+
bias=True,
|
| 463 |
+
processor=processor,
|
| 464 |
+
eps=1e-6,
|
| 465 |
+
pre_only=True,
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
def forward(
|
| 469 |
+
self,
|
| 470 |
+
hidden_states: torch.Tensor,
|
| 471 |
+
encoder_hidden_states: torch.Tensor,
|
| 472 |
+
temb: torch.Tensor,
|
| 473 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 474 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 475 |
+
) -> torch.Tensor:
|
| 476 |
+
text_seq_len = encoder_hidden_states.shape[1]
|
| 477 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 478 |
+
|
| 479 |
+
residual = hidden_states
|
| 480 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 481 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 482 |
+
attention_kwargs = attention_kwargs or {}
|
| 483 |
+
attn_output = self.attn(
|
| 484 |
+
hidden_states=norm_hidden_states,
|
| 485 |
+
image_rotary_emb=image_rotary_emb,
|
| 486 |
+
**attention_kwargs,
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 490 |
+
gate = gate.unsqueeze(1)
|
| 491 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 492 |
+
hidden_states = residual + hidden_states
|
| 493 |
+
if hidden_states.dtype == torch.float16:
|
| 494 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 495 |
+
|
| 496 |
+
encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:]
|
| 497 |
+
return encoder_hidden_states, hidden_states
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
class BriaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin):
|
| 501 |
+
"""
|
| 502 |
+
The Transformer model introduced in Flux. Based on FluxPipeline with several changes:
|
| 503 |
+
- no pooled embeddings
|
| 504 |
+
- We use zero padding for prompts
|
| 505 |
+
- No guidance embedding since this is not a distilled version
|
| 506 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 507 |
+
|
| 508 |
+
Parameters:
|
| 509 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 510 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 511 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 512 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 513 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 514 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 515 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 516 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 517 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 518 |
+
"""
|
| 519 |
+
|
| 520 |
+
_supports_gradient_checkpointing = True
|
| 521 |
+
|
| 522 |
+
@register_to_config
|
| 523 |
+
def __init__(
|
| 524 |
+
self,
|
| 525 |
+
patch_size: int = 1,
|
| 526 |
+
in_channels: int = 64,
|
| 527 |
+
num_layers: int = 19,
|
| 528 |
+
num_single_layers: int = 38,
|
| 529 |
+
attention_head_dim: int = 128,
|
| 530 |
+
num_attention_heads: int = 24,
|
| 531 |
+
joint_attention_dim: int = 4096,
|
| 532 |
+
pooled_projection_dim: int = None,
|
| 533 |
+
guidance_embeds: bool = False,
|
| 534 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
| 535 |
+
rope_theta=10000,
|
| 536 |
+
time_theta=10000,
|
| 537 |
+
):
|
| 538 |
+
super().__init__()
|
| 539 |
+
self.out_channels = in_channels
|
| 540 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 541 |
+
|
| 542 |
+
self.pos_embed = BriaEmbedND(theta=rope_theta, axes_dim=axes_dims_rope)
|
| 543 |
+
|
| 544 |
+
self.time_embed = BriaTimestepProjEmbeddings(embedding_dim=self.inner_dim, time_theta=time_theta)
|
| 545 |
+
if guidance_embeds:
|
| 546 |
+
self.guidance_embed = BriaTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
| 547 |
+
|
| 548 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
| 549 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
| 550 |
+
|
| 551 |
+
self.transformer_blocks = nn.ModuleList(
|
| 552 |
+
[
|
| 553 |
+
BriaTransformerBlock(
|
| 554 |
+
dim=self.inner_dim,
|
| 555 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 556 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 557 |
+
)
|
| 558 |
+
for i in range(self.config.num_layers)
|
| 559 |
+
]
|
| 560 |
+
)
|
| 561 |
+
|
| 562 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 563 |
+
[
|
| 564 |
+
BriaSingleTransformerBlock(
|
| 565 |
+
dim=self.inner_dim,
|
| 566 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 567 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 568 |
+
)
|
| 569 |
+
for i in range(self.config.num_single_layers)
|
| 570 |
+
]
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 574 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 575 |
+
|
| 576 |
+
self.gradient_checkpointing = False
|
| 577 |
+
|
| 578 |
+
def forward(
|
| 579 |
+
self,
|
| 580 |
+
hidden_states: torch.Tensor,
|
| 581 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 582 |
+
pooled_projections: torch.Tensor = None,
|
| 583 |
+
timestep: torch.LongTensor = None,
|
| 584 |
+
img_ids: torch.Tensor = None,
|
| 585 |
+
txt_ids: torch.Tensor = None,
|
| 586 |
+
guidance: torch.Tensor = None,
|
| 587 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 588 |
+
return_dict: bool = True,
|
| 589 |
+
controlnet_block_samples=None,
|
| 590 |
+
controlnet_single_block_samples=None,
|
| 591 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 592 |
+
"""
|
| 593 |
+
The [`BriaTransformer2DModel`] forward method.
|
| 594 |
+
|
| 595 |
+
Args:
|
| 596 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 597 |
+
Input `hidden_states`.
|
| 598 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 599 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 600 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 601 |
+
from the embeddings of input conditions.
|
| 602 |
+
timestep ( `torch.LongTensor`):
|
| 603 |
+
Used to indicate denoising step.
|
| 604 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 605 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 606 |
+
attention_kwargs (`dict`, *optional*):
|
| 607 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 608 |
+
`self.processor` in
|
| 609 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 610 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 611 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 612 |
+
tuple.
|
| 613 |
+
|
| 614 |
+
Returns:
|
| 615 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 616 |
+
`tuple` where the first element is the sample tensor.
|
| 617 |
+
"""
|
| 618 |
+
if attention_kwargs is not None:
|
| 619 |
+
attention_kwargs = attention_kwargs.copy()
|
| 620 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 621 |
+
else:
|
| 622 |
+
lora_scale = 1.0
|
| 623 |
+
|
| 624 |
+
if USE_PEFT_BACKEND:
|
| 625 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 626 |
+
scale_lora_layers(self, lora_scale)
|
| 627 |
+
else:
|
| 628 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 629 |
+
logger.warning(
|
| 630 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 631 |
+
)
|
| 632 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 633 |
+
|
| 634 |
+
timestep = timestep.to(hidden_states.dtype)
|
| 635 |
+
if guidance is not None:
|
| 636 |
+
guidance = guidance.to(hidden_states.dtype)
|
| 637 |
+
else:
|
| 638 |
+
guidance = None
|
| 639 |
+
|
| 640 |
+
temb = self.time_embed(timestep, dtype=hidden_states.dtype)
|
| 641 |
+
|
| 642 |
+
if guidance:
|
| 643 |
+
temb += self.guidance_embed(guidance, dtype=hidden_states.dtype)
|
| 644 |
+
|
| 645 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 646 |
+
|
| 647 |
+
if len(txt_ids.shape) == 3:
|
| 648 |
+
txt_ids = txt_ids[0]
|
| 649 |
+
|
| 650 |
+
if len(img_ids.shape) == 3:
|
| 651 |
+
img_ids = img_ids[0]
|
| 652 |
+
|
| 653 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 654 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 655 |
+
|
| 656 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 657 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 658 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 659 |
+
block,
|
| 660 |
+
hidden_states,
|
| 661 |
+
encoder_hidden_states,
|
| 662 |
+
temb,
|
| 663 |
+
image_rotary_emb,
|
| 664 |
+
attention_kwargs,
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
else:
|
| 668 |
+
encoder_hidden_states, hidden_states = block(
|
| 669 |
+
hidden_states=hidden_states,
|
| 670 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 671 |
+
temb=temb,
|
| 672 |
+
image_rotary_emb=image_rotary_emb,
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
# controlnet residual
|
| 676 |
+
if controlnet_block_samples is not None:
|
| 677 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 678 |
+
interval_control = int(np.ceil(interval_control))
|
| 679 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 680 |
+
|
| 681 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 682 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 683 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 684 |
+
block,
|
| 685 |
+
hidden_states,
|
| 686 |
+
encoder_hidden_states,
|
| 687 |
+
temb,
|
| 688 |
+
image_rotary_emb,
|
| 689 |
+
attention_kwargs,
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
else:
|
| 693 |
+
encoder_hidden_states, hidden_states = block(
|
| 694 |
+
hidden_states=hidden_states,
|
| 695 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 696 |
+
temb=temb,
|
| 697 |
+
image_rotary_emb=image_rotary_emb,
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
# controlnet residual
|
| 701 |
+
if controlnet_single_block_samples is not None:
|
| 702 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 703 |
+
interval_control = int(np.ceil(interval_control))
|
| 704 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 705 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 706 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 710 |
+
output = self.proj_out(hidden_states)
|
| 711 |
+
|
| 712 |
+
if USE_PEFT_BACKEND:
|
| 713 |
+
# remove `lora_scale` from each PEFT layer
|
| 714 |
+
unscale_lora_layers(self, lora_scale)
|
| 715 |
+
|
| 716 |
+
if not return_dict:
|
| 717 |
+
return (output,)
|
| 718 |
+
|
| 719 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_chroma.py
ADDED
|
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and loadstone-rock . All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
| 24 |
+
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
| 25 |
+
from ...utils.import_utils import is_torch_npu_available
|
| 26 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 27 |
+
from ..attention import AttentionMixin, FeedForward
|
| 28 |
+
from ..cache_utils import CacheMixin
|
| 29 |
+
from ..embeddings import FluxPosEmbed, PixArtAlphaTextProjection, Timesteps, get_timestep_embedding
|
| 30 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 31 |
+
from ..modeling_utils import ModelMixin
|
| 32 |
+
from ..normalization import CombinedTimestepLabelEmbeddings, FP32LayerNorm, RMSNorm
|
| 33 |
+
from .transformer_flux import FluxAttention, FluxAttnProcessor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class ChromaAdaLayerNormZeroPruned(nn.Module):
|
| 40 |
+
r"""
|
| 41 |
+
Norm layer adaptive layer norm zero (adaLN-Zero).
|
| 42 |
+
|
| 43 |
+
Parameters:
|
| 44 |
+
embedding_dim (`int`): The size of each embedding vector.
|
| 45 |
+
num_embeddings (`int`): The size of the embeddings dictionary.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True):
|
| 49 |
+
super().__init__()
|
| 50 |
+
if num_embeddings is not None:
|
| 51 |
+
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
| 52 |
+
else:
|
| 53 |
+
self.emb = None
|
| 54 |
+
|
| 55 |
+
if norm_type == "layer_norm":
|
| 56 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
| 57 |
+
elif norm_type == "fp32_layer_norm":
|
| 58 |
+
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False)
|
| 59 |
+
else:
|
| 60 |
+
raise ValueError(
|
| 61 |
+
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def forward(
|
| 65 |
+
self,
|
| 66 |
+
x: torch.Tensor,
|
| 67 |
+
timestep: Optional[torch.Tensor] = None,
|
| 68 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 69 |
+
hidden_dtype: Optional[torch.dtype] = None,
|
| 70 |
+
emb: Optional[torch.Tensor] = None,
|
| 71 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 72 |
+
if self.emb is not None:
|
| 73 |
+
emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)
|
| 74 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.flatten(1, 2).chunk(6, dim=1)
|
| 75 |
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
| 76 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ChromaAdaLayerNormZeroSinglePruned(nn.Module):
|
| 80 |
+
r"""
|
| 81 |
+
Norm layer adaptive layer norm zero (adaLN-Zero).
|
| 82 |
+
|
| 83 |
+
Parameters:
|
| 84 |
+
embedding_dim (`int`): The size of each embedding vector.
|
| 85 |
+
num_embeddings (`int`): The size of the embeddings dictionary.
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
| 89 |
+
super().__init__()
|
| 90 |
+
|
| 91 |
+
if norm_type == "layer_norm":
|
| 92 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
| 93 |
+
else:
|
| 94 |
+
raise ValueError(
|
| 95 |
+
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def forward(
|
| 99 |
+
self,
|
| 100 |
+
x: torch.Tensor,
|
| 101 |
+
emb: Optional[torch.Tensor] = None,
|
| 102 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 103 |
+
shift_msa, scale_msa, gate_msa = emb.flatten(1, 2).chunk(3, dim=1)
|
| 104 |
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
| 105 |
+
return x, gate_msa
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class ChromaAdaLayerNormContinuousPruned(nn.Module):
|
| 109 |
+
r"""
|
| 110 |
+
Adaptive normalization layer with a norm layer (layer_norm or rms_norm).
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
embedding_dim (`int`): Embedding dimension to use during projection.
|
| 114 |
+
conditioning_embedding_dim (`int`): Dimension of the input condition.
|
| 115 |
+
elementwise_affine (`bool`, defaults to `True`):
|
| 116 |
+
Boolean flag to denote if affine transformation should be applied.
|
| 117 |
+
eps (`float`, defaults to 1e-5): Epsilon factor.
|
| 118 |
+
bias (`bias`, defaults to `True`): Boolean flag to denote if bias should be use.
|
| 119 |
+
norm_type (`str`, defaults to `"layer_norm"`):
|
| 120 |
+
Normalization layer to use. Values supported: "layer_norm", "rms_norm".
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
def __init__(
|
| 124 |
+
self,
|
| 125 |
+
embedding_dim: int,
|
| 126 |
+
conditioning_embedding_dim: int,
|
| 127 |
+
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
|
| 128 |
+
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
|
| 129 |
+
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
|
| 130 |
+
# However, this is how it was implemented in the original code, and it's rather likely you should
|
| 131 |
+
# set `elementwise_affine` to False.
|
| 132 |
+
elementwise_affine=True,
|
| 133 |
+
eps=1e-5,
|
| 134 |
+
bias=True,
|
| 135 |
+
norm_type="layer_norm",
|
| 136 |
+
):
|
| 137 |
+
super().__init__()
|
| 138 |
+
if norm_type == "layer_norm":
|
| 139 |
+
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
| 140 |
+
elif norm_type == "rms_norm":
|
| 141 |
+
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
|
| 142 |
+
else:
|
| 143 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
| 144 |
+
|
| 145 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
| 146 |
+
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
| 147 |
+
shift, scale = torch.chunk(emb.flatten(1, 2).to(x.dtype), 2, dim=1)
|
| 148 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
| 149 |
+
return x
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class ChromaCombinedTimestepTextProjEmbeddings(nn.Module):
|
| 153 |
+
def __init__(self, num_channels: int, out_dim: int):
|
| 154 |
+
super().__init__()
|
| 155 |
+
|
| 156 |
+
self.time_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 157 |
+
self.guidance_proj = Timesteps(num_channels=num_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 158 |
+
|
| 159 |
+
self.register_buffer(
|
| 160 |
+
"mod_proj",
|
| 161 |
+
get_timestep_embedding(
|
| 162 |
+
torch.arange(out_dim) * 1000, 2 * num_channels, flip_sin_to_cos=True, downscale_freq_shift=0
|
| 163 |
+
),
|
| 164 |
+
persistent=False,
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def forward(self, timestep: torch.Tensor) -> torch.Tensor:
|
| 168 |
+
mod_index_length = self.mod_proj.shape[0]
|
| 169 |
+
batch_size = timestep.shape[0]
|
| 170 |
+
|
| 171 |
+
timesteps_proj = self.time_proj(timestep).to(dtype=timestep.dtype)
|
| 172 |
+
guidance_proj = self.guidance_proj(torch.tensor([0] * batch_size)).to(
|
| 173 |
+
dtype=timestep.dtype, device=timestep.device
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
mod_proj = self.mod_proj.to(dtype=timesteps_proj.dtype, device=timesteps_proj.device).repeat(batch_size, 1, 1)
|
| 177 |
+
timestep_guidance = (
|
| 178 |
+
torch.cat([timesteps_proj, guidance_proj], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
|
| 179 |
+
)
|
| 180 |
+
input_vec = torch.cat([timestep_guidance, mod_proj], dim=-1)
|
| 181 |
+
return input_vec.to(timestep.dtype)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class ChromaApproximator(nn.Module):
|
| 185 |
+
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers: int = 5):
|
| 186 |
+
super().__init__()
|
| 187 |
+
self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
|
| 188 |
+
self.layers = nn.ModuleList(
|
| 189 |
+
[PixArtAlphaTextProjection(hidden_dim, hidden_dim, act_fn="silu") for _ in range(n_layers)]
|
| 190 |
+
)
|
| 191 |
+
self.norms = nn.ModuleList([nn.RMSNorm(hidden_dim) for _ in range(n_layers)])
|
| 192 |
+
self.out_proj = nn.Linear(hidden_dim, out_dim)
|
| 193 |
+
|
| 194 |
+
def forward(self, x):
|
| 195 |
+
x = self.in_proj(x)
|
| 196 |
+
|
| 197 |
+
for layer, norms in zip(self.layers, self.norms):
|
| 198 |
+
x = x + layer(norms(x))
|
| 199 |
+
|
| 200 |
+
return self.out_proj(x)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
@maybe_allow_in_graph
|
| 204 |
+
class ChromaSingleTransformerBlock(nn.Module):
|
| 205 |
+
def __init__(
|
| 206 |
+
self,
|
| 207 |
+
dim: int,
|
| 208 |
+
num_attention_heads: int,
|
| 209 |
+
attention_head_dim: int,
|
| 210 |
+
mlp_ratio: float = 4.0,
|
| 211 |
+
):
|
| 212 |
+
super().__init__()
|
| 213 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 214 |
+
self.norm = ChromaAdaLayerNormZeroSinglePruned(dim)
|
| 215 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 216 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 217 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 218 |
+
|
| 219 |
+
if is_torch_npu_available():
|
| 220 |
+
from ..attention_processor import FluxAttnProcessor2_0_NPU
|
| 221 |
+
|
| 222 |
+
deprecation_message = (
|
| 223 |
+
"Defaulting to FluxAttnProcessor2_0_NPU for NPU devices will be removed. Attention processors "
|
| 224 |
+
"should be set explicitly using the `set_attn_processor` method."
|
| 225 |
+
)
|
| 226 |
+
deprecate("npu_processor", "0.34.0", deprecation_message)
|
| 227 |
+
processor = FluxAttnProcessor2_0_NPU()
|
| 228 |
+
else:
|
| 229 |
+
processor = FluxAttnProcessor()
|
| 230 |
+
|
| 231 |
+
self.attn = FluxAttention(
|
| 232 |
+
query_dim=dim,
|
| 233 |
+
dim_head=attention_head_dim,
|
| 234 |
+
heads=num_attention_heads,
|
| 235 |
+
out_dim=dim,
|
| 236 |
+
bias=True,
|
| 237 |
+
processor=processor,
|
| 238 |
+
eps=1e-6,
|
| 239 |
+
pre_only=True,
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
def forward(
|
| 243 |
+
self,
|
| 244 |
+
hidden_states: torch.Tensor,
|
| 245 |
+
temb: torch.Tensor,
|
| 246 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 247 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 248 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 249 |
+
) -> torch.Tensor:
|
| 250 |
+
residual = hidden_states
|
| 251 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 252 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 253 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 254 |
+
|
| 255 |
+
if attention_mask is not None:
|
| 256 |
+
attention_mask = attention_mask[:, None, None, :] * attention_mask[:, None, :, None]
|
| 257 |
+
|
| 258 |
+
attn_output = self.attn(
|
| 259 |
+
hidden_states=norm_hidden_states,
|
| 260 |
+
image_rotary_emb=image_rotary_emb,
|
| 261 |
+
attention_mask=attention_mask,
|
| 262 |
+
**joint_attention_kwargs,
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 266 |
+
gate = gate.unsqueeze(1)
|
| 267 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 268 |
+
hidden_states = residual + hidden_states
|
| 269 |
+
if hidden_states.dtype == torch.float16:
|
| 270 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 271 |
+
|
| 272 |
+
return hidden_states
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
@maybe_allow_in_graph
|
| 276 |
+
class ChromaTransformerBlock(nn.Module):
|
| 277 |
+
def __init__(
|
| 278 |
+
self,
|
| 279 |
+
dim: int,
|
| 280 |
+
num_attention_heads: int,
|
| 281 |
+
attention_head_dim: int,
|
| 282 |
+
qk_norm: str = "rms_norm",
|
| 283 |
+
eps: float = 1e-6,
|
| 284 |
+
):
|
| 285 |
+
super().__init__()
|
| 286 |
+
self.norm1 = ChromaAdaLayerNormZeroPruned(dim)
|
| 287 |
+
self.norm1_context = ChromaAdaLayerNormZeroPruned(dim)
|
| 288 |
+
|
| 289 |
+
self.attn = FluxAttention(
|
| 290 |
+
query_dim=dim,
|
| 291 |
+
added_kv_proj_dim=dim,
|
| 292 |
+
dim_head=attention_head_dim,
|
| 293 |
+
heads=num_attention_heads,
|
| 294 |
+
out_dim=dim,
|
| 295 |
+
context_pre_only=False,
|
| 296 |
+
bias=True,
|
| 297 |
+
processor=FluxAttnProcessor(),
|
| 298 |
+
eps=eps,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 302 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 303 |
+
|
| 304 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 305 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 306 |
+
|
| 307 |
+
def forward(
|
| 308 |
+
self,
|
| 309 |
+
hidden_states: torch.Tensor,
|
| 310 |
+
encoder_hidden_states: torch.Tensor,
|
| 311 |
+
temb: torch.Tensor,
|
| 312 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 314 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 315 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 316 |
+
temb_img, temb_txt = temb[:, :6], temb[:, 6:]
|
| 317 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb_img)
|
| 318 |
+
|
| 319 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 320 |
+
encoder_hidden_states, emb=temb_txt
|
| 321 |
+
)
|
| 322 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 323 |
+
if attention_mask is not None:
|
| 324 |
+
attention_mask = attention_mask[:, None, None, :] * attention_mask[:, None, :, None]
|
| 325 |
+
|
| 326 |
+
# Attention.
|
| 327 |
+
attention_outputs = self.attn(
|
| 328 |
+
hidden_states=norm_hidden_states,
|
| 329 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 330 |
+
image_rotary_emb=image_rotary_emb,
|
| 331 |
+
attention_mask=attention_mask,
|
| 332 |
+
**joint_attention_kwargs,
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
if len(attention_outputs) == 2:
|
| 336 |
+
attn_output, context_attn_output = attention_outputs
|
| 337 |
+
elif len(attention_outputs) == 3:
|
| 338 |
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
| 339 |
+
|
| 340 |
+
# Process attention outputs for the `hidden_states`.
|
| 341 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 342 |
+
hidden_states = hidden_states + attn_output
|
| 343 |
+
|
| 344 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 345 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 346 |
+
|
| 347 |
+
ff_output = self.ff(norm_hidden_states)
|
| 348 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 349 |
+
|
| 350 |
+
hidden_states = hidden_states + ff_output
|
| 351 |
+
if len(attention_outputs) == 3:
|
| 352 |
+
hidden_states = hidden_states + ip_attn_output
|
| 353 |
+
|
| 354 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 355 |
+
|
| 356 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 357 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 358 |
+
|
| 359 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 360 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 361 |
+
|
| 362 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 363 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 364 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 365 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 366 |
+
|
| 367 |
+
return encoder_hidden_states, hidden_states
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
class ChromaTransformer2DModel(
|
| 371 |
+
ModelMixin,
|
| 372 |
+
ConfigMixin,
|
| 373 |
+
PeftAdapterMixin,
|
| 374 |
+
FromOriginalModelMixin,
|
| 375 |
+
FluxTransformer2DLoadersMixin,
|
| 376 |
+
CacheMixin,
|
| 377 |
+
AttentionMixin,
|
| 378 |
+
):
|
| 379 |
+
"""
|
| 380 |
+
The Transformer model introduced in Flux, modified for Chroma.
|
| 381 |
+
|
| 382 |
+
Reference: https://huggingface.co/lodestones/Chroma
|
| 383 |
+
|
| 384 |
+
Args:
|
| 385 |
+
patch_size (`int`, defaults to `1`):
|
| 386 |
+
Patch size to turn the input data into small patches.
|
| 387 |
+
in_channels (`int`, defaults to `64`):
|
| 388 |
+
The number of channels in the input.
|
| 389 |
+
out_channels (`int`, *optional*, defaults to `None`):
|
| 390 |
+
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
| 391 |
+
num_layers (`int`, defaults to `19`):
|
| 392 |
+
The number of layers of dual stream DiT blocks to use.
|
| 393 |
+
num_single_layers (`int`, defaults to `38`):
|
| 394 |
+
The number of layers of single stream DiT blocks to use.
|
| 395 |
+
attention_head_dim (`int`, defaults to `128`):
|
| 396 |
+
The number of dimensions to use for each attention head.
|
| 397 |
+
num_attention_heads (`int`, defaults to `24`):
|
| 398 |
+
The number of attention heads to use.
|
| 399 |
+
joint_attention_dim (`int`, defaults to `4096`):
|
| 400 |
+
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
| 401 |
+
`encoder_hidden_states`).
|
| 402 |
+
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
| 403 |
+
The dimensions to use for the rotary positional embeddings.
|
| 404 |
+
"""
|
| 405 |
+
|
| 406 |
+
_supports_gradient_checkpointing = True
|
| 407 |
+
_no_split_modules = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
|
| 408 |
+
_repeated_blocks = ["ChromaTransformerBlock", "ChromaSingleTransformerBlock"]
|
| 409 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 410 |
+
|
| 411 |
+
@register_to_config
|
| 412 |
+
def __init__(
|
| 413 |
+
self,
|
| 414 |
+
patch_size: int = 1,
|
| 415 |
+
in_channels: int = 64,
|
| 416 |
+
out_channels: Optional[int] = None,
|
| 417 |
+
num_layers: int = 19,
|
| 418 |
+
num_single_layers: int = 38,
|
| 419 |
+
attention_head_dim: int = 128,
|
| 420 |
+
num_attention_heads: int = 24,
|
| 421 |
+
joint_attention_dim: int = 4096,
|
| 422 |
+
axes_dims_rope: Tuple[int, ...] = (16, 56, 56),
|
| 423 |
+
approximator_num_channels: int = 64,
|
| 424 |
+
approximator_hidden_dim: int = 5120,
|
| 425 |
+
approximator_layers: int = 5,
|
| 426 |
+
):
|
| 427 |
+
super().__init__()
|
| 428 |
+
self.out_channels = out_channels or in_channels
|
| 429 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 430 |
+
|
| 431 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 432 |
+
|
| 433 |
+
self.time_text_embed = ChromaCombinedTimestepTextProjEmbeddings(
|
| 434 |
+
num_channels=approximator_num_channels // 4,
|
| 435 |
+
out_dim=3 * num_single_layers + 2 * 6 * num_layers + 2,
|
| 436 |
+
)
|
| 437 |
+
self.distilled_guidance_layer = ChromaApproximator(
|
| 438 |
+
in_dim=approximator_num_channels,
|
| 439 |
+
out_dim=self.inner_dim,
|
| 440 |
+
hidden_dim=approximator_hidden_dim,
|
| 441 |
+
n_layers=approximator_layers,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 445 |
+
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
| 446 |
+
|
| 447 |
+
self.transformer_blocks = nn.ModuleList(
|
| 448 |
+
[
|
| 449 |
+
ChromaTransformerBlock(
|
| 450 |
+
dim=self.inner_dim,
|
| 451 |
+
num_attention_heads=num_attention_heads,
|
| 452 |
+
attention_head_dim=attention_head_dim,
|
| 453 |
+
)
|
| 454 |
+
for _ in range(num_layers)
|
| 455 |
+
]
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 459 |
+
[
|
| 460 |
+
ChromaSingleTransformerBlock(
|
| 461 |
+
dim=self.inner_dim,
|
| 462 |
+
num_attention_heads=num_attention_heads,
|
| 463 |
+
attention_head_dim=attention_head_dim,
|
| 464 |
+
)
|
| 465 |
+
for _ in range(num_single_layers)
|
| 466 |
+
]
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
self.norm_out = ChromaAdaLayerNormContinuousPruned(
|
| 470 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
| 471 |
+
)
|
| 472 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 473 |
+
|
| 474 |
+
self.gradient_checkpointing = False
|
| 475 |
+
|
| 476 |
+
def forward(
|
| 477 |
+
self,
|
| 478 |
+
hidden_states: torch.Tensor,
|
| 479 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 480 |
+
timestep: torch.LongTensor = None,
|
| 481 |
+
img_ids: torch.Tensor = None,
|
| 482 |
+
txt_ids: torch.Tensor = None,
|
| 483 |
+
attention_mask: torch.Tensor = None,
|
| 484 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 485 |
+
controlnet_block_samples=None,
|
| 486 |
+
controlnet_single_block_samples=None,
|
| 487 |
+
return_dict: bool = True,
|
| 488 |
+
controlnet_blocks_repeat: bool = False,
|
| 489 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 490 |
+
"""
|
| 491 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 492 |
+
|
| 493 |
+
Args:
|
| 494 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
| 495 |
+
Input `hidden_states`.
|
| 496 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
| 497 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 498 |
+
timestep ( `torch.LongTensor`):
|
| 499 |
+
Used to indicate denoising step.
|
| 500 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 501 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 502 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 503 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 504 |
+
`self.processor` in
|
| 505 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 506 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 507 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 508 |
+
tuple.
|
| 509 |
+
|
| 510 |
+
Returns:
|
| 511 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 512 |
+
`tuple` where the first element is the sample tensor.
|
| 513 |
+
"""
|
| 514 |
+
if joint_attention_kwargs is not None:
|
| 515 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 516 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 517 |
+
else:
|
| 518 |
+
lora_scale = 1.0
|
| 519 |
+
|
| 520 |
+
if USE_PEFT_BACKEND:
|
| 521 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 522 |
+
scale_lora_layers(self, lora_scale)
|
| 523 |
+
else:
|
| 524 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 525 |
+
logger.warning(
|
| 526 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 530 |
+
|
| 531 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 532 |
+
|
| 533 |
+
input_vec = self.time_text_embed(timestep)
|
| 534 |
+
pooled_temb = self.distilled_guidance_layer(input_vec)
|
| 535 |
+
|
| 536 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 537 |
+
|
| 538 |
+
if txt_ids.ndim == 3:
|
| 539 |
+
logger.warning(
|
| 540 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 541 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 542 |
+
)
|
| 543 |
+
txt_ids = txt_ids[0]
|
| 544 |
+
if img_ids.ndim == 3:
|
| 545 |
+
logger.warning(
|
| 546 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 547 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 548 |
+
)
|
| 549 |
+
img_ids = img_ids[0]
|
| 550 |
+
|
| 551 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 552 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 553 |
+
|
| 554 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
| 555 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
| 556 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
| 557 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
| 558 |
+
|
| 559 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 560 |
+
img_offset = 3 * len(self.single_transformer_blocks)
|
| 561 |
+
txt_offset = img_offset + 6 * len(self.transformer_blocks)
|
| 562 |
+
img_modulation = img_offset + 6 * index_block
|
| 563 |
+
text_modulation = txt_offset + 6 * index_block
|
| 564 |
+
temb = torch.cat(
|
| 565 |
+
(
|
| 566 |
+
pooled_temb[:, img_modulation : img_modulation + 6],
|
| 567 |
+
pooled_temb[:, text_modulation : text_modulation + 6],
|
| 568 |
+
),
|
| 569 |
+
dim=1,
|
| 570 |
+
)
|
| 571 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 572 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 573 |
+
block, hidden_states, encoder_hidden_states, temb, image_rotary_emb, attention_mask
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
else:
|
| 577 |
+
encoder_hidden_states, hidden_states = block(
|
| 578 |
+
hidden_states=hidden_states,
|
| 579 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 580 |
+
temb=temb,
|
| 581 |
+
image_rotary_emb=image_rotary_emb,
|
| 582 |
+
attention_mask=attention_mask,
|
| 583 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
# controlnet residual
|
| 587 |
+
if controlnet_block_samples is not None:
|
| 588 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 589 |
+
interval_control = int(np.ceil(interval_control))
|
| 590 |
+
# For Xlabs ControlNet.
|
| 591 |
+
if controlnet_blocks_repeat:
|
| 592 |
+
hidden_states = (
|
| 593 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
| 594 |
+
)
|
| 595 |
+
else:
|
| 596 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 597 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 598 |
+
|
| 599 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 600 |
+
start_idx = 3 * index_block
|
| 601 |
+
temb = pooled_temb[:, start_idx : start_idx + 3]
|
| 602 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 603 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 604 |
+
block,
|
| 605 |
+
hidden_states,
|
| 606 |
+
temb,
|
| 607 |
+
image_rotary_emb,
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
else:
|
| 611 |
+
hidden_states = block(
|
| 612 |
+
hidden_states=hidden_states,
|
| 613 |
+
temb=temb,
|
| 614 |
+
image_rotary_emb=image_rotary_emb,
|
| 615 |
+
attention_mask=attention_mask,
|
| 616 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 617 |
+
)
|
| 618 |
+
|
| 619 |
+
# controlnet residual
|
| 620 |
+
if controlnet_single_block_samples is not None:
|
| 621 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 622 |
+
interval_control = int(np.ceil(interval_control))
|
| 623 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 624 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 625 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 629 |
+
|
| 630 |
+
temb = pooled_temb[:, -2:]
|
| 631 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 632 |
+
output = self.proj_out(hidden_states)
|
| 633 |
+
|
| 634 |
+
if USE_PEFT_BACKEND:
|
| 635 |
+
# remove `lora_scale` from each PEFT layer
|
| 636 |
+
unscale_lora_layers(self, lora_scale)
|
| 637 |
+
|
| 638 |
+
if not return_dict:
|
| 639 |
+
return (output,)
|
| 640 |
+
|
| 641 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_cogview3plus.py
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Dict, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...utils import logging
|
| 23 |
+
from ..attention import FeedForward
|
| 24 |
+
from ..attention_processor import Attention, AttentionProcessor, CogVideoXAttnProcessor2_0
|
| 25 |
+
from ..embeddings import CogView3CombinedTimestepSizeEmbeddings, CogView3PlusPatchEmbed
|
| 26 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 27 |
+
from ..modeling_utils import ModelMixin
|
| 28 |
+
from ..normalization import AdaLayerNormContinuous, CogView3PlusAdaLayerNormZeroTextImage
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class CogView3PlusTransformerBlock(nn.Module):
|
| 35 |
+
r"""
|
| 36 |
+
Transformer block used in [CogView](https://github.com/THUDM/CogView3) model.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
dim (`int`):
|
| 40 |
+
The number of channels in the input and output.
|
| 41 |
+
num_attention_heads (`int`):
|
| 42 |
+
The number of heads to use for multi-head attention.
|
| 43 |
+
attention_head_dim (`int`):
|
| 44 |
+
The number of channels in each head.
|
| 45 |
+
time_embed_dim (`int`):
|
| 46 |
+
The number of channels in timestep embedding.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
def __init__(
|
| 50 |
+
self,
|
| 51 |
+
dim: int = 2560,
|
| 52 |
+
num_attention_heads: int = 64,
|
| 53 |
+
attention_head_dim: int = 40,
|
| 54 |
+
time_embed_dim: int = 512,
|
| 55 |
+
):
|
| 56 |
+
super().__init__()
|
| 57 |
+
|
| 58 |
+
self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim)
|
| 59 |
+
|
| 60 |
+
self.attn1 = Attention(
|
| 61 |
+
query_dim=dim,
|
| 62 |
+
heads=num_attention_heads,
|
| 63 |
+
dim_head=attention_head_dim,
|
| 64 |
+
out_dim=dim,
|
| 65 |
+
bias=True,
|
| 66 |
+
qk_norm="layer_norm",
|
| 67 |
+
elementwise_affine=False,
|
| 68 |
+
eps=1e-6,
|
| 69 |
+
processor=CogVideoXAttnProcessor2_0(),
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
| 73 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
| 74 |
+
|
| 75 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 76 |
+
|
| 77 |
+
def forward(
|
| 78 |
+
self,
|
| 79 |
+
hidden_states: torch.Tensor,
|
| 80 |
+
encoder_hidden_states: torch.Tensor,
|
| 81 |
+
emb: torch.Tensor,
|
| 82 |
+
) -> torch.Tensor:
|
| 83 |
+
text_seq_length = encoder_hidden_states.size(1)
|
| 84 |
+
|
| 85 |
+
# norm & modulate
|
| 86 |
+
(
|
| 87 |
+
norm_hidden_states,
|
| 88 |
+
gate_msa,
|
| 89 |
+
shift_mlp,
|
| 90 |
+
scale_mlp,
|
| 91 |
+
gate_mlp,
|
| 92 |
+
norm_encoder_hidden_states,
|
| 93 |
+
c_gate_msa,
|
| 94 |
+
c_shift_mlp,
|
| 95 |
+
c_scale_mlp,
|
| 96 |
+
c_gate_mlp,
|
| 97 |
+
) = self.norm1(hidden_states, encoder_hidden_states, emb)
|
| 98 |
+
|
| 99 |
+
# attention
|
| 100 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
| 101 |
+
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
hidden_states = hidden_states + gate_msa.unsqueeze(1) * attn_hidden_states
|
| 105 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_msa.unsqueeze(1) * attn_encoder_hidden_states
|
| 106 |
+
|
| 107 |
+
# norm & modulate
|
| 108 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 109 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 110 |
+
|
| 111 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 112 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 113 |
+
|
| 114 |
+
# feed-forward
|
| 115 |
+
norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
|
| 116 |
+
ff_output = self.ff(norm_hidden_states)
|
| 117 |
+
|
| 118 |
+
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output[:, text_seq_length:]
|
| 119 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * ff_output[:, :text_seq_length]
|
| 120 |
+
|
| 121 |
+
if hidden_states.dtype == torch.float16:
|
| 122 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 123 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 124 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 125 |
+
return hidden_states, encoder_hidden_states
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin):
|
| 129 |
+
r"""
|
| 130 |
+
The Transformer model introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay
|
| 131 |
+
Diffusion](https://huggingface.co/papers/2403.05121).
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
patch_size (`int`, defaults to `2`):
|
| 135 |
+
The size of the patches to use in the patch embedding layer.
|
| 136 |
+
in_channels (`int`, defaults to `16`):
|
| 137 |
+
The number of channels in the input.
|
| 138 |
+
num_layers (`int`, defaults to `30`):
|
| 139 |
+
The number of layers of Transformer blocks to use.
|
| 140 |
+
attention_head_dim (`int`, defaults to `40`):
|
| 141 |
+
The number of channels in each head.
|
| 142 |
+
num_attention_heads (`int`, defaults to `64`):
|
| 143 |
+
The number of heads to use for multi-head attention.
|
| 144 |
+
out_channels (`int`, defaults to `16`):
|
| 145 |
+
The number of channels in the output.
|
| 146 |
+
text_embed_dim (`int`, defaults to `4096`):
|
| 147 |
+
Input dimension of text embeddings from the text encoder.
|
| 148 |
+
time_embed_dim (`int`, defaults to `512`):
|
| 149 |
+
Output dimension of timestep embeddings.
|
| 150 |
+
condition_dim (`int`, defaults to `256`):
|
| 151 |
+
The embedding dimension of the input SDXL-style resolution conditions (original_size, target_size,
|
| 152 |
+
crop_coords).
|
| 153 |
+
pos_embed_max_size (`int`, defaults to `128`):
|
| 154 |
+
The maximum resolution of the positional embeddings, from which slices of shape `H x W` are taken and added
|
| 155 |
+
to input patched latents, where `H` and `W` are the latent height and width respectively. A value of 128
|
| 156 |
+
means that the maximum supported height and width for image generation is `128 * vae_scale_factor *
|
| 157 |
+
patch_size => 128 * 8 * 2 => 2048`.
|
| 158 |
+
sample_size (`int`, defaults to `128`):
|
| 159 |
+
The base resolution of input latents. If height/width is not provided during generation, this value is used
|
| 160 |
+
to determine the resolution as `sample_size * vae_scale_factor => 128 * 8 => 1024`
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
_supports_gradient_checkpointing = True
|
| 164 |
+
_skip_layerwise_casting_patterns = ["patch_embed", "norm"]
|
| 165 |
+
_no_split_modules = ["CogView3PlusTransformerBlock", "CogView3PlusPatchEmbed"]
|
| 166 |
+
|
| 167 |
+
@register_to_config
|
| 168 |
+
def __init__(
|
| 169 |
+
self,
|
| 170 |
+
patch_size: int = 2,
|
| 171 |
+
in_channels: int = 16,
|
| 172 |
+
num_layers: int = 30,
|
| 173 |
+
attention_head_dim: int = 40,
|
| 174 |
+
num_attention_heads: int = 64,
|
| 175 |
+
out_channels: int = 16,
|
| 176 |
+
text_embed_dim: int = 4096,
|
| 177 |
+
time_embed_dim: int = 512,
|
| 178 |
+
condition_dim: int = 256,
|
| 179 |
+
pos_embed_max_size: int = 128,
|
| 180 |
+
sample_size: int = 128,
|
| 181 |
+
):
|
| 182 |
+
super().__init__()
|
| 183 |
+
self.out_channels = out_channels
|
| 184 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 185 |
+
|
| 186 |
+
# CogView3 uses 3 additional SDXL-like conditions - original_size, target_size, crop_coords
|
| 187 |
+
# Each of these are sincos embeddings of shape 2 * condition_dim
|
| 188 |
+
self.pooled_projection_dim = 3 * 2 * condition_dim
|
| 189 |
+
|
| 190 |
+
self.patch_embed = CogView3PlusPatchEmbed(
|
| 191 |
+
in_channels=in_channels,
|
| 192 |
+
hidden_size=self.inner_dim,
|
| 193 |
+
patch_size=patch_size,
|
| 194 |
+
text_hidden_size=text_embed_dim,
|
| 195 |
+
pos_embed_max_size=pos_embed_max_size,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
self.time_condition_embed = CogView3CombinedTimestepSizeEmbeddings(
|
| 199 |
+
embedding_dim=time_embed_dim,
|
| 200 |
+
condition_dim=condition_dim,
|
| 201 |
+
pooled_projection_dim=self.pooled_projection_dim,
|
| 202 |
+
timesteps_dim=self.inner_dim,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
self.transformer_blocks = nn.ModuleList(
|
| 206 |
+
[
|
| 207 |
+
CogView3PlusTransformerBlock(
|
| 208 |
+
dim=self.inner_dim,
|
| 209 |
+
num_attention_heads=num_attention_heads,
|
| 210 |
+
attention_head_dim=attention_head_dim,
|
| 211 |
+
time_embed_dim=time_embed_dim,
|
| 212 |
+
)
|
| 213 |
+
for _ in range(num_layers)
|
| 214 |
+
]
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
self.norm_out = AdaLayerNormContinuous(
|
| 218 |
+
embedding_dim=self.inner_dim,
|
| 219 |
+
conditioning_embedding_dim=time_embed_dim,
|
| 220 |
+
elementwise_affine=False,
|
| 221 |
+
eps=1e-6,
|
| 222 |
+
)
|
| 223 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 224 |
+
|
| 225 |
+
self.gradient_checkpointing = False
|
| 226 |
+
|
| 227 |
+
@property
|
| 228 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 229 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 230 |
+
r"""
|
| 231 |
+
Returns:
|
| 232 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 233 |
+
indexed by its weight name.
|
| 234 |
+
"""
|
| 235 |
+
# set recursively
|
| 236 |
+
processors = {}
|
| 237 |
+
|
| 238 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 239 |
+
if hasattr(module, "get_processor"):
|
| 240 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 241 |
+
|
| 242 |
+
for sub_name, child in module.named_children():
|
| 243 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 244 |
+
|
| 245 |
+
return processors
|
| 246 |
+
|
| 247 |
+
for name, module in self.named_children():
|
| 248 |
+
fn_recursive_add_processors(name, module, processors)
|
| 249 |
+
|
| 250 |
+
return processors
|
| 251 |
+
|
| 252 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 253 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 254 |
+
r"""
|
| 255 |
+
Sets the attention processor to use to compute attention.
|
| 256 |
+
|
| 257 |
+
Parameters:
|
| 258 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 259 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 260 |
+
for **all** `Attention` layers.
|
| 261 |
+
|
| 262 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 263 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 264 |
+
|
| 265 |
+
"""
|
| 266 |
+
count = len(self.attn_processors.keys())
|
| 267 |
+
|
| 268 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 269 |
+
raise ValueError(
|
| 270 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 271 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 275 |
+
if hasattr(module, "set_processor"):
|
| 276 |
+
if not isinstance(processor, dict):
|
| 277 |
+
module.set_processor(processor)
|
| 278 |
+
else:
|
| 279 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 280 |
+
|
| 281 |
+
for sub_name, child in module.named_children():
|
| 282 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 283 |
+
|
| 284 |
+
for name, module in self.named_children():
|
| 285 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 286 |
+
|
| 287 |
+
def forward(
|
| 288 |
+
self,
|
| 289 |
+
hidden_states: torch.Tensor,
|
| 290 |
+
encoder_hidden_states: torch.Tensor,
|
| 291 |
+
timestep: torch.LongTensor,
|
| 292 |
+
original_size: torch.Tensor,
|
| 293 |
+
target_size: torch.Tensor,
|
| 294 |
+
crop_coords: torch.Tensor,
|
| 295 |
+
return_dict: bool = True,
|
| 296 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 297 |
+
"""
|
| 298 |
+
The [`CogView3PlusTransformer2DModel`] forward method.
|
| 299 |
+
|
| 300 |
+
Args:
|
| 301 |
+
hidden_states (`torch.Tensor`):
|
| 302 |
+
Input `hidden_states` of shape `(batch size, channel, height, width)`.
|
| 303 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 304 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) of shape
|
| 305 |
+
`(batch_size, sequence_len, text_embed_dim)`
|
| 306 |
+
timestep (`torch.LongTensor`):
|
| 307 |
+
Used to indicate denoising step.
|
| 308 |
+
original_size (`torch.Tensor`):
|
| 309 |
+
CogView3 uses SDXL-like micro-conditioning for original image size as explained in section 2.2 of
|
| 310 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 311 |
+
target_size (`torch.Tensor`):
|
| 312 |
+
CogView3 uses SDXL-like micro-conditioning for target image size as explained in section 2.2 of
|
| 313 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 314 |
+
crop_coords (`torch.Tensor`):
|
| 315 |
+
CogView3 uses SDXL-like micro-conditioning for crop coordinates as explained in section 2.2 of
|
| 316 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
| 317 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 318 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 319 |
+
tuple.
|
| 320 |
+
|
| 321 |
+
Returns:
|
| 322 |
+
`torch.Tensor` or [`~models.transformer_2d.Transformer2DModelOutput`]:
|
| 323 |
+
The denoised latents using provided inputs as conditioning.
|
| 324 |
+
"""
|
| 325 |
+
height, width = hidden_states.shape[-2:]
|
| 326 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
| 327 |
+
|
| 328 |
+
hidden_states = self.patch_embed(
|
| 329 |
+
hidden_states, encoder_hidden_states
|
| 330 |
+
) # takes care of adding positional embeddings too.
|
| 331 |
+
emb = self.time_condition_embed(timestep, original_size, target_size, crop_coords, hidden_states.dtype)
|
| 332 |
+
|
| 333 |
+
encoder_hidden_states = hidden_states[:, :text_seq_length]
|
| 334 |
+
hidden_states = hidden_states[:, text_seq_length:]
|
| 335 |
+
|
| 336 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 337 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 338 |
+
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
|
| 339 |
+
block,
|
| 340 |
+
hidden_states,
|
| 341 |
+
encoder_hidden_states,
|
| 342 |
+
emb,
|
| 343 |
+
)
|
| 344 |
+
else:
|
| 345 |
+
hidden_states, encoder_hidden_states = block(
|
| 346 |
+
hidden_states=hidden_states,
|
| 347 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 348 |
+
emb=emb,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
hidden_states = self.norm_out(hidden_states, emb)
|
| 352 |
+
hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels)
|
| 353 |
+
|
| 354 |
+
# unpatchify
|
| 355 |
+
patch_size = self.config.patch_size
|
| 356 |
+
height = height // patch_size
|
| 357 |
+
width = width // patch_size
|
| 358 |
+
|
| 359 |
+
hidden_states = hidden_states.reshape(
|
| 360 |
+
shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size)
|
| 361 |
+
)
|
| 362 |
+
hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states)
|
| 363 |
+
output = hidden_states.reshape(
|
| 364 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
if not return_dict:
|
| 368 |
+
return (output,)
|
| 369 |
+
|
| 370 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_cogview4.py
ADDED
|
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
|
| 21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from ...loaders import PeftAdapterMixin
|
| 23 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 24 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 25 |
+
from ..attention import FeedForward
|
| 26 |
+
from ..attention_processor import Attention
|
| 27 |
+
from ..cache_utils import CacheMixin
|
| 28 |
+
from ..embeddings import CogView3CombinedTimestepSizeEmbeddings
|
| 29 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 30 |
+
from ..modeling_utils import ModelMixin
|
| 31 |
+
from ..normalization import LayerNorm, RMSNorm
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class CogView4PatchEmbed(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self,
|
| 40 |
+
in_channels: int = 16,
|
| 41 |
+
hidden_size: int = 2560,
|
| 42 |
+
patch_size: int = 2,
|
| 43 |
+
text_hidden_size: int = 4096,
|
| 44 |
+
):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.patch_size = patch_size
|
| 47 |
+
|
| 48 |
+
self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
|
| 49 |
+
self.text_proj = nn.Linear(text_hidden_size, hidden_size)
|
| 50 |
+
|
| 51 |
+
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 53 |
+
post_patch_height = height // self.patch_size
|
| 54 |
+
post_patch_width = width // self.patch_size
|
| 55 |
+
|
| 56 |
+
hidden_states = hidden_states.reshape(
|
| 57 |
+
batch_size, channel, post_patch_height, self.patch_size, post_patch_width, self.patch_size
|
| 58 |
+
)
|
| 59 |
+
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).flatten(3, 5).flatten(1, 2)
|
| 60 |
+
hidden_states = self.proj(hidden_states)
|
| 61 |
+
encoder_hidden_states = self.text_proj(encoder_hidden_states)
|
| 62 |
+
|
| 63 |
+
return hidden_states, encoder_hidden_states
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class CogView4AdaLayerNormZero(nn.Module):
|
| 67 |
+
def __init__(self, embedding_dim: int, dim: int) -> None:
|
| 68 |
+
super().__init__()
|
| 69 |
+
|
| 70 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
| 71 |
+
self.norm_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
| 72 |
+
self.linear = nn.Linear(embedding_dim, 12 * dim, bias=True)
|
| 73 |
+
|
| 74 |
+
def forward(
|
| 75 |
+
self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor
|
| 76 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 77 |
+
dtype = hidden_states.dtype
|
| 78 |
+
norm_hidden_states = self.norm(hidden_states).to(dtype=dtype)
|
| 79 |
+
norm_encoder_hidden_states = self.norm_context(encoder_hidden_states).to(dtype=dtype)
|
| 80 |
+
|
| 81 |
+
emb = self.linear(temb)
|
| 82 |
+
(
|
| 83 |
+
shift_msa,
|
| 84 |
+
c_shift_msa,
|
| 85 |
+
scale_msa,
|
| 86 |
+
c_scale_msa,
|
| 87 |
+
gate_msa,
|
| 88 |
+
c_gate_msa,
|
| 89 |
+
shift_mlp,
|
| 90 |
+
c_shift_mlp,
|
| 91 |
+
scale_mlp,
|
| 92 |
+
c_scale_mlp,
|
| 93 |
+
gate_mlp,
|
| 94 |
+
c_gate_mlp,
|
| 95 |
+
) = emb.chunk(12, dim=1)
|
| 96 |
+
|
| 97 |
+
hidden_states = norm_hidden_states * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1)
|
| 98 |
+
encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_msa.unsqueeze(1)) + c_shift_msa.unsqueeze(1)
|
| 99 |
+
|
| 100 |
+
return (
|
| 101 |
+
hidden_states,
|
| 102 |
+
gate_msa,
|
| 103 |
+
shift_mlp,
|
| 104 |
+
scale_mlp,
|
| 105 |
+
gate_mlp,
|
| 106 |
+
encoder_hidden_states,
|
| 107 |
+
c_gate_msa,
|
| 108 |
+
c_shift_mlp,
|
| 109 |
+
c_scale_mlp,
|
| 110 |
+
c_gate_mlp,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class CogView4AttnProcessor:
|
| 115 |
+
"""
|
| 116 |
+
Processor for implementing scaled dot-product attention for the CogView4 model. It applies a rotary embedding on
|
| 117 |
+
query and key vectors, but does not include spatial normalization.
|
| 118 |
+
|
| 119 |
+
The processor supports passing an attention mask for text tokens. The attention mask should have shape (batch_size,
|
| 120 |
+
text_seq_length) where 1 indicates a non-padded token and 0 indicates a padded token.
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
def __init__(self):
|
| 124 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 125 |
+
raise ImportError("CogView4AttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
| 126 |
+
|
| 127 |
+
def __call__(
|
| 128 |
+
self,
|
| 129 |
+
attn: Attention,
|
| 130 |
+
hidden_states: torch.Tensor,
|
| 131 |
+
encoder_hidden_states: torch.Tensor,
|
| 132 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 133 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 134 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 135 |
+
dtype = encoder_hidden_states.dtype
|
| 136 |
+
|
| 137 |
+
batch_size, text_seq_length, embed_dim = encoder_hidden_states.shape
|
| 138 |
+
batch_size, image_seq_length, embed_dim = hidden_states.shape
|
| 139 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 140 |
+
|
| 141 |
+
# 1. QKV projections
|
| 142 |
+
query = attn.to_q(hidden_states)
|
| 143 |
+
key = attn.to_k(hidden_states)
|
| 144 |
+
value = attn.to_v(hidden_states)
|
| 145 |
+
|
| 146 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 147 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 148 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 149 |
+
|
| 150 |
+
# 2. QK normalization
|
| 151 |
+
if attn.norm_q is not None:
|
| 152 |
+
query = attn.norm_q(query).to(dtype=dtype)
|
| 153 |
+
if attn.norm_k is not None:
|
| 154 |
+
key = attn.norm_k(key).to(dtype=dtype)
|
| 155 |
+
|
| 156 |
+
# 3. Rotational positional embeddings applied to latent stream
|
| 157 |
+
if image_rotary_emb is not None:
|
| 158 |
+
from ..embeddings import apply_rotary_emb
|
| 159 |
+
|
| 160 |
+
query[:, :, text_seq_length:, :] = apply_rotary_emb(
|
| 161 |
+
query[:, :, text_seq_length:, :], image_rotary_emb, use_real_unbind_dim=-2
|
| 162 |
+
)
|
| 163 |
+
key[:, :, text_seq_length:, :] = apply_rotary_emb(
|
| 164 |
+
key[:, :, text_seq_length:, :], image_rotary_emb, use_real_unbind_dim=-2
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# 4. Attention
|
| 168 |
+
if attention_mask is not None:
|
| 169 |
+
text_attn_mask = attention_mask
|
| 170 |
+
assert text_attn_mask.dim() == 2, "the shape of text_attn_mask should be (batch_size, text_seq_length)"
|
| 171 |
+
text_attn_mask = text_attn_mask.float().to(query.device)
|
| 172 |
+
mix_attn_mask = torch.ones((batch_size, text_seq_length + image_seq_length), device=query.device)
|
| 173 |
+
mix_attn_mask[:, :text_seq_length] = text_attn_mask
|
| 174 |
+
mix_attn_mask = mix_attn_mask.unsqueeze(2)
|
| 175 |
+
attn_mask_matrix = mix_attn_mask @ mix_attn_mask.transpose(1, 2)
|
| 176 |
+
attention_mask = (attn_mask_matrix > 0).unsqueeze(1).to(query.dtype)
|
| 177 |
+
|
| 178 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 179 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 180 |
+
)
|
| 181 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
| 182 |
+
hidden_states = hidden_states.type_as(query)
|
| 183 |
+
|
| 184 |
+
# 5. Output projection
|
| 185 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 186 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 187 |
+
|
| 188 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
| 189 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
| 190 |
+
)
|
| 191 |
+
return hidden_states, encoder_hidden_states
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class CogView4TrainingAttnProcessor:
|
| 195 |
+
"""
|
| 196 |
+
Training Processor for implementing scaled dot-product attention for the CogView4 model. It applies a rotary
|
| 197 |
+
embedding on query and key vectors, but does not include spatial normalization.
|
| 198 |
+
|
| 199 |
+
This processor differs from CogView4AttnProcessor in several important ways:
|
| 200 |
+
1. It supports attention masking with variable sequence lengths for multi-resolution training
|
| 201 |
+
2. It unpacks and repacks sequences for efficient training with variable sequence lengths when batch_flag is
|
| 202 |
+
provided
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
def __init__(self):
|
| 206 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 207 |
+
raise ImportError("CogView4AttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
| 208 |
+
|
| 209 |
+
def __call__(
|
| 210 |
+
self,
|
| 211 |
+
attn: Attention,
|
| 212 |
+
hidden_states: torch.Tensor,
|
| 213 |
+
encoder_hidden_states: torch.Tensor,
|
| 214 |
+
latent_attn_mask: Optional[torch.Tensor] = None,
|
| 215 |
+
text_attn_mask: Optional[torch.Tensor] = None,
|
| 216 |
+
batch_flag: Optional[torch.Tensor] = None,
|
| 217 |
+
image_rotary_emb: Optional[
|
| 218 |
+
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
|
| 219 |
+
] = None,
|
| 220 |
+
**kwargs,
|
| 221 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 222 |
+
"""
|
| 223 |
+
Args:
|
| 224 |
+
attn (`Attention`):
|
| 225 |
+
The attention module.
|
| 226 |
+
hidden_states (`torch.Tensor`):
|
| 227 |
+
The input hidden states.
|
| 228 |
+
encoder_hidden_states (`torch.Tensor`):
|
| 229 |
+
The encoder hidden states for cross-attention.
|
| 230 |
+
latent_attn_mask (`torch.Tensor`, *optional*):
|
| 231 |
+
Mask for latent tokens where 0 indicates pad token and 1 indicates non-pad token. If None, full
|
| 232 |
+
attention is used for all latent tokens. Note: the shape of latent_attn_mask is (batch_size,
|
| 233 |
+
num_latent_tokens).
|
| 234 |
+
text_attn_mask (`torch.Tensor`, *optional*):
|
| 235 |
+
Mask for text tokens where 0 indicates pad token and 1 indicates non-pad token. If None, full attention
|
| 236 |
+
is used for all text tokens.
|
| 237 |
+
batch_flag (`torch.Tensor`, *optional*):
|
| 238 |
+
Values from 0 to n-1 indicating which samples belong to the same batch. Samples with the same
|
| 239 |
+
batch_flag are packed together. Example: [0, 1, 1, 2, 2] means sample 0 forms batch0, samples 1-2 form
|
| 240 |
+
batch1, and samples 3-4 form batch2. If None, no packing is used.
|
| 241 |
+
image_rotary_emb (`Tuple[torch.Tensor, torch.Tensor]` or `list[Tuple[torch.Tensor, torch.Tensor]]`, *optional*):
|
| 242 |
+
The rotary embedding for the image part of the input.
|
| 243 |
+
Returns:
|
| 244 |
+
`Tuple[torch.Tensor, torch.Tensor]`: The processed hidden states for both image and text streams.
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
# Get dimensions and device info
|
| 248 |
+
batch_size, text_seq_length, embed_dim = encoder_hidden_states.shape
|
| 249 |
+
batch_size, image_seq_length, embed_dim = hidden_states.shape
|
| 250 |
+
dtype = encoder_hidden_states.dtype
|
| 251 |
+
device = encoder_hidden_states.device
|
| 252 |
+
latent_hidden_states = hidden_states
|
| 253 |
+
# Combine text and image streams for joint processing
|
| 254 |
+
mixed_hidden_states = torch.cat([encoder_hidden_states, latent_hidden_states], dim=1)
|
| 255 |
+
|
| 256 |
+
# 1. Construct attention mask and maybe packing input
|
| 257 |
+
# Create default masks if not provided
|
| 258 |
+
if text_attn_mask is None:
|
| 259 |
+
text_attn_mask = torch.ones((batch_size, text_seq_length), dtype=torch.int32, device=device)
|
| 260 |
+
if latent_attn_mask is None:
|
| 261 |
+
latent_attn_mask = torch.ones((batch_size, image_seq_length), dtype=torch.int32, device=device)
|
| 262 |
+
|
| 263 |
+
# Validate mask shapes and types
|
| 264 |
+
assert text_attn_mask.dim() == 2, "the shape of text_attn_mask should be (batch_size, text_seq_length)"
|
| 265 |
+
assert text_attn_mask.dtype == torch.int32, "the dtype of text_attn_mask should be torch.int32"
|
| 266 |
+
assert latent_attn_mask.dim() == 2, "the shape of latent_attn_mask should be (batch_size, num_latent_tokens)"
|
| 267 |
+
assert latent_attn_mask.dtype == torch.int32, "the dtype of latent_attn_mask should be torch.int32"
|
| 268 |
+
|
| 269 |
+
# Create combined mask for text and image tokens
|
| 270 |
+
mixed_attn_mask = torch.ones(
|
| 271 |
+
(batch_size, text_seq_length + image_seq_length), dtype=torch.int32, device=device
|
| 272 |
+
)
|
| 273 |
+
mixed_attn_mask[:, :text_seq_length] = text_attn_mask
|
| 274 |
+
mixed_attn_mask[:, text_seq_length:] = latent_attn_mask
|
| 275 |
+
|
| 276 |
+
# Convert mask to attention matrix format (where 1 means attend, 0 means don't attend)
|
| 277 |
+
mixed_attn_mask_input = mixed_attn_mask.unsqueeze(2).to(dtype=dtype)
|
| 278 |
+
attn_mask_matrix = mixed_attn_mask_input @ mixed_attn_mask_input.transpose(1, 2)
|
| 279 |
+
|
| 280 |
+
# Handle batch packing if enabled
|
| 281 |
+
if batch_flag is not None:
|
| 282 |
+
assert batch_flag.dim() == 1
|
| 283 |
+
# Determine packed batch size based on batch_flag
|
| 284 |
+
packing_batch_size = torch.max(batch_flag).item() + 1
|
| 285 |
+
|
| 286 |
+
# Calculate actual sequence lengths for each sample based on masks
|
| 287 |
+
text_seq_length = torch.sum(text_attn_mask, dim=1)
|
| 288 |
+
latent_seq_length = torch.sum(latent_attn_mask, dim=1)
|
| 289 |
+
mixed_seq_length = text_seq_length + latent_seq_length
|
| 290 |
+
|
| 291 |
+
# Calculate packed sequence lengths for each packed batch
|
| 292 |
+
mixed_seq_length_packed = [
|
| 293 |
+
torch.sum(mixed_attn_mask[batch_flag == batch_idx]).item() for batch_idx in range(packing_batch_size)
|
| 294 |
+
]
|
| 295 |
+
|
| 296 |
+
assert len(mixed_seq_length_packed) == packing_batch_size
|
| 297 |
+
|
| 298 |
+
# Pack sequences by removing padding tokens
|
| 299 |
+
mixed_attn_mask_flatten = mixed_attn_mask.flatten(0, 1)
|
| 300 |
+
mixed_hidden_states_flatten = mixed_hidden_states.flatten(0, 1)
|
| 301 |
+
mixed_hidden_states_unpad = mixed_hidden_states_flatten[mixed_attn_mask_flatten == 1]
|
| 302 |
+
assert torch.sum(mixed_seq_length) == mixed_hidden_states_unpad.shape[0]
|
| 303 |
+
|
| 304 |
+
# Split the unpadded sequence into packed batches
|
| 305 |
+
mixed_hidden_states_packed = torch.split(mixed_hidden_states_unpad, mixed_seq_length_packed)
|
| 306 |
+
|
| 307 |
+
# Re-pad to create packed batches with right-side padding
|
| 308 |
+
mixed_hidden_states_packed_padded = torch.nn.utils.rnn.pad_sequence(
|
| 309 |
+
mixed_hidden_states_packed,
|
| 310 |
+
batch_first=True,
|
| 311 |
+
padding_value=0.0,
|
| 312 |
+
padding_side="right",
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# Create attention mask for packed batches
|
| 316 |
+
l = mixed_hidden_states_packed_padded.shape[1]
|
| 317 |
+
attn_mask_matrix = torch.zeros(
|
| 318 |
+
(packing_batch_size, l, l),
|
| 319 |
+
dtype=dtype,
|
| 320 |
+
device=device,
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# Fill attention mask with block diagonal matrices
|
| 324 |
+
# This ensures that tokens can only attend to other tokens within the same original sample
|
| 325 |
+
for idx, mask in enumerate(attn_mask_matrix):
|
| 326 |
+
seq_lengths = mixed_seq_length[batch_flag == idx]
|
| 327 |
+
offset = 0
|
| 328 |
+
for length in seq_lengths:
|
| 329 |
+
# Create a block of 1s for each sample in the packed batch
|
| 330 |
+
mask[offset : offset + length, offset : offset + length] = 1
|
| 331 |
+
offset += length
|
| 332 |
+
|
| 333 |
+
attn_mask_matrix = attn_mask_matrix.to(dtype=torch.bool)
|
| 334 |
+
attn_mask_matrix = attn_mask_matrix.unsqueeze(1) # Add attention head dim
|
| 335 |
+
attention_mask = attn_mask_matrix
|
| 336 |
+
|
| 337 |
+
# Prepare hidden states for attention computation
|
| 338 |
+
if batch_flag is None:
|
| 339 |
+
# If no packing, just combine text and image tokens
|
| 340 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 341 |
+
else:
|
| 342 |
+
# If packing, use the packed sequence
|
| 343 |
+
hidden_states = mixed_hidden_states_packed_padded
|
| 344 |
+
|
| 345 |
+
# 2. QKV projections - convert hidden states to query, key, value
|
| 346 |
+
query = attn.to_q(hidden_states)
|
| 347 |
+
key = attn.to_k(hidden_states)
|
| 348 |
+
value = attn.to_v(hidden_states)
|
| 349 |
+
|
| 350 |
+
# Reshape for multi-head attention: [batch, seq_len, heads*dim] -> [batch, heads, seq_len, dim]
|
| 351 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 352 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 353 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 354 |
+
|
| 355 |
+
# 3. QK normalization - apply layer norm to queries and keys if configured
|
| 356 |
+
if attn.norm_q is not None:
|
| 357 |
+
query = attn.norm_q(query).to(dtype=dtype)
|
| 358 |
+
if attn.norm_k is not None:
|
| 359 |
+
key = attn.norm_k(key).to(dtype=dtype)
|
| 360 |
+
|
| 361 |
+
# 4. Apply rotary positional embeddings to image tokens only
|
| 362 |
+
if image_rotary_emb is not None:
|
| 363 |
+
from ..embeddings import apply_rotary_emb
|
| 364 |
+
|
| 365 |
+
if batch_flag is None:
|
| 366 |
+
# Apply RoPE only to image tokens (after text tokens)
|
| 367 |
+
query[:, :, text_seq_length:, :] = apply_rotary_emb(
|
| 368 |
+
query[:, :, text_seq_length:, :], image_rotary_emb, use_real_unbind_dim=-2
|
| 369 |
+
)
|
| 370 |
+
key[:, :, text_seq_length:, :] = apply_rotary_emb(
|
| 371 |
+
key[:, :, text_seq_length:, :], image_rotary_emb, use_real_unbind_dim=-2
|
| 372 |
+
)
|
| 373 |
+
else:
|
| 374 |
+
# For packed batches, need to carefully apply RoPE to appropriate tokens
|
| 375 |
+
assert query.shape[0] == packing_batch_size
|
| 376 |
+
assert key.shape[0] == packing_batch_size
|
| 377 |
+
assert len(image_rotary_emb) == batch_size
|
| 378 |
+
|
| 379 |
+
rope_idx = 0
|
| 380 |
+
for idx in range(packing_batch_size):
|
| 381 |
+
offset = 0
|
| 382 |
+
# Get text and image sequence lengths for samples in this packed batch
|
| 383 |
+
text_seq_length_bi = text_seq_length[batch_flag == idx]
|
| 384 |
+
latent_seq_length_bi = latent_seq_length[batch_flag == idx]
|
| 385 |
+
|
| 386 |
+
# Apply RoPE to each image segment in the packed sequence
|
| 387 |
+
for tlen, llen in zip(text_seq_length_bi, latent_seq_length_bi):
|
| 388 |
+
mlen = tlen + llen
|
| 389 |
+
# Apply RoPE only to image tokens (after text tokens)
|
| 390 |
+
query[idx, :, offset + tlen : offset + mlen, :] = apply_rotary_emb(
|
| 391 |
+
query[idx, :, offset + tlen : offset + mlen, :],
|
| 392 |
+
image_rotary_emb[rope_idx],
|
| 393 |
+
use_real_unbind_dim=-2,
|
| 394 |
+
)
|
| 395 |
+
key[idx, :, offset + tlen : offset + mlen, :] = apply_rotary_emb(
|
| 396 |
+
key[idx, :, offset + tlen : offset + mlen, :],
|
| 397 |
+
image_rotary_emb[rope_idx],
|
| 398 |
+
use_real_unbind_dim=-2,
|
| 399 |
+
)
|
| 400 |
+
offset += mlen
|
| 401 |
+
rope_idx += 1
|
| 402 |
+
|
| 403 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 404 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
# Reshape back: [batch, heads, seq_len, dim] -> [batch, seq_len, heads*dim]
|
| 408 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
| 409 |
+
hidden_states = hidden_states.type_as(query)
|
| 410 |
+
|
| 411 |
+
# 5. Output projection - project attention output to model dimension
|
| 412 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 413 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 414 |
+
|
| 415 |
+
# Split the output back into text and image streams
|
| 416 |
+
if batch_flag is None:
|
| 417 |
+
# Simple split for non-packed case
|
| 418 |
+
encoder_hidden_states, hidden_states = hidden_states.split(
|
| 419 |
+
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
|
| 420 |
+
)
|
| 421 |
+
else:
|
| 422 |
+
# For packed case: need to unpack, split text/image, then restore to original shapes
|
| 423 |
+
# First, unpad the sequence based on the packed sequence lengths
|
| 424 |
+
hidden_states_unpad = torch.nn.utils.rnn.unpad_sequence(
|
| 425 |
+
hidden_states,
|
| 426 |
+
lengths=torch.tensor(mixed_seq_length_packed),
|
| 427 |
+
batch_first=True,
|
| 428 |
+
)
|
| 429 |
+
# Concatenate all unpadded sequences
|
| 430 |
+
hidden_states_flatten = torch.cat(hidden_states_unpad, dim=0)
|
| 431 |
+
# Split by original sample sequence lengths
|
| 432 |
+
hidden_states_unpack = torch.split(hidden_states_flatten, mixed_seq_length.tolist())
|
| 433 |
+
assert len(hidden_states_unpack) == batch_size
|
| 434 |
+
|
| 435 |
+
# Further split each sample's sequence into text and image parts
|
| 436 |
+
hidden_states_unpack = [
|
| 437 |
+
torch.split(h, [tlen, llen])
|
| 438 |
+
for h, tlen, llen in zip(hidden_states_unpack, text_seq_length, latent_seq_length)
|
| 439 |
+
]
|
| 440 |
+
# Separate text and image sequences
|
| 441 |
+
encoder_hidden_states_unpad = [h[0] for h in hidden_states_unpack]
|
| 442 |
+
hidden_states_unpad = [h[1] for h in hidden_states_unpack]
|
| 443 |
+
|
| 444 |
+
# Update the original tensors with the processed values, respecting the attention masks
|
| 445 |
+
for idx in range(batch_size):
|
| 446 |
+
# Place unpacked text tokens back in the encoder_hidden_states tensor
|
| 447 |
+
encoder_hidden_states[idx][text_attn_mask[idx] == 1] = encoder_hidden_states_unpad[idx]
|
| 448 |
+
# Place unpacked image tokens back in the latent_hidden_states tensor
|
| 449 |
+
latent_hidden_states[idx][latent_attn_mask[idx] == 1] = hidden_states_unpad[idx]
|
| 450 |
+
|
| 451 |
+
# Update the output hidden states
|
| 452 |
+
hidden_states = latent_hidden_states
|
| 453 |
+
|
| 454 |
+
return hidden_states, encoder_hidden_states
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
@maybe_allow_in_graph
|
| 458 |
+
class CogView4TransformerBlock(nn.Module):
|
| 459 |
+
def __init__(
|
| 460 |
+
self,
|
| 461 |
+
dim: int = 2560,
|
| 462 |
+
num_attention_heads: int = 64,
|
| 463 |
+
attention_head_dim: int = 40,
|
| 464 |
+
time_embed_dim: int = 512,
|
| 465 |
+
) -> None:
|
| 466 |
+
super().__init__()
|
| 467 |
+
|
| 468 |
+
# 1. Attention
|
| 469 |
+
self.norm1 = CogView4AdaLayerNormZero(time_embed_dim, dim)
|
| 470 |
+
self.attn1 = Attention(
|
| 471 |
+
query_dim=dim,
|
| 472 |
+
heads=num_attention_heads,
|
| 473 |
+
dim_head=attention_head_dim,
|
| 474 |
+
out_dim=dim,
|
| 475 |
+
bias=True,
|
| 476 |
+
qk_norm="layer_norm",
|
| 477 |
+
elementwise_affine=False,
|
| 478 |
+
eps=1e-5,
|
| 479 |
+
processor=CogView4AttnProcessor(),
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
# 2. Feedforward
|
| 483 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
| 484 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5)
|
| 485 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 486 |
+
|
| 487 |
+
def forward(
|
| 488 |
+
self,
|
| 489 |
+
hidden_states: torch.Tensor,
|
| 490 |
+
encoder_hidden_states: torch.Tensor,
|
| 491 |
+
temb: Optional[torch.Tensor] = None,
|
| 492 |
+
image_rotary_emb: Optional[
|
| 493 |
+
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
|
| 494 |
+
] = None,
|
| 495 |
+
attention_mask: Optional[Dict[str, torch.Tensor]] = None,
|
| 496 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 497 |
+
) -> torch.Tensor:
|
| 498 |
+
# 1. Timestep conditioning
|
| 499 |
+
(
|
| 500 |
+
norm_hidden_states,
|
| 501 |
+
gate_msa,
|
| 502 |
+
shift_mlp,
|
| 503 |
+
scale_mlp,
|
| 504 |
+
gate_mlp,
|
| 505 |
+
norm_encoder_hidden_states,
|
| 506 |
+
c_gate_msa,
|
| 507 |
+
c_shift_mlp,
|
| 508 |
+
c_scale_mlp,
|
| 509 |
+
c_gate_mlp,
|
| 510 |
+
) = self.norm1(hidden_states, encoder_hidden_states, temb)
|
| 511 |
+
|
| 512 |
+
# 2. Attention
|
| 513 |
+
if attention_kwargs is None:
|
| 514 |
+
attention_kwargs = {}
|
| 515 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
| 516 |
+
hidden_states=norm_hidden_states,
|
| 517 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 518 |
+
image_rotary_emb=image_rotary_emb,
|
| 519 |
+
attention_mask=attention_mask,
|
| 520 |
+
**attention_kwargs,
|
| 521 |
+
)
|
| 522 |
+
hidden_states = hidden_states + attn_hidden_states * gate_msa.unsqueeze(1)
|
| 523 |
+
encoder_hidden_states = encoder_hidden_states + attn_encoder_hidden_states * c_gate_msa.unsqueeze(1)
|
| 524 |
+
|
| 525 |
+
# 3. Feedforward
|
| 526 |
+
norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
| 527 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) * (
|
| 528 |
+
1 + c_scale_mlp.unsqueeze(1)
|
| 529 |
+
) + c_shift_mlp.unsqueeze(1)
|
| 530 |
+
|
| 531 |
+
ff_output = self.ff(norm_hidden_states)
|
| 532 |
+
ff_output_context = self.ff(norm_encoder_hidden_states)
|
| 533 |
+
hidden_states = hidden_states + ff_output * gate_mlp.unsqueeze(1)
|
| 534 |
+
encoder_hidden_states = encoder_hidden_states + ff_output_context * c_gate_mlp.unsqueeze(1)
|
| 535 |
+
|
| 536 |
+
return hidden_states, encoder_hidden_states
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
class CogView4RotaryPosEmbed(nn.Module):
|
| 540 |
+
def __init__(self, dim: int, patch_size: int, rope_axes_dim: Tuple[int, int], theta: float = 10000.0) -> None:
|
| 541 |
+
super().__init__()
|
| 542 |
+
|
| 543 |
+
self.dim = dim
|
| 544 |
+
self.patch_size = patch_size
|
| 545 |
+
self.rope_axes_dim = rope_axes_dim
|
| 546 |
+
self.theta = theta
|
| 547 |
+
|
| 548 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 549 |
+
batch_size, num_channels, height, width = hidden_states.shape
|
| 550 |
+
height, width = height // self.patch_size, width // self.patch_size
|
| 551 |
+
|
| 552 |
+
dim_h, dim_w = self.dim // 2, self.dim // 2
|
| 553 |
+
h_inv_freq = 1.0 / (
|
| 554 |
+
self.theta ** (torch.arange(0, dim_h, 2, dtype=torch.float32)[: (dim_h // 2)].float() / dim_h)
|
| 555 |
+
)
|
| 556 |
+
w_inv_freq = 1.0 / (
|
| 557 |
+
self.theta ** (torch.arange(0, dim_w, 2, dtype=torch.float32)[: (dim_w // 2)].float() / dim_w)
|
| 558 |
+
)
|
| 559 |
+
h_seq = torch.arange(self.rope_axes_dim[0])
|
| 560 |
+
w_seq = torch.arange(self.rope_axes_dim[1])
|
| 561 |
+
freqs_h = torch.outer(h_seq, h_inv_freq)
|
| 562 |
+
freqs_w = torch.outer(w_seq, w_inv_freq)
|
| 563 |
+
|
| 564 |
+
h_idx = torch.arange(height, device=freqs_h.device)
|
| 565 |
+
w_idx = torch.arange(width, device=freqs_w.device)
|
| 566 |
+
inner_h_idx = h_idx * self.rope_axes_dim[0] // height
|
| 567 |
+
inner_w_idx = w_idx * self.rope_axes_dim[1] // width
|
| 568 |
+
|
| 569 |
+
freqs_h = freqs_h[inner_h_idx]
|
| 570 |
+
freqs_w = freqs_w[inner_w_idx]
|
| 571 |
+
|
| 572 |
+
# Create position matrices for height and width
|
| 573 |
+
# [height, 1, dim//4] and [1, width, dim//4]
|
| 574 |
+
freqs_h = freqs_h.unsqueeze(1)
|
| 575 |
+
freqs_w = freqs_w.unsqueeze(0)
|
| 576 |
+
# Broadcast freqs_h and freqs_w to [height, width, dim//4]
|
| 577 |
+
freqs_h = freqs_h.expand(height, width, -1)
|
| 578 |
+
freqs_w = freqs_w.expand(height, width, -1)
|
| 579 |
+
|
| 580 |
+
# Concatenate along last dimension to get [height, width, dim//2]
|
| 581 |
+
freqs = torch.cat([freqs_h, freqs_w], dim=-1)
|
| 582 |
+
freqs = torch.cat([freqs, freqs], dim=-1) # [height, width, dim]
|
| 583 |
+
freqs = freqs.reshape(height * width, -1)
|
| 584 |
+
return (freqs.cos(), freqs.sin())
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
class CogView4AdaLayerNormContinuous(nn.Module):
|
| 588 |
+
"""
|
| 589 |
+
CogView4-only final AdaLN: LN(x) -> Linear(cond) -> chunk -> affine. Matches Megatron: **no activation** before the
|
| 590 |
+
Linear on conditioning embedding.
|
| 591 |
+
"""
|
| 592 |
+
|
| 593 |
+
def __init__(
|
| 594 |
+
self,
|
| 595 |
+
embedding_dim: int,
|
| 596 |
+
conditioning_embedding_dim: int,
|
| 597 |
+
elementwise_affine: bool = True,
|
| 598 |
+
eps: float = 1e-5,
|
| 599 |
+
bias: bool = True,
|
| 600 |
+
norm_type: str = "layer_norm",
|
| 601 |
+
):
|
| 602 |
+
super().__init__()
|
| 603 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
| 604 |
+
if norm_type == "layer_norm":
|
| 605 |
+
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
| 606 |
+
elif norm_type == "rms_norm":
|
| 607 |
+
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine)
|
| 608 |
+
else:
|
| 609 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
| 610 |
+
|
| 611 |
+
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
| 612 |
+
# *** NO SiLU here ***
|
| 613 |
+
emb = self.linear(conditioning_embedding.to(x.dtype))
|
| 614 |
+
scale, shift = torch.chunk(emb, 2, dim=1)
|
| 615 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
| 616 |
+
return x
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
class CogView4Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, CacheMixin):
|
| 620 |
+
r"""
|
| 621 |
+
Args:
|
| 622 |
+
patch_size (`int`, defaults to `2`):
|
| 623 |
+
The size of the patches to use in the patch embedding layer.
|
| 624 |
+
in_channels (`int`, defaults to `16`):
|
| 625 |
+
The number of channels in the input.
|
| 626 |
+
num_layers (`int`, defaults to `30`):
|
| 627 |
+
The number of layers of Transformer blocks to use.
|
| 628 |
+
attention_head_dim (`int`, defaults to `40`):
|
| 629 |
+
The number of channels in each head.
|
| 630 |
+
num_attention_heads (`int`, defaults to `64`):
|
| 631 |
+
The number of heads to use for multi-head attention.
|
| 632 |
+
out_channels (`int`, defaults to `16`):
|
| 633 |
+
The number of channels in the output.
|
| 634 |
+
text_embed_dim (`int`, defaults to `4096`):
|
| 635 |
+
Input dimension of text embeddings from the text encoder.
|
| 636 |
+
time_embed_dim (`int`, defaults to `512`):
|
| 637 |
+
Output dimension of timestep embeddings.
|
| 638 |
+
condition_dim (`int`, defaults to `256`):
|
| 639 |
+
The embedding dimension of the input SDXL-style resolution conditions (original_size, target_size,
|
| 640 |
+
crop_coords).
|
| 641 |
+
pos_embed_max_size (`int`, defaults to `128`):
|
| 642 |
+
The maximum resolution of the positional embeddings, from which slices of shape `H x W` are taken and added
|
| 643 |
+
to input patched latents, where `H` and `W` are the latent height and width respectively. A value of 128
|
| 644 |
+
means that the maximum supported height and width for image generation is `128 * vae_scale_factor *
|
| 645 |
+
patch_size => 128 * 8 * 2 => 2048`.
|
| 646 |
+
sample_size (`int`, defaults to `128`):
|
| 647 |
+
The base resolution of input latents. If height/width is not provided during generation, this value is used
|
| 648 |
+
to determine the resolution as `sample_size * vae_scale_factor => 128 * 8 => 1024`
|
| 649 |
+
"""
|
| 650 |
+
|
| 651 |
+
_supports_gradient_checkpointing = True
|
| 652 |
+
_no_split_modules = ["CogView4TransformerBlock", "CogView4PatchEmbed", "CogView4PatchEmbed"]
|
| 653 |
+
_skip_layerwise_casting_patterns = ["patch_embed", "norm", "proj_out"]
|
| 654 |
+
|
| 655 |
+
@register_to_config
|
| 656 |
+
def __init__(
|
| 657 |
+
self,
|
| 658 |
+
patch_size: int = 2,
|
| 659 |
+
in_channels: int = 16,
|
| 660 |
+
out_channels: int = 16,
|
| 661 |
+
num_layers: int = 30,
|
| 662 |
+
attention_head_dim: int = 40,
|
| 663 |
+
num_attention_heads: int = 64,
|
| 664 |
+
text_embed_dim: int = 4096,
|
| 665 |
+
time_embed_dim: int = 512,
|
| 666 |
+
condition_dim: int = 256,
|
| 667 |
+
pos_embed_max_size: int = 128,
|
| 668 |
+
sample_size: int = 128,
|
| 669 |
+
rope_axes_dim: Tuple[int, int] = (256, 256),
|
| 670 |
+
):
|
| 671 |
+
super().__init__()
|
| 672 |
+
|
| 673 |
+
# CogView4 uses 3 additional SDXL-like conditions - original_size, target_size, crop_coords
|
| 674 |
+
# Each of these are sincos embeddings of shape 2 * condition_dim
|
| 675 |
+
pooled_projection_dim = 3 * 2 * condition_dim
|
| 676 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 677 |
+
out_channels = out_channels
|
| 678 |
+
|
| 679 |
+
# 1. RoPE
|
| 680 |
+
self.rope = CogView4RotaryPosEmbed(attention_head_dim, patch_size, rope_axes_dim, theta=10000.0)
|
| 681 |
+
|
| 682 |
+
# 2. Patch & Text-timestep embedding
|
| 683 |
+
self.patch_embed = CogView4PatchEmbed(in_channels, inner_dim, patch_size, text_embed_dim)
|
| 684 |
+
|
| 685 |
+
self.time_condition_embed = CogView3CombinedTimestepSizeEmbeddings(
|
| 686 |
+
embedding_dim=time_embed_dim,
|
| 687 |
+
condition_dim=condition_dim,
|
| 688 |
+
pooled_projection_dim=pooled_projection_dim,
|
| 689 |
+
timesteps_dim=inner_dim,
|
| 690 |
+
)
|
| 691 |
+
|
| 692 |
+
# 3. Transformer blocks
|
| 693 |
+
self.transformer_blocks = nn.ModuleList(
|
| 694 |
+
[
|
| 695 |
+
CogView4TransformerBlock(inner_dim, num_attention_heads, attention_head_dim, time_embed_dim)
|
| 696 |
+
for _ in range(num_layers)
|
| 697 |
+
]
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
# 4. Output projection
|
| 701 |
+
self.norm_out = CogView4AdaLayerNormContinuous(inner_dim, time_embed_dim, elementwise_affine=False)
|
| 702 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels, bias=True)
|
| 703 |
+
|
| 704 |
+
self.gradient_checkpointing = False
|
| 705 |
+
|
| 706 |
+
def forward(
|
| 707 |
+
self,
|
| 708 |
+
hidden_states: torch.Tensor,
|
| 709 |
+
encoder_hidden_states: torch.Tensor,
|
| 710 |
+
timestep: torch.LongTensor,
|
| 711 |
+
original_size: torch.Tensor,
|
| 712 |
+
target_size: torch.Tensor,
|
| 713 |
+
crop_coords: torch.Tensor,
|
| 714 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 715 |
+
return_dict: bool = True,
|
| 716 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 717 |
+
image_rotary_emb: Optional[
|
| 718 |
+
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
|
| 719 |
+
] = None,
|
| 720 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 721 |
+
if attention_kwargs is not None:
|
| 722 |
+
attention_kwargs = attention_kwargs.copy()
|
| 723 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 724 |
+
else:
|
| 725 |
+
lora_scale = 1.0
|
| 726 |
+
|
| 727 |
+
if USE_PEFT_BACKEND:
|
| 728 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 729 |
+
scale_lora_layers(self, lora_scale)
|
| 730 |
+
else:
|
| 731 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 732 |
+
logger.warning(
|
| 733 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
batch_size, num_channels, height, width = hidden_states.shape
|
| 737 |
+
|
| 738 |
+
# 1. RoPE
|
| 739 |
+
if image_rotary_emb is None:
|
| 740 |
+
image_rotary_emb = self.rope(hidden_states)
|
| 741 |
+
|
| 742 |
+
# 2. Patch & Timestep embeddings
|
| 743 |
+
p = self.config.patch_size
|
| 744 |
+
post_patch_height = height // p
|
| 745 |
+
post_patch_width = width // p
|
| 746 |
+
|
| 747 |
+
hidden_states, encoder_hidden_states = self.patch_embed(hidden_states, encoder_hidden_states)
|
| 748 |
+
|
| 749 |
+
temb = self.time_condition_embed(timestep, original_size, target_size, crop_coords, hidden_states.dtype)
|
| 750 |
+
temb = F.silu(temb)
|
| 751 |
+
|
| 752 |
+
# 3. Transformer blocks
|
| 753 |
+
for block in self.transformer_blocks:
|
| 754 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 755 |
+
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
|
| 756 |
+
block,
|
| 757 |
+
hidden_states,
|
| 758 |
+
encoder_hidden_states,
|
| 759 |
+
temb,
|
| 760 |
+
image_rotary_emb,
|
| 761 |
+
attention_mask,
|
| 762 |
+
attention_kwargs,
|
| 763 |
+
)
|
| 764 |
+
else:
|
| 765 |
+
hidden_states, encoder_hidden_states = block(
|
| 766 |
+
hidden_states,
|
| 767 |
+
encoder_hidden_states,
|
| 768 |
+
temb,
|
| 769 |
+
image_rotary_emb,
|
| 770 |
+
attention_mask,
|
| 771 |
+
attention_kwargs,
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
# 4. Output norm & projection
|
| 775 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 776 |
+
hidden_states = self.proj_out(hidden_states)
|
| 777 |
+
|
| 778 |
+
# 5. Unpatchify
|
| 779 |
+
hidden_states = hidden_states.reshape(batch_size, post_patch_height, post_patch_width, -1, p, p)
|
| 780 |
+
output = hidden_states.permute(0, 3, 1, 4, 2, 5).flatten(4, 5).flatten(2, 3)
|
| 781 |
+
|
| 782 |
+
if USE_PEFT_BACKEND:
|
| 783 |
+
# remove `lora_scale` from each PEFT layer
|
| 784 |
+
unscale_lora_layers(self, lora_scale)
|
| 785 |
+
|
| 786 |
+
if not return_dict:
|
| 787 |
+
return (output,)
|
| 788 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_cosmos.py
ADDED
|
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The NVIDIA Team and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
from typing import Optional, Tuple
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...loaders import FromOriginalModelMixin
|
| 24 |
+
from ...utils import is_torchvision_available
|
| 25 |
+
from ..attention import FeedForward
|
| 26 |
+
from ..attention_processor import Attention
|
| 27 |
+
from ..embeddings import Timesteps
|
| 28 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 29 |
+
from ..modeling_utils import ModelMixin
|
| 30 |
+
from ..normalization import RMSNorm
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if is_torchvision_available():
|
| 34 |
+
from torchvision import transforms
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class CosmosPatchEmbed(nn.Module):
|
| 38 |
+
def __init__(
|
| 39 |
+
self, in_channels: int, out_channels: int, patch_size: Tuple[int, int, int], bias: bool = True
|
| 40 |
+
) -> None:
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.patch_size = patch_size
|
| 43 |
+
|
| 44 |
+
self.proj = nn.Linear(in_channels * patch_size[0] * patch_size[1] * patch_size[2], out_channels, bias=bias)
|
| 45 |
+
|
| 46 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 47 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 48 |
+
p_t, p_h, p_w = self.patch_size
|
| 49 |
+
hidden_states = hidden_states.reshape(
|
| 50 |
+
batch_size, num_channels, num_frames // p_t, p_t, height // p_h, p_h, width // p_w, p_w
|
| 51 |
+
)
|
| 52 |
+
hidden_states = hidden_states.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7)
|
| 53 |
+
hidden_states = self.proj(hidden_states)
|
| 54 |
+
return hidden_states
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class CosmosTimestepEmbedding(nn.Module):
|
| 58 |
+
def __init__(self, in_features: int, out_features: int) -> None:
|
| 59 |
+
super().__init__()
|
| 60 |
+
self.linear_1 = nn.Linear(in_features, out_features, bias=False)
|
| 61 |
+
self.activation = nn.SiLU()
|
| 62 |
+
self.linear_2 = nn.Linear(out_features, 3 * out_features, bias=False)
|
| 63 |
+
|
| 64 |
+
def forward(self, timesteps: torch.Tensor) -> torch.Tensor:
|
| 65 |
+
emb = self.linear_1(timesteps)
|
| 66 |
+
emb = self.activation(emb)
|
| 67 |
+
emb = self.linear_2(emb)
|
| 68 |
+
return emb
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class CosmosEmbedding(nn.Module):
|
| 72 |
+
def __init__(self, embedding_dim: int, condition_dim: int) -> None:
|
| 73 |
+
super().__init__()
|
| 74 |
+
|
| 75 |
+
self.time_proj = Timesteps(embedding_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
|
| 76 |
+
self.t_embedder = CosmosTimestepEmbedding(embedding_dim, condition_dim)
|
| 77 |
+
self.norm = RMSNorm(embedding_dim, eps=1e-6, elementwise_affine=True)
|
| 78 |
+
|
| 79 |
+
def forward(self, hidden_states: torch.Tensor, timestep: torch.LongTensor) -> torch.Tensor:
|
| 80 |
+
timesteps_proj = self.time_proj(timestep).type_as(hidden_states)
|
| 81 |
+
temb = self.t_embedder(timesteps_proj)
|
| 82 |
+
embedded_timestep = self.norm(timesteps_proj)
|
| 83 |
+
return temb, embedded_timestep
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class CosmosAdaLayerNorm(nn.Module):
|
| 87 |
+
def __init__(self, in_features: int, hidden_features: int) -> None:
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.embedding_dim = in_features
|
| 90 |
+
|
| 91 |
+
self.activation = nn.SiLU()
|
| 92 |
+
self.norm = nn.LayerNorm(in_features, elementwise_affine=False, eps=1e-6)
|
| 93 |
+
self.linear_1 = nn.Linear(in_features, hidden_features, bias=False)
|
| 94 |
+
self.linear_2 = nn.Linear(hidden_features, 2 * in_features, bias=False)
|
| 95 |
+
|
| 96 |
+
def forward(
|
| 97 |
+
self, hidden_states: torch.Tensor, embedded_timestep: torch.Tensor, temb: Optional[torch.Tensor] = None
|
| 98 |
+
) -> torch.Tensor:
|
| 99 |
+
embedded_timestep = self.activation(embedded_timestep)
|
| 100 |
+
embedded_timestep = self.linear_1(embedded_timestep)
|
| 101 |
+
embedded_timestep = self.linear_2(embedded_timestep)
|
| 102 |
+
|
| 103 |
+
if temb is not None:
|
| 104 |
+
embedded_timestep = embedded_timestep + temb[..., : 2 * self.embedding_dim]
|
| 105 |
+
|
| 106 |
+
shift, scale = embedded_timestep.chunk(2, dim=-1)
|
| 107 |
+
hidden_states = self.norm(hidden_states)
|
| 108 |
+
|
| 109 |
+
if embedded_timestep.ndim == 2:
|
| 110 |
+
shift, scale = (x.unsqueeze(1) for x in (shift, scale))
|
| 111 |
+
|
| 112 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 113 |
+
return hidden_states
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class CosmosAdaLayerNormZero(nn.Module):
|
| 117 |
+
def __init__(self, in_features: int, hidden_features: Optional[int] = None) -> None:
|
| 118 |
+
super().__init__()
|
| 119 |
+
|
| 120 |
+
self.norm = nn.LayerNorm(in_features, elementwise_affine=False, eps=1e-6)
|
| 121 |
+
self.activation = nn.SiLU()
|
| 122 |
+
|
| 123 |
+
if hidden_features is None:
|
| 124 |
+
self.linear_1 = nn.Identity()
|
| 125 |
+
else:
|
| 126 |
+
self.linear_1 = nn.Linear(in_features, hidden_features, bias=False)
|
| 127 |
+
|
| 128 |
+
self.linear_2 = nn.Linear(hidden_features, 3 * in_features, bias=False)
|
| 129 |
+
|
| 130 |
+
def forward(
|
| 131 |
+
self,
|
| 132 |
+
hidden_states: torch.Tensor,
|
| 133 |
+
embedded_timestep: torch.Tensor,
|
| 134 |
+
temb: Optional[torch.Tensor] = None,
|
| 135 |
+
) -> torch.Tensor:
|
| 136 |
+
embedded_timestep = self.activation(embedded_timestep)
|
| 137 |
+
embedded_timestep = self.linear_1(embedded_timestep)
|
| 138 |
+
embedded_timestep = self.linear_2(embedded_timestep)
|
| 139 |
+
|
| 140 |
+
if temb is not None:
|
| 141 |
+
embedded_timestep = embedded_timestep + temb
|
| 142 |
+
|
| 143 |
+
shift, scale, gate = embedded_timestep.chunk(3, dim=-1)
|
| 144 |
+
hidden_states = self.norm(hidden_states)
|
| 145 |
+
|
| 146 |
+
if embedded_timestep.ndim == 2:
|
| 147 |
+
shift, scale, gate = (x.unsqueeze(1) for x in (shift, scale, gate))
|
| 148 |
+
|
| 149 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
| 150 |
+
return hidden_states, gate
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class CosmosAttnProcessor2_0:
|
| 154 |
+
def __init__(self):
|
| 155 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 156 |
+
raise ImportError("CosmosAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.")
|
| 157 |
+
|
| 158 |
+
def __call__(
|
| 159 |
+
self,
|
| 160 |
+
attn: Attention,
|
| 161 |
+
hidden_states: torch.Tensor,
|
| 162 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 163 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 164 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 165 |
+
) -> torch.Tensor:
|
| 166 |
+
# 1. QKV projections
|
| 167 |
+
if encoder_hidden_states is None:
|
| 168 |
+
encoder_hidden_states = hidden_states
|
| 169 |
+
|
| 170 |
+
query = attn.to_q(hidden_states)
|
| 171 |
+
key = attn.to_k(encoder_hidden_states)
|
| 172 |
+
value = attn.to_v(encoder_hidden_states)
|
| 173 |
+
|
| 174 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 175 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 176 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 177 |
+
|
| 178 |
+
# 2. QK normalization
|
| 179 |
+
query = attn.norm_q(query)
|
| 180 |
+
key = attn.norm_k(key)
|
| 181 |
+
|
| 182 |
+
# 3. Apply RoPE
|
| 183 |
+
if image_rotary_emb is not None:
|
| 184 |
+
from ..embeddings import apply_rotary_emb
|
| 185 |
+
|
| 186 |
+
query = apply_rotary_emb(query, image_rotary_emb, use_real=True, use_real_unbind_dim=-2)
|
| 187 |
+
key = apply_rotary_emb(key, image_rotary_emb, use_real=True, use_real_unbind_dim=-2)
|
| 188 |
+
|
| 189 |
+
# 4. Prepare for GQA
|
| 190 |
+
if torch.onnx.is_in_onnx_export():
|
| 191 |
+
query_idx = torch.tensor(query.size(3), device=query.device)
|
| 192 |
+
key_idx = torch.tensor(key.size(3), device=key.device)
|
| 193 |
+
value_idx = torch.tensor(value.size(3), device=value.device)
|
| 194 |
+
|
| 195 |
+
else:
|
| 196 |
+
query_idx = query.size(3)
|
| 197 |
+
key_idx = key.size(3)
|
| 198 |
+
value_idx = value.size(3)
|
| 199 |
+
key = key.repeat_interleave(query_idx // key_idx, dim=3)
|
| 200 |
+
value = value.repeat_interleave(query_idx // value_idx, dim=3)
|
| 201 |
+
|
| 202 |
+
# 5. Attention
|
| 203 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 204 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 205 |
+
)
|
| 206 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3).type_as(query)
|
| 207 |
+
|
| 208 |
+
# 6. Output projection
|
| 209 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 210 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 211 |
+
|
| 212 |
+
return hidden_states
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class CosmosTransformerBlock(nn.Module):
|
| 216 |
+
def __init__(
|
| 217 |
+
self,
|
| 218 |
+
num_attention_heads: int,
|
| 219 |
+
attention_head_dim: int,
|
| 220 |
+
cross_attention_dim: int,
|
| 221 |
+
mlp_ratio: float = 4.0,
|
| 222 |
+
adaln_lora_dim: int = 256,
|
| 223 |
+
qk_norm: str = "rms_norm",
|
| 224 |
+
out_bias: bool = False,
|
| 225 |
+
) -> None:
|
| 226 |
+
super().__init__()
|
| 227 |
+
|
| 228 |
+
hidden_size = num_attention_heads * attention_head_dim
|
| 229 |
+
|
| 230 |
+
self.norm1 = CosmosAdaLayerNormZero(in_features=hidden_size, hidden_features=adaln_lora_dim)
|
| 231 |
+
self.attn1 = Attention(
|
| 232 |
+
query_dim=hidden_size,
|
| 233 |
+
cross_attention_dim=None,
|
| 234 |
+
heads=num_attention_heads,
|
| 235 |
+
dim_head=attention_head_dim,
|
| 236 |
+
qk_norm=qk_norm,
|
| 237 |
+
elementwise_affine=True,
|
| 238 |
+
out_bias=out_bias,
|
| 239 |
+
processor=CosmosAttnProcessor2_0(),
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
self.norm2 = CosmosAdaLayerNormZero(in_features=hidden_size, hidden_features=adaln_lora_dim)
|
| 243 |
+
self.attn2 = Attention(
|
| 244 |
+
query_dim=hidden_size,
|
| 245 |
+
cross_attention_dim=cross_attention_dim,
|
| 246 |
+
heads=num_attention_heads,
|
| 247 |
+
dim_head=attention_head_dim,
|
| 248 |
+
qk_norm=qk_norm,
|
| 249 |
+
elementwise_affine=True,
|
| 250 |
+
out_bias=out_bias,
|
| 251 |
+
processor=CosmosAttnProcessor2_0(),
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
self.norm3 = CosmosAdaLayerNormZero(in_features=hidden_size, hidden_features=adaln_lora_dim)
|
| 255 |
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu", bias=out_bias)
|
| 256 |
+
|
| 257 |
+
def forward(
|
| 258 |
+
self,
|
| 259 |
+
hidden_states: torch.Tensor,
|
| 260 |
+
encoder_hidden_states: torch.Tensor,
|
| 261 |
+
embedded_timestep: torch.Tensor,
|
| 262 |
+
temb: Optional[torch.Tensor] = None,
|
| 263 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 264 |
+
extra_pos_emb: Optional[torch.Tensor] = None,
|
| 265 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 266 |
+
) -> torch.Tensor:
|
| 267 |
+
if extra_pos_emb is not None:
|
| 268 |
+
hidden_states = hidden_states + extra_pos_emb
|
| 269 |
+
|
| 270 |
+
# 1. Self Attention
|
| 271 |
+
norm_hidden_states, gate = self.norm1(hidden_states, embedded_timestep, temb)
|
| 272 |
+
attn_output = self.attn1(norm_hidden_states, image_rotary_emb=image_rotary_emb)
|
| 273 |
+
hidden_states = hidden_states + gate * attn_output
|
| 274 |
+
|
| 275 |
+
# 2. Cross Attention
|
| 276 |
+
norm_hidden_states, gate = self.norm2(hidden_states, embedded_timestep, temb)
|
| 277 |
+
attn_output = self.attn2(
|
| 278 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
| 279 |
+
)
|
| 280 |
+
hidden_states = hidden_states + gate * attn_output
|
| 281 |
+
|
| 282 |
+
# 3. Feed Forward
|
| 283 |
+
norm_hidden_states, gate = self.norm3(hidden_states, embedded_timestep, temb)
|
| 284 |
+
ff_output = self.ff(norm_hidden_states)
|
| 285 |
+
hidden_states = hidden_states + gate * ff_output
|
| 286 |
+
|
| 287 |
+
return hidden_states
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
class CosmosRotaryPosEmbed(nn.Module):
|
| 291 |
+
def __init__(
|
| 292 |
+
self,
|
| 293 |
+
hidden_size: int,
|
| 294 |
+
max_size: Tuple[int, int, int] = (128, 240, 240),
|
| 295 |
+
patch_size: Tuple[int, int, int] = (1, 2, 2),
|
| 296 |
+
base_fps: int = 24,
|
| 297 |
+
rope_scale: Tuple[float, float, float] = (2.0, 1.0, 1.0),
|
| 298 |
+
) -> None:
|
| 299 |
+
super().__init__()
|
| 300 |
+
|
| 301 |
+
self.max_size = [size // patch for size, patch in zip(max_size, patch_size)]
|
| 302 |
+
self.patch_size = patch_size
|
| 303 |
+
self.base_fps = base_fps
|
| 304 |
+
|
| 305 |
+
self.dim_h = hidden_size // 6 * 2
|
| 306 |
+
self.dim_w = hidden_size // 6 * 2
|
| 307 |
+
self.dim_t = hidden_size - self.dim_h - self.dim_w
|
| 308 |
+
|
| 309 |
+
self.h_ntk_factor = rope_scale[1] ** (self.dim_h / (self.dim_h - 2))
|
| 310 |
+
self.w_ntk_factor = rope_scale[2] ** (self.dim_w / (self.dim_w - 2))
|
| 311 |
+
self.t_ntk_factor = rope_scale[0] ** (self.dim_t / (self.dim_t - 2))
|
| 312 |
+
|
| 313 |
+
def forward(self, hidden_states: torch.Tensor, fps: Optional[int] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 314 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 315 |
+
pe_size = [num_frames // self.patch_size[0], height // self.patch_size[1], width // self.patch_size[2]]
|
| 316 |
+
device = hidden_states.device
|
| 317 |
+
|
| 318 |
+
h_theta = 10000.0 * self.h_ntk_factor
|
| 319 |
+
w_theta = 10000.0 * self.w_ntk_factor
|
| 320 |
+
t_theta = 10000.0 * self.t_ntk_factor
|
| 321 |
+
|
| 322 |
+
seq = torch.arange(max(self.max_size), device=device, dtype=torch.float32)
|
| 323 |
+
dim_h_range = (
|
| 324 |
+
torch.arange(0, self.dim_h, 2, device=device, dtype=torch.float32)[: (self.dim_h // 2)] / self.dim_h
|
| 325 |
+
)
|
| 326 |
+
dim_w_range = (
|
| 327 |
+
torch.arange(0, self.dim_w, 2, device=device, dtype=torch.float32)[: (self.dim_w // 2)] / self.dim_w
|
| 328 |
+
)
|
| 329 |
+
dim_t_range = (
|
| 330 |
+
torch.arange(0, self.dim_t, 2, device=device, dtype=torch.float32)[: (self.dim_t // 2)] / self.dim_t
|
| 331 |
+
)
|
| 332 |
+
h_spatial_freqs = 1.0 / (h_theta**dim_h_range)
|
| 333 |
+
w_spatial_freqs = 1.0 / (w_theta**dim_w_range)
|
| 334 |
+
temporal_freqs = 1.0 / (t_theta**dim_t_range)
|
| 335 |
+
|
| 336 |
+
emb_h = torch.outer(seq[: pe_size[1]], h_spatial_freqs)[None, :, None, :].repeat(pe_size[0], 1, pe_size[2], 1)
|
| 337 |
+
emb_w = torch.outer(seq[: pe_size[2]], w_spatial_freqs)[None, None, :, :].repeat(pe_size[0], pe_size[1], 1, 1)
|
| 338 |
+
|
| 339 |
+
# Apply sequence scaling in temporal dimension
|
| 340 |
+
if fps is None:
|
| 341 |
+
# Images
|
| 342 |
+
emb_t = torch.outer(seq[: pe_size[0]], temporal_freqs)
|
| 343 |
+
else:
|
| 344 |
+
# Videos
|
| 345 |
+
emb_t = torch.outer(seq[: pe_size[0]] / fps * self.base_fps, temporal_freqs)
|
| 346 |
+
|
| 347 |
+
emb_t = emb_t[:, None, None, :].repeat(1, pe_size[1], pe_size[2], 1)
|
| 348 |
+
freqs = torch.cat([emb_t, emb_h, emb_w] * 2, dim=-1).flatten(0, 2).float()
|
| 349 |
+
cos = torch.cos(freqs)
|
| 350 |
+
sin = torch.sin(freqs)
|
| 351 |
+
return cos, sin
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class CosmosLearnablePositionalEmbed(nn.Module):
|
| 355 |
+
def __init__(
|
| 356 |
+
self,
|
| 357 |
+
hidden_size: int,
|
| 358 |
+
max_size: Tuple[int, int, int],
|
| 359 |
+
patch_size: Tuple[int, int, int],
|
| 360 |
+
eps: float = 1e-6,
|
| 361 |
+
) -> None:
|
| 362 |
+
super().__init__()
|
| 363 |
+
|
| 364 |
+
self.max_size = [size // patch for size, patch in zip(max_size, patch_size)]
|
| 365 |
+
self.patch_size = patch_size
|
| 366 |
+
self.eps = eps
|
| 367 |
+
|
| 368 |
+
self.pos_emb_t = nn.Parameter(torch.zeros(self.max_size[0], hidden_size))
|
| 369 |
+
self.pos_emb_h = nn.Parameter(torch.zeros(self.max_size[1], hidden_size))
|
| 370 |
+
self.pos_emb_w = nn.Parameter(torch.zeros(self.max_size[2], hidden_size))
|
| 371 |
+
|
| 372 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 373 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 374 |
+
pe_size = [num_frames // self.patch_size[0], height // self.patch_size[1], width // self.patch_size[2]]
|
| 375 |
+
|
| 376 |
+
emb_t = self.pos_emb_t[: pe_size[0]][None, :, None, None, :].repeat(batch_size, 1, pe_size[1], pe_size[2], 1)
|
| 377 |
+
emb_h = self.pos_emb_h[: pe_size[1]][None, None, :, None, :].repeat(batch_size, pe_size[0], 1, pe_size[2], 1)
|
| 378 |
+
emb_w = self.pos_emb_w[: pe_size[2]][None, None, None, :, :].repeat(batch_size, pe_size[0], pe_size[1], 1, 1)
|
| 379 |
+
emb = emb_t + emb_h + emb_w
|
| 380 |
+
emb = emb.flatten(1, 3)
|
| 381 |
+
|
| 382 |
+
norm = torch.linalg.vector_norm(emb, dim=-1, keepdim=True, dtype=torch.float32)
|
| 383 |
+
norm = torch.add(self.eps, norm, alpha=np.sqrt(norm.numel() / emb.numel()))
|
| 384 |
+
return (emb / norm).type_as(hidden_states)
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
class CosmosTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
| 388 |
+
r"""
|
| 389 |
+
A Transformer model for video-like data used in [Cosmos](https://github.com/NVIDIA/Cosmos).
|
| 390 |
+
|
| 391 |
+
Args:
|
| 392 |
+
in_channels (`int`, defaults to `16`):
|
| 393 |
+
The number of channels in the input.
|
| 394 |
+
out_channels (`int`, defaults to `16`):
|
| 395 |
+
The number of channels in the output.
|
| 396 |
+
num_attention_heads (`int`, defaults to `32`):
|
| 397 |
+
The number of heads to use for multi-head attention.
|
| 398 |
+
attention_head_dim (`int`, defaults to `128`):
|
| 399 |
+
The number of channels in each attention head.
|
| 400 |
+
num_layers (`int`, defaults to `28`):
|
| 401 |
+
The number of layers of transformer blocks to use.
|
| 402 |
+
mlp_ratio (`float`, defaults to `4.0`):
|
| 403 |
+
The ratio of the hidden layer size to the input size in the feedforward network.
|
| 404 |
+
text_embed_dim (`int`, defaults to `4096`):
|
| 405 |
+
Input dimension of text embeddings from the text encoder.
|
| 406 |
+
adaln_lora_dim (`int`, defaults to `256`):
|
| 407 |
+
The hidden dimension of the Adaptive LayerNorm LoRA layer.
|
| 408 |
+
max_size (`Tuple[int, int, int]`, defaults to `(128, 240, 240)`):
|
| 409 |
+
The maximum size of the input latent tensors in the temporal, height, and width dimensions.
|
| 410 |
+
patch_size (`Tuple[int, int, int]`, defaults to `(1, 2, 2)`):
|
| 411 |
+
The patch size to use for patchifying the input latent tensors in the temporal, height, and width
|
| 412 |
+
dimensions.
|
| 413 |
+
rope_scale (`Tuple[float, float, float]`, defaults to `(2.0, 1.0, 1.0)`):
|
| 414 |
+
The scaling factor to use for RoPE in the temporal, height, and width dimensions.
|
| 415 |
+
concat_padding_mask (`bool`, defaults to `True`):
|
| 416 |
+
Whether to concatenate the padding mask to the input latent tensors.
|
| 417 |
+
extra_pos_embed_type (`str`, *optional*, defaults to `learnable`):
|
| 418 |
+
The type of extra positional embeddings to use. Can be one of `None` or `learnable`.
|
| 419 |
+
"""
|
| 420 |
+
|
| 421 |
+
_supports_gradient_checkpointing = True
|
| 422 |
+
_skip_layerwise_casting_patterns = ["patch_embed", "final_layer", "norm"]
|
| 423 |
+
_no_split_modules = ["CosmosTransformerBlock"]
|
| 424 |
+
_keep_in_fp32_modules = ["learnable_pos_embed"]
|
| 425 |
+
|
| 426 |
+
@register_to_config
|
| 427 |
+
def __init__(
|
| 428 |
+
self,
|
| 429 |
+
in_channels: int = 16,
|
| 430 |
+
out_channels: int = 16,
|
| 431 |
+
num_attention_heads: int = 32,
|
| 432 |
+
attention_head_dim: int = 128,
|
| 433 |
+
num_layers: int = 28,
|
| 434 |
+
mlp_ratio: float = 4.0,
|
| 435 |
+
text_embed_dim: int = 1024,
|
| 436 |
+
adaln_lora_dim: int = 256,
|
| 437 |
+
max_size: Tuple[int, int, int] = (128, 240, 240),
|
| 438 |
+
patch_size: Tuple[int, int, int] = (1, 2, 2),
|
| 439 |
+
rope_scale: Tuple[float, float, float] = (2.0, 1.0, 1.0),
|
| 440 |
+
concat_padding_mask: bool = True,
|
| 441 |
+
extra_pos_embed_type: Optional[str] = "learnable",
|
| 442 |
+
) -> None:
|
| 443 |
+
super().__init__()
|
| 444 |
+
hidden_size = num_attention_heads * attention_head_dim
|
| 445 |
+
|
| 446 |
+
# 1. Patch Embedding
|
| 447 |
+
patch_embed_in_channels = in_channels + 1 if concat_padding_mask else in_channels
|
| 448 |
+
self.patch_embed = CosmosPatchEmbed(patch_embed_in_channels, hidden_size, patch_size, bias=False)
|
| 449 |
+
|
| 450 |
+
# 2. Positional Embedding
|
| 451 |
+
self.rope = CosmosRotaryPosEmbed(
|
| 452 |
+
hidden_size=attention_head_dim, max_size=max_size, patch_size=patch_size, rope_scale=rope_scale
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
self.learnable_pos_embed = None
|
| 456 |
+
if extra_pos_embed_type == "learnable":
|
| 457 |
+
self.learnable_pos_embed = CosmosLearnablePositionalEmbed(
|
| 458 |
+
hidden_size=hidden_size,
|
| 459 |
+
max_size=max_size,
|
| 460 |
+
patch_size=patch_size,
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
# 3. Time Embedding
|
| 464 |
+
self.time_embed = CosmosEmbedding(hidden_size, hidden_size)
|
| 465 |
+
|
| 466 |
+
# 4. Transformer Blocks
|
| 467 |
+
self.transformer_blocks = nn.ModuleList(
|
| 468 |
+
[
|
| 469 |
+
CosmosTransformerBlock(
|
| 470 |
+
num_attention_heads=num_attention_heads,
|
| 471 |
+
attention_head_dim=attention_head_dim,
|
| 472 |
+
cross_attention_dim=text_embed_dim,
|
| 473 |
+
mlp_ratio=mlp_ratio,
|
| 474 |
+
adaln_lora_dim=adaln_lora_dim,
|
| 475 |
+
qk_norm="rms_norm",
|
| 476 |
+
out_bias=False,
|
| 477 |
+
)
|
| 478 |
+
for _ in range(num_layers)
|
| 479 |
+
]
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
# 5. Output norm & projection
|
| 483 |
+
self.norm_out = CosmosAdaLayerNorm(hidden_size, adaln_lora_dim)
|
| 484 |
+
self.proj_out = nn.Linear(
|
| 485 |
+
hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels, bias=False
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
self.gradient_checkpointing = False
|
| 489 |
+
|
| 490 |
+
def forward(
|
| 491 |
+
self,
|
| 492 |
+
hidden_states: torch.Tensor,
|
| 493 |
+
timestep: torch.Tensor,
|
| 494 |
+
encoder_hidden_states: torch.Tensor,
|
| 495 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 496 |
+
fps: Optional[int] = None,
|
| 497 |
+
condition_mask: Optional[torch.Tensor] = None,
|
| 498 |
+
padding_mask: Optional[torch.Tensor] = None,
|
| 499 |
+
return_dict: bool = True,
|
| 500 |
+
) -> torch.Tensor:
|
| 501 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
| 502 |
+
|
| 503 |
+
# 1. Concatenate padding mask if needed & prepare attention mask
|
| 504 |
+
if condition_mask is not None:
|
| 505 |
+
hidden_states = torch.cat([hidden_states, condition_mask], dim=1)
|
| 506 |
+
|
| 507 |
+
if self.config.concat_padding_mask:
|
| 508 |
+
padding_mask = transforms.functional.resize(
|
| 509 |
+
padding_mask, list(hidden_states.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
|
| 510 |
+
)
|
| 511 |
+
hidden_states = torch.cat(
|
| 512 |
+
[hidden_states, padding_mask.unsqueeze(2).repeat(batch_size, 1, num_frames, 1, 1)], dim=1
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
if attention_mask is not None:
|
| 516 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # [B, 1, 1, S]
|
| 517 |
+
|
| 518 |
+
# 2. Generate positional embeddings
|
| 519 |
+
image_rotary_emb = self.rope(hidden_states, fps=fps)
|
| 520 |
+
extra_pos_emb = self.learnable_pos_embed(hidden_states) if self.config.extra_pos_embed_type else None
|
| 521 |
+
|
| 522 |
+
# 3. Patchify input
|
| 523 |
+
p_t, p_h, p_w = self.config.patch_size
|
| 524 |
+
post_patch_num_frames = num_frames // p_t
|
| 525 |
+
post_patch_height = height // p_h
|
| 526 |
+
post_patch_width = width // p_w
|
| 527 |
+
hidden_states = self.patch_embed(hidden_states)
|
| 528 |
+
hidden_states = hidden_states.flatten(1, 3) # [B, T, H, W, C] -> [B, THW, C]
|
| 529 |
+
|
| 530 |
+
# 4. Timestep embeddings
|
| 531 |
+
if timestep.ndim == 1:
|
| 532 |
+
temb, embedded_timestep = self.time_embed(hidden_states, timestep)
|
| 533 |
+
elif timestep.ndim == 5:
|
| 534 |
+
assert timestep.shape == (batch_size, 1, num_frames, 1, 1), (
|
| 535 |
+
f"Expected timestep to have shape [B, 1, T, 1, 1], but got {timestep.shape}"
|
| 536 |
+
)
|
| 537 |
+
timestep = timestep.flatten()
|
| 538 |
+
temb, embedded_timestep = self.time_embed(hidden_states, timestep)
|
| 539 |
+
# We can do this because num_frames == post_patch_num_frames, as p_t is 1
|
| 540 |
+
temb, embedded_timestep = (
|
| 541 |
+
x.view(batch_size, post_patch_num_frames, 1, 1, -1)
|
| 542 |
+
.expand(-1, -1, post_patch_height, post_patch_width, -1)
|
| 543 |
+
.flatten(1, 3)
|
| 544 |
+
for x in (temb, embedded_timestep)
|
| 545 |
+
) # [BT, C] -> [B, T, 1, 1, C] -> [B, T, H, W, C] -> [B, THW, C]
|
| 546 |
+
else:
|
| 547 |
+
assert False
|
| 548 |
+
|
| 549 |
+
# 5. Transformer blocks
|
| 550 |
+
for block in self.transformer_blocks:
|
| 551 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 552 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 553 |
+
block,
|
| 554 |
+
hidden_states,
|
| 555 |
+
encoder_hidden_states,
|
| 556 |
+
embedded_timestep,
|
| 557 |
+
temb,
|
| 558 |
+
image_rotary_emb,
|
| 559 |
+
extra_pos_emb,
|
| 560 |
+
attention_mask,
|
| 561 |
+
)
|
| 562 |
+
else:
|
| 563 |
+
hidden_states = block(
|
| 564 |
+
hidden_states=hidden_states,
|
| 565 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 566 |
+
embedded_timestep=embedded_timestep,
|
| 567 |
+
temb=temb,
|
| 568 |
+
image_rotary_emb=image_rotary_emb,
|
| 569 |
+
extra_pos_emb=extra_pos_emb,
|
| 570 |
+
attention_mask=attention_mask,
|
| 571 |
+
)
|
| 572 |
+
|
| 573 |
+
# 6. Output norm & projection & unpatchify
|
| 574 |
+
hidden_states = self.norm_out(hidden_states, embedded_timestep, temb)
|
| 575 |
+
hidden_states = self.proj_out(hidden_states)
|
| 576 |
+
hidden_states = hidden_states.unflatten(2, (p_h, p_w, p_t, -1))
|
| 577 |
+
hidden_states = hidden_states.unflatten(1, (post_patch_num_frames, post_patch_height, post_patch_width))
|
| 578 |
+
# NOTE: The permutation order here is not the inverse operation of what happens when patching as usually expected.
|
| 579 |
+
# It might be a source of confusion to the reader, but this is correct
|
| 580 |
+
hidden_states = hidden_states.permute(0, 7, 1, 6, 2, 4, 3, 5)
|
| 581 |
+
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
| 582 |
+
|
| 583 |
+
if not return_dict:
|
| 584 |
+
return (hidden_states,)
|
| 585 |
+
|
| 586 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_easyanimate.py
ADDED
|
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 The EasyAnimate team and The HuggingFace Team.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from typing import List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
from torch import nn
|
| 21 |
+
|
| 22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 23 |
+
from ...utils import logging
|
| 24 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 25 |
+
from ..attention import Attention, FeedForward
|
| 26 |
+
from ..embeddings import TimestepEmbedding, Timesteps, get_3d_rotary_pos_embed
|
| 27 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 28 |
+
from ..modeling_utils import ModelMixin
|
| 29 |
+
from ..normalization import AdaLayerNorm, FP32LayerNorm, RMSNorm
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class EasyAnimateLayerNormZero(nn.Module):
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
conditioning_dim: int,
|
| 39 |
+
embedding_dim: int,
|
| 40 |
+
elementwise_affine: bool = True,
|
| 41 |
+
eps: float = 1e-5,
|
| 42 |
+
bias: bool = True,
|
| 43 |
+
norm_type: str = "fp32_layer_norm",
|
| 44 |
+
) -> None:
|
| 45 |
+
super().__init__()
|
| 46 |
+
|
| 47 |
+
self.silu = nn.SiLU()
|
| 48 |
+
self.linear = nn.Linear(conditioning_dim, 6 * embedding_dim, bias=bias)
|
| 49 |
+
|
| 50 |
+
if norm_type == "layer_norm":
|
| 51 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps)
|
| 52 |
+
elif norm_type == "fp32_layer_norm":
|
| 53 |
+
self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps)
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError(
|
| 56 |
+
f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'."
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
def forward(
|
| 60 |
+
self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor
|
| 61 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 62 |
+
shift, scale, gate, enc_shift, enc_scale, enc_gate = self.linear(self.silu(temb)).chunk(6, dim=1)
|
| 63 |
+
hidden_states = self.norm(hidden_states) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 64 |
+
encoder_hidden_states = self.norm(encoder_hidden_states) * (1 + enc_scale.unsqueeze(1)) + enc_shift.unsqueeze(
|
| 65 |
+
1
|
| 66 |
+
)
|
| 67 |
+
return hidden_states, encoder_hidden_states, gate, enc_gate
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class EasyAnimateRotaryPosEmbed(nn.Module):
|
| 71 |
+
def __init__(self, patch_size: int, rope_dim: List[int]) -> None:
|
| 72 |
+
super().__init__()
|
| 73 |
+
|
| 74 |
+
self.patch_size = patch_size
|
| 75 |
+
self.rope_dim = rope_dim
|
| 76 |
+
|
| 77 |
+
def get_resize_crop_region_for_grid(self, src, tgt_width, tgt_height):
|
| 78 |
+
tw = tgt_width
|
| 79 |
+
th = tgt_height
|
| 80 |
+
h, w = src
|
| 81 |
+
r = h / w
|
| 82 |
+
if r > (th / tw):
|
| 83 |
+
resize_height = th
|
| 84 |
+
resize_width = int(round(th / h * w))
|
| 85 |
+
else:
|
| 86 |
+
resize_width = tw
|
| 87 |
+
resize_height = int(round(tw / w * h))
|
| 88 |
+
|
| 89 |
+
crop_top = int(round((th - resize_height) / 2.0))
|
| 90 |
+
crop_left = int(round((tw - resize_width) / 2.0))
|
| 91 |
+
|
| 92 |
+
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
|
| 93 |
+
|
| 94 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 95 |
+
bs, c, num_frames, grid_height, grid_width = hidden_states.size()
|
| 96 |
+
grid_height = grid_height // self.patch_size
|
| 97 |
+
grid_width = grid_width // self.patch_size
|
| 98 |
+
base_size_width = 90 // self.patch_size
|
| 99 |
+
base_size_height = 60 // self.patch_size
|
| 100 |
+
|
| 101 |
+
grid_crops_coords = self.get_resize_crop_region_for_grid(
|
| 102 |
+
(grid_height, grid_width), base_size_width, base_size_height
|
| 103 |
+
)
|
| 104 |
+
image_rotary_emb = get_3d_rotary_pos_embed(
|
| 105 |
+
self.rope_dim,
|
| 106 |
+
grid_crops_coords,
|
| 107 |
+
grid_size=(grid_height, grid_width),
|
| 108 |
+
temporal_size=hidden_states.size(2),
|
| 109 |
+
use_real=True,
|
| 110 |
+
)
|
| 111 |
+
return image_rotary_emb
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class EasyAnimateAttnProcessor2_0:
|
| 115 |
+
r"""
|
| 116 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is
|
| 117 |
+
used in the EasyAnimateTransformer3DModel model.
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
def __init__(self):
|
| 121 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 122 |
+
raise ImportError(
|
| 123 |
+
"EasyAnimateAttnProcessor2_0 requires PyTorch 2.0 or above. To use it, please install PyTorch 2.0."
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
def __call__(
|
| 127 |
+
self,
|
| 128 |
+
attn: Attention,
|
| 129 |
+
hidden_states: torch.Tensor,
|
| 130 |
+
encoder_hidden_states: torch.Tensor,
|
| 131 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 132 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 133 |
+
) -> torch.Tensor:
|
| 134 |
+
if attn.add_q_proj is None and encoder_hidden_states is not None:
|
| 135 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 136 |
+
|
| 137 |
+
# 1. QKV projections
|
| 138 |
+
query = attn.to_q(hidden_states)
|
| 139 |
+
key = attn.to_k(hidden_states)
|
| 140 |
+
value = attn.to_v(hidden_states)
|
| 141 |
+
|
| 142 |
+
query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 143 |
+
key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 144 |
+
value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 145 |
+
|
| 146 |
+
# 2. QK normalization
|
| 147 |
+
if attn.norm_q is not None:
|
| 148 |
+
query = attn.norm_q(query)
|
| 149 |
+
if attn.norm_k is not None:
|
| 150 |
+
key = attn.norm_k(key)
|
| 151 |
+
|
| 152 |
+
# 3. Encoder condition QKV projection and normalization
|
| 153 |
+
if attn.add_q_proj is not None and encoder_hidden_states is not None:
|
| 154 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
| 155 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
| 156 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
| 157 |
+
|
| 158 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 159 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 160 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2)
|
| 161 |
+
|
| 162 |
+
if attn.norm_added_q is not None:
|
| 163 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 164 |
+
if attn.norm_added_k is not None:
|
| 165 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 166 |
+
|
| 167 |
+
query = torch.cat([encoder_query, query], dim=2)
|
| 168 |
+
key = torch.cat([encoder_key, key], dim=2)
|
| 169 |
+
value = torch.cat([encoder_value, value], dim=2)
|
| 170 |
+
|
| 171 |
+
if image_rotary_emb is not None:
|
| 172 |
+
from ..embeddings import apply_rotary_emb
|
| 173 |
+
|
| 174 |
+
query[:, :, encoder_hidden_states.shape[1] :] = apply_rotary_emb(
|
| 175 |
+
query[:, :, encoder_hidden_states.shape[1] :], image_rotary_emb
|
| 176 |
+
)
|
| 177 |
+
if not attn.is_cross_attention:
|
| 178 |
+
key[:, :, encoder_hidden_states.shape[1] :] = apply_rotary_emb(
|
| 179 |
+
key[:, :, encoder_hidden_states.shape[1] :], image_rotary_emb
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
# 5. Attention
|
| 183 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 184 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 185 |
+
)
|
| 186 |
+
hidden_states = hidden_states.transpose(1, 2).flatten(2, 3)
|
| 187 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 188 |
+
|
| 189 |
+
# 6. Output projection
|
| 190 |
+
if encoder_hidden_states is not None:
|
| 191 |
+
encoder_hidden_states, hidden_states = (
|
| 192 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 193 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
if getattr(attn, "to_out", None) is not None:
|
| 197 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 198 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 199 |
+
|
| 200 |
+
if getattr(attn, "to_add_out", None) is not None:
|
| 201 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 202 |
+
else:
|
| 203 |
+
if getattr(attn, "to_out", None) is not None:
|
| 204 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 205 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 206 |
+
|
| 207 |
+
return hidden_states, encoder_hidden_states
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
@maybe_allow_in_graph
|
| 211 |
+
class EasyAnimateTransformerBlock(nn.Module):
|
| 212 |
+
def __init__(
|
| 213 |
+
self,
|
| 214 |
+
dim: int,
|
| 215 |
+
num_attention_heads: int,
|
| 216 |
+
attention_head_dim: int,
|
| 217 |
+
time_embed_dim: int,
|
| 218 |
+
dropout: float = 0.0,
|
| 219 |
+
activation_fn: str = "gelu-approximate",
|
| 220 |
+
norm_elementwise_affine: bool = True,
|
| 221 |
+
norm_eps: float = 1e-6,
|
| 222 |
+
final_dropout: bool = True,
|
| 223 |
+
ff_inner_dim: Optional[int] = None,
|
| 224 |
+
ff_bias: bool = True,
|
| 225 |
+
qk_norm: bool = True,
|
| 226 |
+
after_norm: bool = False,
|
| 227 |
+
norm_type: str = "fp32_layer_norm",
|
| 228 |
+
is_mmdit_block: bool = True,
|
| 229 |
+
):
|
| 230 |
+
super().__init__()
|
| 231 |
+
|
| 232 |
+
# Attention Part
|
| 233 |
+
self.norm1 = EasyAnimateLayerNormZero(
|
| 234 |
+
time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
self.attn1 = Attention(
|
| 238 |
+
query_dim=dim,
|
| 239 |
+
dim_head=attention_head_dim,
|
| 240 |
+
heads=num_attention_heads,
|
| 241 |
+
qk_norm="layer_norm" if qk_norm else None,
|
| 242 |
+
eps=1e-6,
|
| 243 |
+
bias=True,
|
| 244 |
+
added_proj_bias=True,
|
| 245 |
+
added_kv_proj_dim=dim if is_mmdit_block else None,
|
| 246 |
+
context_pre_only=False if is_mmdit_block else None,
|
| 247 |
+
processor=EasyAnimateAttnProcessor2_0(),
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
# FFN Part
|
| 251 |
+
self.norm2 = EasyAnimateLayerNormZero(
|
| 252 |
+
time_embed_dim, dim, norm_elementwise_affine, norm_eps, norm_type=norm_type, bias=True
|
| 253 |
+
)
|
| 254 |
+
self.ff = FeedForward(
|
| 255 |
+
dim,
|
| 256 |
+
dropout=dropout,
|
| 257 |
+
activation_fn=activation_fn,
|
| 258 |
+
final_dropout=final_dropout,
|
| 259 |
+
inner_dim=ff_inner_dim,
|
| 260 |
+
bias=ff_bias,
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
self.txt_ff = None
|
| 264 |
+
if is_mmdit_block:
|
| 265 |
+
self.txt_ff = FeedForward(
|
| 266 |
+
dim,
|
| 267 |
+
dropout=dropout,
|
| 268 |
+
activation_fn=activation_fn,
|
| 269 |
+
final_dropout=final_dropout,
|
| 270 |
+
inner_dim=ff_inner_dim,
|
| 271 |
+
bias=ff_bias,
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
self.norm3 = None
|
| 275 |
+
if after_norm:
|
| 276 |
+
self.norm3 = FP32LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 277 |
+
|
| 278 |
+
def forward(
|
| 279 |
+
self,
|
| 280 |
+
hidden_states: torch.Tensor,
|
| 281 |
+
encoder_hidden_states: torch.Tensor,
|
| 282 |
+
temb: torch.Tensor,
|
| 283 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 284 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 285 |
+
# 1. Attention
|
| 286 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1(
|
| 287 |
+
hidden_states, encoder_hidden_states, temb
|
| 288 |
+
)
|
| 289 |
+
attn_hidden_states, attn_encoder_hidden_states = self.attn1(
|
| 290 |
+
hidden_states=norm_hidden_states,
|
| 291 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 292 |
+
image_rotary_emb=image_rotary_emb,
|
| 293 |
+
)
|
| 294 |
+
hidden_states = hidden_states + gate_msa.unsqueeze(1) * attn_hidden_states
|
| 295 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_msa.unsqueeze(1) * attn_encoder_hidden_states
|
| 296 |
+
|
| 297 |
+
# 2. Feed-forward
|
| 298 |
+
norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2(
|
| 299 |
+
hidden_states, encoder_hidden_states, temb
|
| 300 |
+
)
|
| 301 |
+
if self.norm3 is not None:
|
| 302 |
+
norm_hidden_states = self.norm3(self.ff(norm_hidden_states))
|
| 303 |
+
if self.txt_ff is not None:
|
| 304 |
+
norm_encoder_hidden_states = self.norm3(self.txt_ff(norm_encoder_hidden_states))
|
| 305 |
+
else:
|
| 306 |
+
norm_encoder_hidden_states = self.norm3(self.ff(norm_encoder_hidden_states))
|
| 307 |
+
else:
|
| 308 |
+
norm_hidden_states = self.ff(norm_hidden_states)
|
| 309 |
+
if self.txt_ff is not None:
|
| 310 |
+
norm_encoder_hidden_states = self.txt_ff(norm_encoder_hidden_states)
|
| 311 |
+
else:
|
| 312 |
+
norm_encoder_hidden_states = self.ff(norm_encoder_hidden_states)
|
| 313 |
+
hidden_states = hidden_states + gate_ff.unsqueeze(1) * norm_hidden_states
|
| 314 |
+
encoder_hidden_states = encoder_hidden_states + enc_gate_ff.unsqueeze(1) * norm_encoder_hidden_states
|
| 315 |
+
return hidden_states, encoder_hidden_states
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class EasyAnimateTransformer3DModel(ModelMixin, ConfigMixin):
|
| 319 |
+
"""
|
| 320 |
+
A Transformer model for video-like data in [EasyAnimate](https://github.com/aigc-apps/EasyAnimate).
|
| 321 |
+
|
| 322 |
+
Parameters:
|
| 323 |
+
num_attention_heads (`int`, defaults to `48`):
|
| 324 |
+
The number of heads to use for multi-head attention.
|
| 325 |
+
attention_head_dim (`int`, defaults to `64`):
|
| 326 |
+
The number of channels in each head.
|
| 327 |
+
in_channels (`int`, defaults to `16`):
|
| 328 |
+
The number of channels in the input.
|
| 329 |
+
out_channels (`int`, *optional*, defaults to `16`):
|
| 330 |
+
The number of channels in the output.
|
| 331 |
+
patch_size (`int`, defaults to `2`):
|
| 332 |
+
The size of the patches to use in the patch embedding layer.
|
| 333 |
+
sample_width (`int`, defaults to `90`):
|
| 334 |
+
The width of the input latents.
|
| 335 |
+
sample_height (`int`, defaults to `60`):
|
| 336 |
+
The height of the input latents.
|
| 337 |
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
| 338 |
+
Activation function to use in feed-forward.
|
| 339 |
+
timestep_activation_fn (`str`, defaults to `"silu"`):
|
| 340 |
+
Activation function to use when generating the timestep embeddings.
|
| 341 |
+
num_layers (`int`, defaults to `30`):
|
| 342 |
+
The number of layers of Transformer blocks to use.
|
| 343 |
+
mmdit_layers (`int`, defaults to `1000`):
|
| 344 |
+
The number of layers of Multi Modal Transformer blocks to use.
|
| 345 |
+
dropout (`float`, defaults to `0.0`):
|
| 346 |
+
The dropout probability to use.
|
| 347 |
+
time_embed_dim (`int`, defaults to `512`):
|
| 348 |
+
Output dimension of timestep embeddings.
|
| 349 |
+
text_embed_dim (`int`, defaults to `4096`):
|
| 350 |
+
Input dimension of text embeddings from the text encoder.
|
| 351 |
+
norm_eps (`float`, defaults to `1e-5`):
|
| 352 |
+
The epsilon value to use in normalization layers.
|
| 353 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 354 |
+
Whether to use elementwise affine in normalization layers.
|
| 355 |
+
flip_sin_to_cos (`bool`, defaults to `True`):
|
| 356 |
+
Whether to flip the sin to cos in the time embedding.
|
| 357 |
+
time_position_encoding_type (`str`, defaults to `3d_rope`):
|
| 358 |
+
Type of time position encoding.
|
| 359 |
+
after_norm (`bool`, defaults to `False`):
|
| 360 |
+
Flag to apply normalization after.
|
| 361 |
+
resize_inpaint_mask_directly (`bool`, defaults to `True`):
|
| 362 |
+
Flag to resize inpaint mask directly.
|
| 363 |
+
enable_text_attention_mask (`bool`, defaults to `True`):
|
| 364 |
+
Flag to enable text attention mask.
|
| 365 |
+
add_noise_in_inpaint_model (`bool`, defaults to `False`):
|
| 366 |
+
Flag to add noise in inpaint model.
|
| 367 |
+
"""
|
| 368 |
+
|
| 369 |
+
_supports_gradient_checkpointing = True
|
| 370 |
+
_no_split_modules = ["EasyAnimateTransformerBlock"]
|
| 371 |
+
_skip_layerwise_casting_patterns = ["^proj$", "norm", "^proj_out$"]
|
| 372 |
+
|
| 373 |
+
@register_to_config
|
| 374 |
+
def __init__(
|
| 375 |
+
self,
|
| 376 |
+
num_attention_heads: int = 48,
|
| 377 |
+
attention_head_dim: int = 64,
|
| 378 |
+
in_channels: Optional[int] = None,
|
| 379 |
+
out_channels: Optional[int] = None,
|
| 380 |
+
patch_size: Optional[int] = None,
|
| 381 |
+
sample_width: int = 90,
|
| 382 |
+
sample_height: int = 60,
|
| 383 |
+
activation_fn: str = "gelu-approximate",
|
| 384 |
+
timestep_activation_fn: str = "silu",
|
| 385 |
+
freq_shift: int = 0,
|
| 386 |
+
num_layers: int = 48,
|
| 387 |
+
mmdit_layers: int = 48,
|
| 388 |
+
dropout: float = 0.0,
|
| 389 |
+
time_embed_dim: int = 512,
|
| 390 |
+
add_norm_text_encoder: bool = False,
|
| 391 |
+
text_embed_dim: int = 3584,
|
| 392 |
+
text_embed_dim_t5: int = None,
|
| 393 |
+
norm_eps: float = 1e-5,
|
| 394 |
+
norm_elementwise_affine: bool = True,
|
| 395 |
+
flip_sin_to_cos: bool = True,
|
| 396 |
+
time_position_encoding_type: str = "3d_rope",
|
| 397 |
+
after_norm=False,
|
| 398 |
+
resize_inpaint_mask_directly: bool = True,
|
| 399 |
+
enable_text_attention_mask: bool = True,
|
| 400 |
+
add_noise_in_inpaint_model: bool = True,
|
| 401 |
+
):
|
| 402 |
+
super().__init__()
|
| 403 |
+
inner_dim = num_attention_heads * attention_head_dim
|
| 404 |
+
|
| 405 |
+
# 1. Timestep embedding
|
| 406 |
+
self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
|
| 407 |
+
self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn)
|
| 408 |
+
self.rope_embedding = EasyAnimateRotaryPosEmbed(patch_size, attention_head_dim)
|
| 409 |
+
|
| 410 |
+
# 2. Patch embedding
|
| 411 |
+
self.proj = nn.Conv2d(
|
| 412 |
+
in_channels, inner_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=True
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
# 3. Text refined embedding
|
| 416 |
+
self.text_proj = None
|
| 417 |
+
self.text_proj_t5 = None
|
| 418 |
+
if not add_norm_text_encoder:
|
| 419 |
+
self.text_proj = nn.Linear(text_embed_dim, inner_dim)
|
| 420 |
+
if text_embed_dim_t5 is not None:
|
| 421 |
+
self.text_proj_t5 = nn.Linear(text_embed_dim_t5, inner_dim)
|
| 422 |
+
else:
|
| 423 |
+
self.text_proj = nn.Sequential(
|
| 424 |
+
RMSNorm(text_embed_dim, 1e-6, elementwise_affine=True), nn.Linear(text_embed_dim, inner_dim)
|
| 425 |
+
)
|
| 426 |
+
if text_embed_dim_t5 is not None:
|
| 427 |
+
self.text_proj_t5 = nn.Sequential(
|
| 428 |
+
RMSNorm(text_embed_dim, 1e-6, elementwise_affine=True), nn.Linear(text_embed_dim_t5, inner_dim)
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
# 4. Transformer blocks
|
| 432 |
+
self.transformer_blocks = nn.ModuleList(
|
| 433 |
+
[
|
| 434 |
+
EasyAnimateTransformerBlock(
|
| 435 |
+
dim=inner_dim,
|
| 436 |
+
num_attention_heads=num_attention_heads,
|
| 437 |
+
attention_head_dim=attention_head_dim,
|
| 438 |
+
time_embed_dim=time_embed_dim,
|
| 439 |
+
dropout=dropout,
|
| 440 |
+
activation_fn=activation_fn,
|
| 441 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 442 |
+
norm_eps=norm_eps,
|
| 443 |
+
after_norm=after_norm,
|
| 444 |
+
is_mmdit_block=True if _ < mmdit_layers else False,
|
| 445 |
+
)
|
| 446 |
+
for _ in range(num_layers)
|
| 447 |
+
]
|
| 448 |
+
)
|
| 449 |
+
self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine)
|
| 450 |
+
|
| 451 |
+
# 5. Output norm & projection
|
| 452 |
+
self.norm_out = AdaLayerNorm(
|
| 453 |
+
embedding_dim=time_embed_dim,
|
| 454 |
+
output_dim=2 * inner_dim,
|
| 455 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
| 456 |
+
norm_eps=norm_eps,
|
| 457 |
+
chunk_dim=1,
|
| 458 |
+
)
|
| 459 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
| 460 |
+
|
| 461 |
+
self.gradient_checkpointing = False
|
| 462 |
+
|
| 463 |
+
def forward(
|
| 464 |
+
self,
|
| 465 |
+
hidden_states: torch.Tensor,
|
| 466 |
+
timestep: torch.Tensor,
|
| 467 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 468 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 469 |
+
encoder_hidden_states_t5: Optional[torch.Tensor] = None,
|
| 470 |
+
inpaint_latents: Optional[torch.Tensor] = None,
|
| 471 |
+
control_latents: Optional[torch.Tensor] = None,
|
| 472 |
+
return_dict: bool = True,
|
| 473 |
+
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
|
| 474 |
+
batch_size, channels, video_length, height, width = hidden_states.size()
|
| 475 |
+
p = self.config.patch_size
|
| 476 |
+
post_patch_height = height // p
|
| 477 |
+
post_patch_width = width // p
|
| 478 |
+
|
| 479 |
+
# 1. Time embedding
|
| 480 |
+
temb = self.time_proj(timestep).to(dtype=hidden_states.dtype)
|
| 481 |
+
temb = self.time_embedding(temb, timestep_cond)
|
| 482 |
+
image_rotary_emb = self.rope_embedding(hidden_states)
|
| 483 |
+
|
| 484 |
+
# 2. Patch embedding
|
| 485 |
+
if inpaint_latents is not None:
|
| 486 |
+
hidden_states = torch.concat([hidden_states, inpaint_latents], 1)
|
| 487 |
+
if control_latents is not None:
|
| 488 |
+
hidden_states = torch.concat([hidden_states, control_latents], 1)
|
| 489 |
+
|
| 490 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) # [B, C, F, H, W] -> [BF, C, H, W]
|
| 491 |
+
hidden_states = self.proj(hidden_states)
|
| 492 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(
|
| 493 |
+
0, 2, 1, 3, 4
|
| 494 |
+
) # [BF, C, H, W] -> [B, F, C, H, W]
|
| 495 |
+
hidden_states = hidden_states.flatten(2, 4).transpose(1, 2) # [B, F, C, H, W] -> [B, FHW, C]
|
| 496 |
+
|
| 497 |
+
# 3. Text embedding
|
| 498 |
+
encoder_hidden_states = self.text_proj(encoder_hidden_states)
|
| 499 |
+
if encoder_hidden_states_t5 is not None:
|
| 500 |
+
encoder_hidden_states_t5 = self.text_proj_t5(encoder_hidden_states_t5)
|
| 501 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1).contiguous()
|
| 502 |
+
|
| 503 |
+
# 4. Transformer blocks
|
| 504 |
+
for block in self.transformer_blocks:
|
| 505 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 506 |
+
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
|
| 507 |
+
block, hidden_states, encoder_hidden_states, temb, image_rotary_emb
|
| 508 |
+
)
|
| 509 |
+
else:
|
| 510 |
+
hidden_states, encoder_hidden_states = block(
|
| 511 |
+
hidden_states, encoder_hidden_states, temb, image_rotary_emb
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
hidden_states = self.norm_final(hidden_states)
|
| 515 |
+
|
| 516 |
+
# 5. Output norm & projection
|
| 517 |
+
hidden_states = self.norm_out(hidden_states, temb=temb)
|
| 518 |
+
hidden_states = self.proj_out(hidden_states)
|
| 519 |
+
|
| 520 |
+
# 6. Unpatchify
|
| 521 |
+
p = self.config.patch_size
|
| 522 |
+
output = hidden_states.reshape(batch_size, video_length, post_patch_height, post_patch_width, channels, p, p)
|
| 523 |
+
output = output.permute(0, 4, 1, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4)
|
| 524 |
+
|
| 525 |
+
if not return_dict:
|
| 526 |
+
return (output,)
|
| 527 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_flux.py
ADDED
|
@@ -0,0 +1,776 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import inspect
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import numpy as np
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
|
| 23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 24 |
+
from ...loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
|
| 25 |
+
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 26 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 27 |
+
from ..attention import AttentionMixin, AttentionModuleMixin, FeedForward
|
| 28 |
+
from ..attention_dispatch import dispatch_attention_fn
|
| 29 |
+
from ..cache_utils import CacheMixin
|
| 30 |
+
from ..embeddings import (
|
| 31 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
| 32 |
+
CombinedTimestepTextProjEmbeddings,
|
| 33 |
+
apply_rotary_emb,
|
| 34 |
+
get_1d_rotary_pos_embed,
|
| 35 |
+
)
|
| 36 |
+
from ..modeling_outputs import Transformer2DModelOutput
|
| 37 |
+
from ..modeling_utils import ModelMixin
|
| 38 |
+
from ..normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def _get_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
|
| 45 |
+
query = attn.to_q(hidden_states)
|
| 46 |
+
key = attn.to_k(hidden_states)
|
| 47 |
+
value = attn.to_v(hidden_states)
|
| 48 |
+
|
| 49 |
+
encoder_query = encoder_key = encoder_value = None
|
| 50 |
+
if encoder_hidden_states is not None and attn.added_kv_proj_dim is not None:
|
| 51 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
| 52 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
| 53 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
| 54 |
+
|
| 55 |
+
return query, key, value, encoder_query, encoder_key, encoder_value
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def _get_fused_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
|
| 59 |
+
query, key, value = attn.to_qkv(hidden_states).chunk(3, dim=-1)
|
| 60 |
+
|
| 61 |
+
encoder_query = encoder_key = encoder_value = (None,)
|
| 62 |
+
if encoder_hidden_states is not None and hasattr(attn, "to_added_qkv"):
|
| 63 |
+
encoder_query, encoder_key, encoder_value = attn.to_added_qkv(encoder_hidden_states).chunk(3, dim=-1)
|
| 64 |
+
|
| 65 |
+
return query, key, value, encoder_query, encoder_key, encoder_value
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def _get_qkv_projections(attn: "FluxAttention", hidden_states, encoder_hidden_states=None):
|
| 69 |
+
if attn.fused_projections:
|
| 70 |
+
return _get_fused_projections(attn, hidden_states, encoder_hidden_states)
|
| 71 |
+
return _get_projections(attn, hidden_states, encoder_hidden_states)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class FluxAttnProcessor:
|
| 75 |
+
_attention_backend = None
|
| 76 |
+
|
| 77 |
+
def __init__(self):
|
| 78 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 79 |
+
raise ImportError(f"{self.__class__.__name__} requires PyTorch 2.0. Please upgrade your pytorch version.")
|
| 80 |
+
|
| 81 |
+
def __call__(
|
| 82 |
+
self,
|
| 83 |
+
attn: "FluxAttention",
|
| 84 |
+
hidden_states: torch.Tensor,
|
| 85 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 86 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 87 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 88 |
+
) -> torch.Tensor:
|
| 89 |
+
query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
|
| 90 |
+
attn, hidden_states, encoder_hidden_states
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
query = query.unflatten(-1, (attn.heads, -1))
|
| 94 |
+
key = key.unflatten(-1, (attn.heads, -1))
|
| 95 |
+
value = value.unflatten(-1, (attn.heads, -1))
|
| 96 |
+
|
| 97 |
+
query = attn.norm_q(query)
|
| 98 |
+
key = attn.norm_k(key)
|
| 99 |
+
|
| 100 |
+
if attn.added_kv_proj_dim is not None:
|
| 101 |
+
encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
|
| 102 |
+
encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
|
| 103 |
+
encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))
|
| 104 |
+
|
| 105 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 106 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 107 |
+
|
| 108 |
+
query = torch.cat([encoder_query, query], dim=1)
|
| 109 |
+
key = torch.cat([encoder_key, key], dim=1)
|
| 110 |
+
value = torch.cat([encoder_value, value], dim=1)
|
| 111 |
+
|
| 112 |
+
if image_rotary_emb is not None:
|
| 113 |
+
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
|
| 114 |
+
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
|
| 115 |
+
|
| 116 |
+
hidden_states = dispatch_attention_fn(
|
| 117 |
+
query, key, value, attn_mask=attention_mask, backend=self._attention_backend
|
| 118 |
+
)
|
| 119 |
+
hidden_states = hidden_states.flatten(2, 3)
|
| 120 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 121 |
+
|
| 122 |
+
if encoder_hidden_states is not None:
|
| 123 |
+
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
|
| 124 |
+
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
|
| 125 |
+
)
|
| 126 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 127 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 128 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 129 |
+
|
| 130 |
+
return hidden_states, encoder_hidden_states
|
| 131 |
+
else:
|
| 132 |
+
return hidden_states
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class FluxIPAdapterAttnProcessor(torch.nn.Module):
|
| 136 |
+
"""Flux Attention processor for IP-Adapter."""
|
| 137 |
+
|
| 138 |
+
_attention_backend = None
|
| 139 |
+
|
| 140 |
+
def __init__(
|
| 141 |
+
self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None
|
| 142 |
+
):
|
| 143 |
+
super().__init__()
|
| 144 |
+
|
| 145 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 146 |
+
raise ImportError(
|
| 147 |
+
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
self.hidden_size = hidden_size
|
| 151 |
+
self.cross_attention_dim = cross_attention_dim
|
| 152 |
+
|
| 153 |
+
if not isinstance(num_tokens, (tuple, list)):
|
| 154 |
+
num_tokens = [num_tokens]
|
| 155 |
+
|
| 156 |
+
if not isinstance(scale, list):
|
| 157 |
+
scale = [scale] * len(num_tokens)
|
| 158 |
+
if len(scale) != len(num_tokens):
|
| 159 |
+
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
|
| 160 |
+
self.scale = scale
|
| 161 |
+
|
| 162 |
+
self.to_k_ip = nn.ModuleList(
|
| 163 |
+
[
|
| 164 |
+
nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
|
| 165 |
+
for _ in range(len(num_tokens))
|
| 166 |
+
]
|
| 167 |
+
)
|
| 168 |
+
self.to_v_ip = nn.ModuleList(
|
| 169 |
+
[
|
| 170 |
+
nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype)
|
| 171 |
+
for _ in range(len(num_tokens))
|
| 172 |
+
]
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
def __call__(
|
| 176 |
+
self,
|
| 177 |
+
attn: "FluxAttention",
|
| 178 |
+
hidden_states: torch.Tensor,
|
| 179 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 180 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 181 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 182 |
+
ip_hidden_states: Optional[List[torch.Tensor]] = None,
|
| 183 |
+
ip_adapter_masks: Optional[torch.Tensor] = None,
|
| 184 |
+
) -> torch.Tensor:
|
| 185 |
+
batch_size = hidden_states.shape[0]
|
| 186 |
+
|
| 187 |
+
query, key, value, encoder_query, encoder_key, encoder_value = _get_qkv_projections(
|
| 188 |
+
attn, hidden_states, encoder_hidden_states
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
query = query.unflatten(-1, (attn.heads, -1))
|
| 192 |
+
key = key.unflatten(-1, (attn.heads, -1))
|
| 193 |
+
value = value.unflatten(-1, (attn.heads, -1))
|
| 194 |
+
|
| 195 |
+
query = attn.norm_q(query)
|
| 196 |
+
key = attn.norm_k(key)
|
| 197 |
+
ip_query = query
|
| 198 |
+
|
| 199 |
+
if encoder_hidden_states is not None:
|
| 200 |
+
encoder_query = encoder_query.unflatten(-1, (attn.heads, -1))
|
| 201 |
+
encoder_key = encoder_key.unflatten(-1, (attn.heads, -1))
|
| 202 |
+
encoder_value = encoder_value.unflatten(-1, (attn.heads, -1))
|
| 203 |
+
|
| 204 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 205 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 206 |
+
|
| 207 |
+
query = torch.cat([encoder_query, query], dim=1)
|
| 208 |
+
key = torch.cat([encoder_key, key], dim=1)
|
| 209 |
+
value = torch.cat([encoder_value, value], dim=1)
|
| 210 |
+
|
| 211 |
+
if image_rotary_emb is not None:
|
| 212 |
+
query = apply_rotary_emb(query, image_rotary_emb, sequence_dim=1)
|
| 213 |
+
key = apply_rotary_emb(key, image_rotary_emb, sequence_dim=1)
|
| 214 |
+
|
| 215 |
+
hidden_states = dispatch_attention_fn(
|
| 216 |
+
query,
|
| 217 |
+
key,
|
| 218 |
+
value,
|
| 219 |
+
attn_mask=attention_mask,
|
| 220 |
+
dropout_p=0.0,
|
| 221 |
+
is_causal=False,
|
| 222 |
+
backend=self._attention_backend,
|
| 223 |
+
)
|
| 224 |
+
hidden_states = hidden_states.flatten(2, 3)
|
| 225 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 226 |
+
|
| 227 |
+
if encoder_hidden_states is not None:
|
| 228 |
+
encoder_hidden_states, hidden_states = hidden_states.split_with_sizes(
|
| 229 |
+
[encoder_hidden_states.shape[1], hidden_states.shape[1] - encoder_hidden_states.shape[1]], dim=1
|
| 230 |
+
)
|
| 231 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 232 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 233 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 234 |
+
|
| 235 |
+
# IP-adapter
|
| 236 |
+
ip_attn_output = torch.zeros_like(hidden_states)
|
| 237 |
+
|
| 238 |
+
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
|
| 239 |
+
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
|
| 240 |
+
):
|
| 241 |
+
ip_key = to_k_ip(current_ip_hidden_states)
|
| 242 |
+
ip_value = to_v_ip(current_ip_hidden_states)
|
| 243 |
+
|
| 244 |
+
ip_key = ip_key.view(batch_size, -1, attn.heads, attn.head_dim)
|
| 245 |
+
ip_value = ip_value.view(batch_size, -1, attn.heads, attn.head_dim)
|
| 246 |
+
|
| 247 |
+
current_ip_hidden_states = dispatch_attention_fn(
|
| 248 |
+
ip_query,
|
| 249 |
+
ip_key,
|
| 250 |
+
ip_value,
|
| 251 |
+
attn_mask=None,
|
| 252 |
+
dropout_p=0.0,
|
| 253 |
+
is_causal=False,
|
| 254 |
+
backend=self._attention_backend,
|
| 255 |
+
)
|
| 256 |
+
current_ip_hidden_states = current_ip_hidden_states.reshape(batch_size, -1, attn.heads * attn.head_dim)
|
| 257 |
+
current_ip_hidden_states = current_ip_hidden_states.to(ip_query.dtype)
|
| 258 |
+
ip_attn_output += scale * current_ip_hidden_states
|
| 259 |
+
|
| 260 |
+
return hidden_states, encoder_hidden_states, ip_attn_output
|
| 261 |
+
else:
|
| 262 |
+
return hidden_states
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
class FluxAttention(torch.nn.Module, AttentionModuleMixin):
|
| 266 |
+
_default_processor_cls = FluxAttnProcessor
|
| 267 |
+
_available_processors = [
|
| 268 |
+
FluxAttnProcessor,
|
| 269 |
+
FluxIPAdapterAttnProcessor,
|
| 270 |
+
]
|
| 271 |
+
|
| 272 |
+
def __init__(
|
| 273 |
+
self,
|
| 274 |
+
query_dim: int,
|
| 275 |
+
heads: int = 8,
|
| 276 |
+
dim_head: int = 64,
|
| 277 |
+
dropout: float = 0.0,
|
| 278 |
+
bias: bool = False,
|
| 279 |
+
added_kv_proj_dim: Optional[int] = None,
|
| 280 |
+
added_proj_bias: Optional[bool] = True,
|
| 281 |
+
out_bias: bool = True,
|
| 282 |
+
eps: float = 1e-5,
|
| 283 |
+
out_dim: int = None,
|
| 284 |
+
context_pre_only: Optional[bool] = None,
|
| 285 |
+
pre_only: bool = False,
|
| 286 |
+
elementwise_affine: bool = True,
|
| 287 |
+
processor=None,
|
| 288 |
+
):
|
| 289 |
+
super().__init__()
|
| 290 |
+
|
| 291 |
+
self.head_dim = dim_head
|
| 292 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
| 293 |
+
self.query_dim = query_dim
|
| 294 |
+
self.use_bias = bias
|
| 295 |
+
self.dropout = dropout
|
| 296 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
| 297 |
+
self.context_pre_only = context_pre_only
|
| 298 |
+
self.pre_only = pre_only
|
| 299 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
| 300 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
| 301 |
+
self.added_proj_bias = added_proj_bias
|
| 302 |
+
|
| 303 |
+
self.norm_q = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
|
| 304 |
+
self.norm_k = torch.nn.RMSNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine)
|
| 305 |
+
self.to_q = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
|
| 306 |
+
self.to_k = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
|
| 307 |
+
self.to_v = torch.nn.Linear(query_dim, self.inner_dim, bias=bias)
|
| 308 |
+
|
| 309 |
+
if not self.pre_only:
|
| 310 |
+
self.to_out = torch.nn.ModuleList([])
|
| 311 |
+
self.to_out.append(torch.nn.Linear(self.inner_dim, self.out_dim, bias=out_bias))
|
| 312 |
+
self.to_out.append(torch.nn.Dropout(dropout))
|
| 313 |
+
|
| 314 |
+
if added_kv_proj_dim is not None:
|
| 315 |
+
self.norm_added_q = torch.nn.RMSNorm(dim_head, eps=eps)
|
| 316 |
+
self.norm_added_k = torch.nn.RMSNorm(dim_head, eps=eps)
|
| 317 |
+
self.add_q_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
| 318 |
+
self.add_k_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
| 319 |
+
self.add_v_proj = torch.nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias)
|
| 320 |
+
self.to_add_out = torch.nn.Linear(self.inner_dim, query_dim, bias=out_bias)
|
| 321 |
+
|
| 322 |
+
if processor is None:
|
| 323 |
+
processor = self._default_processor_cls()
|
| 324 |
+
self.set_processor(processor)
|
| 325 |
+
|
| 326 |
+
def forward(
|
| 327 |
+
self,
|
| 328 |
+
hidden_states: torch.Tensor,
|
| 329 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 330 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 331 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 332 |
+
**kwargs,
|
| 333 |
+
) -> torch.Tensor:
|
| 334 |
+
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
| 335 |
+
quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"}
|
| 336 |
+
unused_kwargs = [k for k, _ in kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters]
|
| 337 |
+
if len(unused_kwargs) > 0:
|
| 338 |
+
logger.warning(
|
| 339 |
+
f"joint_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
| 340 |
+
)
|
| 341 |
+
kwargs = {k: w for k, w in kwargs.items() if k in attn_parameters}
|
| 342 |
+
return self.processor(self, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb, **kwargs)
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
@maybe_allow_in_graph
|
| 346 |
+
class FluxSingleTransformerBlock(nn.Module):
|
| 347 |
+
def __init__(self, dim: int, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0):
|
| 348 |
+
super().__init__()
|
| 349 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 350 |
+
|
| 351 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 352 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 353 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 354 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 355 |
+
|
| 356 |
+
self.attn = FluxAttention(
|
| 357 |
+
query_dim=dim,
|
| 358 |
+
dim_head=attention_head_dim,
|
| 359 |
+
heads=num_attention_heads,
|
| 360 |
+
out_dim=dim,
|
| 361 |
+
bias=True,
|
| 362 |
+
processor=FluxAttnProcessor(),
|
| 363 |
+
eps=1e-6,
|
| 364 |
+
pre_only=True,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
def forward(
|
| 368 |
+
self,
|
| 369 |
+
hidden_states: torch.Tensor,
|
| 370 |
+
encoder_hidden_states: torch.Tensor,
|
| 371 |
+
temb: torch.Tensor,
|
| 372 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 373 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 374 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 375 |
+
text_seq_len = encoder_hidden_states.shape[1]
|
| 376 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 377 |
+
|
| 378 |
+
residual = hidden_states
|
| 379 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 380 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 381 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 382 |
+
attn_output = self.attn(
|
| 383 |
+
hidden_states=norm_hidden_states,
|
| 384 |
+
image_rotary_emb=image_rotary_emb,
|
| 385 |
+
**joint_attention_kwargs,
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 389 |
+
gate = gate.unsqueeze(1)
|
| 390 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 391 |
+
hidden_states = residual + hidden_states
|
| 392 |
+
if hidden_states.dtype == torch.float16:
|
| 393 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 394 |
+
|
| 395 |
+
encoder_hidden_states, hidden_states = hidden_states[:, :text_seq_len], hidden_states[:, text_seq_len:]
|
| 396 |
+
return encoder_hidden_states, hidden_states
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
@maybe_allow_in_graph
|
| 400 |
+
class FluxTransformerBlock(nn.Module):
|
| 401 |
+
def __init__(
|
| 402 |
+
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
| 403 |
+
):
|
| 404 |
+
super().__init__()
|
| 405 |
+
|
| 406 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 407 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 408 |
+
|
| 409 |
+
self.attn = FluxAttention(
|
| 410 |
+
query_dim=dim,
|
| 411 |
+
added_kv_proj_dim=dim,
|
| 412 |
+
dim_head=attention_head_dim,
|
| 413 |
+
heads=num_attention_heads,
|
| 414 |
+
out_dim=dim,
|
| 415 |
+
context_pre_only=False,
|
| 416 |
+
bias=True,
|
| 417 |
+
processor=FluxAttnProcessor(),
|
| 418 |
+
eps=eps,
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 422 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 423 |
+
|
| 424 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 425 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 426 |
+
|
| 427 |
+
def forward(
|
| 428 |
+
self,
|
| 429 |
+
hidden_states: torch.Tensor,
|
| 430 |
+
encoder_hidden_states: torch.Tensor,
|
| 431 |
+
temb: torch.Tensor,
|
| 432 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 433 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 434 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 435 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 436 |
+
|
| 437 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 438 |
+
encoder_hidden_states, emb=temb
|
| 439 |
+
)
|
| 440 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
| 441 |
+
|
| 442 |
+
# Attention.
|
| 443 |
+
attention_outputs = self.attn(
|
| 444 |
+
hidden_states=norm_hidden_states,
|
| 445 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 446 |
+
image_rotary_emb=image_rotary_emb,
|
| 447 |
+
**joint_attention_kwargs,
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
if len(attention_outputs) == 2:
|
| 451 |
+
attn_output, context_attn_output = attention_outputs
|
| 452 |
+
elif len(attention_outputs) == 3:
|
| 453 |
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
| 454 |
+
|
| 455 |
+
# Process attention outputs for the `hidden_states`.
|
| 456 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 457 |
+
hidden_states = hidden_states + attn_output
|
| 458 |
+
|
| 459 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 460 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 461 |
+
|
| 462 |
+
ff_output = self.ff(norm_hidden_states)
|
| 463 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 464 |
+
|
| 465 |
+
hidden_states = hidden_states + ff_output
|
| 466 |
+
if len(attention_outputs) == 3:
|
| 467 |
+
hidden_states = hidden_states + ip_attn_output
|
| 468 |
+
|
| 469 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 470 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 471 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 472 |
+
|
| 473 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 474 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 475 |
+
|
| 476 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 477 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 478 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 479 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 480 |
+
|
| 481 |
+
return encoder_hidden_states, hidden_states
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
class FluxPosEmbed(nn.Module):
|
| 485 |
+
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
| 486 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
| 487 |
+
super().__init__()
|
| 488 |
+
self.theta = theta
|
| 489 |
+
self.axes_dim = axes_dim
|
| 490 |
+
|
| 491 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
| 492 |
+
n_axes = ids.shape[-1]
|
| 493 |
+
cos_out = []
|
| 494 |
+
sin_out = []
|
| 495 |
+
pos = ids.float()
|
| 496 |
+
is_mps = ids.device.type == "mps"
|
| 497 |
+
is_npu = ids.device.type == "npu"
|
| 498 |
+
freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
| 499 |
+
for i in range(n_axes):
|
| 500 |
+
cos, sin = get_1d_rotary_pos_embed(
|
| 501 |
+
self.axes_dim[i],
|
| 502 |
+
pos[:, i],
|
| 503 |
+
theta=self.theta,
|
| 504 |
+
repeat_interleave_real=True,
|
| 505 |
+
use_real=True,
|
| 506 |
+
freqs_dtype=freqs_dtype,
|
| 507 |
+
)
|
| 508 |
+
cos_out.append(cos)
|
| 509 |
+
sin_out.append(sin)
|
| 510 |
+
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
| 511 |
+
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
| 512 |
+
return freqs_cos, freqs_sin
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
class FluxTransformer2DModel(
|
| 516 |
+
ModelMixin,
|
| 517 |
+
ConfigMixin,
|
| 518 |
+
PeftAdapterMixin,
|
| 519 |
+
FromOriginalModelMixin,
|
| 520 |
+
FluxTransformer2DLoadersMixin,
|
| 521 |
+
CacheMixin,
|
| 522 |
+
AttentionMixin,
|
| 523 |
+
):
|
| 524 |
+
"""
|
| 525 |
+
The Transformer model introduced in Flux.
|
| 526 |
+
|
| 527 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
patch_size (`int`, defaults to `1`):
|
| 531 |
+
Patch size to turn the input data into small patches.
|
| 532 |
+
in_channels (`int`, defaults to `64`):
|
| 533 |
+
The number of channels in the input.
|
| 534 |
+
out_channels (`int`, *optional*, defaults to `None`):
|
| 535 |
+
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
| 536 |
+
num_layers (`int`, defaults to `19`):
|
| 537 |
+
The number of layers of dual stream DiT blocks to use.
|
| 538 |
+
num_single_layers (`int`, defaults to `38`):
|
| 539 |
+
The number of layers of single stream DiT blocks to use.
|
| 540 |
+
attention_head_dim (`int`, defaults to `128`):
|
| 541 |
+
The number of dimensions to use for each attention head.
|
| 542 |
+
num_attention_heads (`int`, defaults to `24`):
|
| 543 |
+
The number of attention heads to use.
|
| 544 |
+
joint_attention_dim (`int`, defaults to `4096`):
|
| 545 |
+
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
| 546 |
+
`encoder_hidden_states`).
|
| 547 |
+
pooled_projection_dim (`int`, defaults to `768`):
|
| 548 |
+
The number of dimensions to use for the pooled projection.
|
| 549 |
+
guidance_embeds (`bool`, defaults to `False`):
|
| 550 |
+
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
| 551 |
+
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
| 552 |
+
The dimensions to use for the rotary positional embeddings.
|
| 553 |
+
"""
|
| 554 |
+
|
| 555 |
+
_supports_gradient_checkpointing = True
|
| 556 |
+
_no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
| 557 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 558 |
+
_repeated_blocks = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
|
| 559 |
+
|
| 560 |
+
@register_to_config
|
| 561 |
+
def __init__(
|
| 562 |
+
self,
|
| 563 |
+
patch_size: int = 1,
|
| 564 |
+
in_channels: int = 64,
|
| 565 |
+
out_channels: Optional[int] = None,
|
| 566 |
+
num_layers: int = 19,
|
| 567 |
+
num_single_layers: int = 38,
|
| 568 |
+
attention_head_dim: int = 128,
|
| 569 |
+
num_attention_heads: int = 24,
|
| 570 |
+
joint_attention_dim: int = 4096,
|
| 571 |
+
pooled_projection_dim: int = 768,
|
| 572 |
+
guidance_embeds: bool = False,
|
| 573 |
+
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
| 574 |
+
):
|
| 575 |
+
super().__init__()
|
| 576 |
+
self.out_channels = out_channels or in_channels
|
| 577 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 578 |
+
|
| 579 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 580 |
+
|
| 581 |
+
text_time_guidance_cls = (
|
| 582 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 583 |
+
)
|
| 584 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 585 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 589 |
+
self.x_embedder = nn.Linear(in_channels, self.inner_dim)
|
| 590 |
+
|
| 591 |
+
self.transformer_blocks = nn.ModuleList(
|
| 592 |
+
[
|
| 593 |
+
FluxTransformerBlock(
|
| 594 |
+
dim=self.inner_dim,
|
| 595 |
+
num_attention_heads=num_attention_heads,
|
| 596 |
+
attention_head_dim=attention_head_dim,
|
| 597 |
+
)
|
| 598 |
+
for _ in range(num_layers)
|
| 599 |
+
]
|
| 600 |
+
)
|
| 601 |
+
|
| 602 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 603 |
+
[
|
| 604 |
+
FluxSingleTransformerBlock(
|
| 605 |
+
dim=self.inner_dim,
|
| 606 |
+
num_attention_heads=num_attention_heads,
|
| 607 |
+
attention_head_dim=attention_head_dim,
|
| 608 |
+
)
|
| 609 |
+
for _ in range(num_single_layers)
|
| 610 |
+
]
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 614 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 615 |
+
|
| 616 |
+
self.gradient_checkpointing = False
|
| 617 |
+
|
| 618 |
+
def forward(
|
| 619 |
+
self,
|
| 620 |
+
hidden_states: torch.Tensor,
|
| 621 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 622 |
+
pooled_projections: torch.Tensor = None,
|
| 623 |
+
timestep: torch.LongTensor = None,
|
| 624 |
+
img_ids: torch.Tensor = None,
|
| 625 |
+
txt_ids: torch.Tensor = None,
|
| 626 |
+
guidance: torch.Tensor = None,
|
| 627 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 628 |
+
controlnet_block_samples=None,
|
| 629 |
+
controlnet_single_block_samples=None,
|
| 630 |
+
return_dict: bool = True,
|
| 631 |
+
controlnet_blocks_repeat: bool = False,
|
| 632 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
| 633 |
+
"""
|
| 634 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 635 |
+
|
| 636 |
+
Args:
|
| 637 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
| 638 |
+
Input `hidden_states`.
|
| 639 |
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
| 640 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 641 |
+
pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 642 |
+
from the embeddings of input conditions.
|
| 643 |
+
timestep ( `torch.LongTensor`):
|
| 644 |
+
Used to indicate denoising step.
|
| 645 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 646 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 647 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 648 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 649 |
+
`self.processor` in
|
| 650 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 651 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 652 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 653 |
+
tuple.
|
| 654 |
+
|
| 655 |
+
Returns:
|
| 656 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 657 |
+
`tuple` where the first element is the sample tensor.
|
| 658 |
+
"""
|
| 659 |
+
if joint_attention_kwargs is not None:
|
| 660 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 661 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 662 |
+
else:
|
| 663 |
+
lora_scale = 1.0
|
| 664 |
+
|
| 665 |
+
if USE_PEFT_BACKEND:
|
| 666 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 667 |
+
scale_lora_layers(self, lora_scale)
|
| 668 |
+
else:
|
| 669 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 670 |
+
logger.warning(
|
| 671 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 675 |
+
|
| 676 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 677 |
+
if guidance is not None:
|
| 678 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 679 |
+
|
| 680 |
+
temb = (
|
| 681 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 682 |
+
if guidance is None
|
| 683 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 684 |
+
)
|
| 685 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 686 |
+
|
| 687 |
+
if txt_ids.ndim == 3:
|
| 688 |
+
logger.warning(
|
| 689 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 690 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 691 |
+
)
|
| 692 |
+
txt_ids = txt_ids[0]
|
| 693 |
+
if img_ids.ndim == 3:
|
| 694 |
+
logger.warning(
|
| 695 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 696 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 697 |
+
)
|
| 698 |
+
img_ids = img_ids[0]
|
| 699 |
+
|
| 700 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 701 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 702 |
+
|
| 703 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
| 704 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
| 705 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
| 706 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
| 707 |
+
|
| 708 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 709 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 710 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 711 |
+
block,
|
| 712 |
+
hidden_states,
|
| 713 |
+
encoder_hidden_states,
|
| 714 |
+
temb,
|
| 715 |
+
image_rotary_emb,
|
| 716 |
+
joint_attention_kwargs,
|
| 717 |
+
)
|
| 718 |
+
|
| 719 |
+
else:
|
| 720 |
+
encoder_hidden_states, hidden_states = block(
|
| 721 |
+
hidden_states=hidden_states,
|
| 722 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 723 |
+
temb=temb,
|
| 724 |
+
image_rotary_emb=image_rotary_emb,
|
| 725 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
# controlnet residual
|
| 729 |
+
if controlnet_block_samples is not None:
|
| 730 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
| 731 |
+
interval_control = int(np.ceil(interval_control))
|
| 732 |
+
# For Xlabs ControlNet.
|
| 733 |
+
if controlnet_blocks_repeat:
|
| 734 |
+
hidden_states = (
|
| 735 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
| 736 |
+
)
|
| 737 |
+
else:
|
| 738 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
| 739 |
+
|
| 740 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 741 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 742 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 743 |
+
block,
|
| 744 |
+
hidden_states,
|
| 745 |
+
encoder_hidden_states,
|
| 746 |
+
temb,
|
| 747 |
+
image_rotary_emb,
|
| 748 |
+
joint_attention_kwargs,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
else:
|
| 752 |
+
encoder_hidden_states, hidden_states = block(
|
| 753 |
+
hidden_states=hidden_states,
|
| 754 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 755 |
+
temb=temb,
|
| 756 |
+
image_rotary_emb=image_rotary_emb,
|
| 757 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
# controlnet residual
|
| 761 |
+
if controlnet_single_block_samples is not None:
|
| 762 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
| 763 |
+
interval_control = int(np.ceil(interval_control))
|
| 764 |
+
hidden_states = hidden_states + controlnet_single_block_samples[index_block // interval_control]
|
| 765 |
+
|
| 766 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 767 |
+
output = self.proj_out(hidden_states)
|
| 768 |
+
|
| 769 |
+
if USE_PEFT_BACKEND:
|
| 770 |
+
# remove `lora_scale` from each PEFT layer
|
| 771 |
+
unscale_lora_layers(self, lora_scale)
|
| 772 |
+
|
| 773 |
+
if not return_dict:
|
| 774 |
+
return (output,)
|
| 775 |
+
|
| 776 |
+
return Transformer2DModelOutput(sample=output)
|
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/models/transformers/transformer_hidream_image.py
ADDED
|
@@ -0,0 +1,942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
| 8 |
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 9 |
+
from ...models.modeling_outputs import Transformer2DModelOutput
|
| 10 |
+
from ...models.modeling_utils import ModelMixin
|
| 11 |
+
from ...utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
| 12 |
+
from ...utils.torch_utils import maybe_allow_in_graph
|
| 13 |
+
from ..attention import Attention
|
| 14 |
+
from ..embeddings import TimestepEmbedding, Timesteps
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class HiDreamImageFeedForwardSwiGLU(nn.Module):
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
dim: int,
|
| 24 |
+
hidden_dim: int,
|
| 25 |
+
multiple_of: int = 256,
|
| 26 |
+
ffn_dim_multiplier: Optional[float] = None,
|
| 27 |
+
):
|
| 28 |
+
super().__init__()
|
| 29 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 30 |
+
# custom dim factor multiplier
|
| 31 |
+
if ffn_dim_multiplier is not None:
|
| 32 |
+
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
| 33 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 34 |
+
|
| 35 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
| 36 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
| 37 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
| 38 |
+
|
| 39 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 40 |
+
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class HiDreamImagePooledEmbed(nn.Module):
|
| 44 |
+
def __init__(self, text_emb_dim, hidden_size):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size)
|
| 47 |
+
|
| 48 |
+
def forward(self, pooled_embed: torch.Tensor) -> torch.Tensor:
|
| 49 |
+
return self.pooled_embedder(pooled_embed)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class HiDreamImageTimestepEmbed(nn.Module):
|
| 53 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
|
| 56 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
|
| 57 |
+
|
| 58 |
+
def forward(self, timesteps: torch.Tensor, wdtype: Optional[torch.dtype] = None):
|
| 59 |
+
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
|
| 60 |
+
t_emb = self.timestep_embedder(t_emb)
|
| 61 |
+
return t_emb
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class HiDreamImageOutEmbed(nn.Module):
|
| 65 |
+
def __init__(self, hidden_size, patch_size, out_channels):
|
| 66 |
+
super().__init__()
|
| 67 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
| 68 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
| 69 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
| 70 |
+
|
| 71 |
+
def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor) -> torch.Tensor:
|
| 72 |
+
shift, scale = self.adaLN_modulation(temb).chunk(2, dim=1)
|
| 73 |
+
hidden_states = self.norm_final(hidden_states) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 74 |
+
hidden_states = self.linear(hidden_states)
|
| 75 |
+
return hidden_states
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class HiDreamImagePatchEmbed(nn.Module):
|
| 79 |
+
def __init__(
|
| 80 |
+
self,
|
| 81 |
+
patch_size=2,
|
| 82 |
+
in_channels=4,
|
| 83 |
+
out_channels=1024,
|
| 84 |
+
):
|
| 85 |
+
super().__init__()
|
| 86 |
+
self.patch_size = patch_size
|
| 87 |
+
self.out_channels = out_channels
|
| 88 |
+
self.proj = nn.Linear(in_channels * patch_size * patch_size, out_channels, bias=True)
|
| 89 |
+
|
| 90 |
+
def forward(self, latent):
|
| 91 |
+
latent = self.proj(latent)
|
| 92 |
+
return latent
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
| 96 |
+
assert dim % 2 == 0, "The dimension must be even."
|
| 97 |
+
|
| 98 |
+
is_mps = pos.device.type == "mps"
|
| 99 |
+
is_npu = pos.device.type == "npu"
|
| 100 |
+
|
| 101 |
+
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
| 102 |
+
|
| 103 |
+
scale = torch.arange(0, dim, 2, dtype=dtype, device=pos.device) / dim
|
| 104 |
+
omega = 1.0 / (theta**scale)
|
| 105 |
+
|
| 106 |
+
batch_size, seq_length = pos.shape
|
| 107 |
+
out = torch.einsum("...n,d->...nd", pos, omega)
|
| 108 |
+
cos_out = torch.cos(out)
|
| 109 |
+
sin_out = torch.sin(out)
|
| 110 |
+
|
| 111 |
+
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
| 112 |
+
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
| 113 |
+
return out.float()
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class HiDreamImageEmbedND(nn.Module):
|
| 117 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
| 118 |
+
super().__init__()
|
| 119 |
+
self.theta = theta
|
| 120 |
+
self.axes_dim = axes_dim
|
| 121 |
+
|
| 122 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
| 123 |
+
n_axes = ids.shape[-1]
|
| 124 |
+
emb = torch.cat(
|
| 125 |
+
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
| 126 |
+
dim=-3,
|
| 127 |
+
)
|
| 128 |
+
return emb.unsqueeze(2)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def apply_rope(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 132 |
+
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
| 133 |
+
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
| 134 |
+
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
| 135 |
+
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
| 136 |
+
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@maybe_allow_in_graph
|
| 140 |
+
class HiDreamAttention(Attention):
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
query_dim: int,
|
| 144 |
+
heads: int = 8,
|
| 145 |
+
dim_head: int = 64,
|
| 146 |
+
upcast_attention: bool = False,
|
| 147 |
+
upcast_softmax: bool = False,
|
| 148 |
+
scale_qk: bool = True,
|
| 149 |
+
eps: float = 1e-5,
|
| 150 |
+
processor=None,
|
| 151 |
+
out_dim: int = None,
|
| 152 |
+
single: bool = False,
|
| 153 |
+
):
|
| 154 |
+
super(Attention, self).__init__()
|
| 155 |
+
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
| 156 |
+
self.query_dim = query_dim
|
| 157 |
+
self.upcast_attention = upcast_attention
|
| 158 |
+
self.upcast_softmax = upcast_softmax
|
| 159 |
+
self.out_dim = out_dim if out_dim is not None else query_dim
|
| 160 |
+
|
| 161 |
+
self.scale_qk = scale_qk
|
| 162 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
| 163 |
+
|
| 164 |
+
self.heads = out_dim // dim_head if out_dim is not None else heads
|
| 165 |
+
self.sliceable_head_dim = heads
|
| 166 |
+
self.single = single
|
| 167 |
+
|
| 168 |
+
self.to_q = nn.Linear(query_dim, self.inner_dim)
|
| 169 |
+
self.to_k = nn.Linear(self.inner_dim, self.inner_dim)
|
| 170 |
+
self.to_v = nn.Linear(self.inner_dim, self.inner_dim)
|
| 171 |
+
self.to_out = nn.Linear(self.inner_dim, self.out_dim)
|
| 172 |
+
self.q_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
| 173 |
+
self.k_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
| 174 |
+
|
| 175 |
+
if not single:
|
| 176 |
+
self.to_q_t = nn.Linear(query_dim, self.inner_dim)
|
| 177 |
+
self.to_k_t = nn.Linear(self.inner_dim, self.inner_dim)
|
| 178 |
+
self.to_v_t = nn.Linear(self.inner_dim, self.inner_dim)
|
| 179 |
+
self.to_out_t = nn.Linear(self.inner_dim, self.out_dim)
|
| 180 |
+
self.q_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
| 181 |
+
self.k_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
| 182 |
+
|
| 183 |
+
self.set_processor(processor)
|
| 184 |
+
|
| 185 |
+
def forward(
|
| 186 |
+
self,
|
| 187 |
+
norm_hidden_states: torch.Tensor,
|
| 188 |
+
hidden_states_masks: torch.Tensor = None,
|
| 189 |
+
norm_encoder_hidden_states: torch.Tensor = None,
|
| 190 |
+
image_rotary_emb: torch.Tensor = None,
|
| 191 |
+
) -> torch.Tensor:
|
| 192 |
+
return self.processor(
|
| 193 |
+
self,
|
| 194 |
+
hidden_states=norm_hidden_states,
|
| 195 |
+
hidden_states_masks=hidden_states_masks,
|
| 196 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 197 |
+
image_rotary_emb=image_rotary_emb,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
class HiDreamAttnProcessor:
|
| 202 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 203 |
+
|
| 204 |
+
def __call__(
|
| 205 |
+
self,
|
| 206 |
+
attn: HiDreamAttention,
|
| 207 |
+
hidden_states: torch.Tensor,
|
| 208 |
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
| 209 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 210 |
+
image_rotary_emb: torch.Tensor = None,
|
| 211 |
+
*args,
|
| 212 |
+
**kwargs,
|
| 213 |
+
) -> torch.Tensor:
|
| 214 |
+
dtype = hidden_states.dtype
|
| 215 |
+
batch_size = hidden_states.shape[0]
|
| 216 |
+
|
| 217 |
+
query_i = attn.q_rms_norm(attn.to_q(hidden_states)).to(dtype=dtype)
|
| 218 |
+
key_i = attn.k_rms_norm(attn.to_k(hidden_states)).to(dtype=dtype)
|
| 219 |
+
value_i = attn.to_v(hidden_states)
|
| 220 |
+
|
| 221 |
+
inner_dim = key_i.shape[-1]
|
| 222 |
+
head_dim = inner_dim // attn.heads
|
| 223 |
+
|
| 224 |
+
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
|
| 225 |
+
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
|
| 226 |
+
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
|
| 227 |
+
if hidden_states_masks is not None:
|
| 228 |
+
key_i = key_i * hidden_states_masks.view(batch_size, -1, 1, 1)
|
| 229 |
+
|
| 230 |
+
if not attn.single:
|
| 231 |
+
query_t = attn.q_rms_norm_t(attn.to_q_t(encoder_hidden_states)).to(dtype=dtype)
|
| 232 |
+
key_t = attn.k_rms_norm_t(attn.to_k_t(encoder_hidden_states)).to(dtype=dtype)
|
| 233 |
+
value_t = attn.to_v_t(encoder_hidden_states)
|
| 234 |
+
|
| 235 |
+
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
|
| 236 |
+
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
|
| 237 |
+
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
|
| 238 |
+
|
| 239 |
+
num_image_tokens = query_i.shape[1]
|
| 240 |
+
num_text_tokens = query_t.shape[1]
|
| 241 |
+
query = torch.cat([query_i, query_t], dim=1)
|
| 242 |
+
key = torch.cat([key_i, key_t], dim=1)
|
| 243 |
+
value = torch.cat([value_i, value_t], dim=1)
|
| 244 |
+
else:
|
| 245 |
+
query = query_i
|
| 246 |
+
key = key_i
|
| 247 |
+
value = value_i
|
| 248 |
+
|
| 249 |
+
if query.shape[-1] == image_rotary_emb.shape[-3] * 2:
|
| 250 |
+
query, key = apply_rope(query, key, image_rotary_emb)
|
| 251 |
+
|
| 252 |
+
else:
|
| 253 |
+
query_1, query_2 = query.chunk(2, dim=-1)
|
| 254 |
+
key_1, key_2 = key.chunk(2, dim=-1)
|
| 255 |
+
query_1, key_1 = apply_rope(query_1, key_1, image_rotary_emb)
|
| 256 |
+
query = torch.cat([query_1, query_2], dim=-1)
|
| 257 |
+
key = torch.cat([key_1, key_2], dim=-1)
|
| 258 |
+
|
| 259 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 260 |
+
query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2), dropout_p=0.0, is_causal=False
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 264 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 265 |
+
|
| 266 |
+
if not attn.single:
|
| 267 |
+
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
| 268 |
+
hidden_states_i = attn.to_out(hidden_states_i)
|
| 269 |
+
hidden_states_t = attn.to_out_t(hidden_states_t)
|
| 270 |
+
return hidden_states_i, hidden_states_t
|
| 271 |
+
else:
|
| 272 |
+
hidden_states = attn.to_out(hidden_states)
|
| 273 |
+
return hidden_states
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
| 277 |
+
class MoEGate(nn.Module):
|
| 278 |
+
def __init__(
|
| 279 |
+
self,
|
| 280 |
+
embed_dim,
|
| 281 |
+
num_routed_experts=4,
|
| 282 |
+
num_activated_experts=2,
|
| 283 |
+
aux_loss_alpha=0.01,
|
| 284 |
+
_force_inference_output=False,
|
| 285 |
+
):
|
| 286 |
+
super().__init__()
|
| 287 |
+
self.top_k = num_activated_experts
|
| 288 |
+
self.n_routed_experts = num_routed_experts
|
| 289 |
+
|
| 290 |
+
self.scoring_func = "softmax"
|
| 291 |
+
self.alpha = aux_loss_alpha
|
| 292 |
+
self.seq_aux = False
|
| 293 |
+
|
| 294 |
+
# topk selection algorithm
|
| 295 |
+
self.norm_topk_prob = False
|
| 296 |
+
self.gating_dim = embed_dim
|
| 297 |
+
self.weight = nn.Parameter(torch.randn(self.n_routed_experts, self.gating_dim) / embed_dim**0.5)
|
| 298 |
+
|
| 299 |
+
self._force_inference_output = _force_inference_output
|
| 300 |
+
|
| 301 |
+
def forward(self, hidden_states):
|
| 302 |
+
bsz, seq_len, h = hidden_states.shape
|
| 303 |
+
### compute gating score
|
| 304 |
+
hidden_states = hidden_states.view(-1, h)
|
| 305 |
+
logits = F.linear(hidden_states, self.weight, None)
|
| 306 |
+
if self.scoring_func == "softmax":
|
| 307 |
+
scores = logits.softmax(dim=-1)
|
| 308 |
+
else:
|
| 309 |
+
raise NotImplementedError(f"insupportable scoring function for MoE gating: {self.scoring_func}")
|
| 310 |
+
|
| 311 |
+
### select top-k experts
|
| 312 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
| 313 |
+
|
| 314 |
+
### norm gate to sum 1
|
| 315 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
| 316 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
| 317 |
+
topk_weight = topk_weight / denominator
|
| 318 |
+
|
| 319 |
+
### expert-level computation auxiliary loss
|
| 320 |
+
if self.training and self.alpha > 0.0 and not self._force_inference_output:
|
| 321 |
+
scores_for_aux = scores
|
| 322 |
+
aux_topk = self.top_k
|
| 323 |
+
# always compute aux loss based on the naive greedy topk method
|
| 324 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
| 325 |
+
if self.seq_aux:
|
| 326 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
| 327 |
+
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
| 328 |
+
ce.scatter_add_(
|
| 329 |
+
1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)
|
| 330 |
+
).div_(seq_len * aux_topk / self.n_routed_experts)
|
| 331 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
|
| 332 |
+
else:
|
| 333 |
+
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
| 334 |
+
ce = mask_ce.float().mean(0)
|
| 335 |
+
|
| 336 |
+
Pi = scores_for_aux.mean(0)
|
| 337 |
+
fi = ce * self.n_routed_experts
|
| 338 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
| 339 |
+
else:
|
| 340 |
+
aux_loss = None
|
| 341 |
+
return topk_idx, topk_weight, aux_loss
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
| 345 |
+
class MOEFeedForwardSwiGLU(nn.Module):
|
| 346 |
+
def __init__(
|
| 347 |
+
self,
|
| 348 |
+
dim: int,
|
| 349 |
+
hidden_dim: int,
|
| 350 |
+
num_routed_experts: int,
|
| 351 |
+
num_activated_experts: int,
|
| 352 |
+
_force_inference_output: bool = False,
|
| 353 |
+
):
|
| 354 |
+
super().__init__()
|
| 355 |
+
self.shared_experts = HiDreamImageFeedForwardSwiGLU(dim, hidden_dim // 2)
|
| 356 |
+
self.experts = nn.ModuleList(
|
| 357 |
+
[HiDreamImageFeedForwardSwiGLU(dim, hidden_dim) for i in range(num_routed_experts)]
|
| 358 |
+
)
|
| 359 |
+
self._force_inference_output = _force_inference_output
|
| 360 |
+
self.gate = MoEGate(
|
| 361 |
+
embed_dim=dim,
|
| 362 |
+
num_routed_experts=num_routed_experts,
|
| 363 |
+
num_activated_experts=num_activated_experts,
|
| 364 |
+
_force_inference_output=_force_inference_output,
|
| 365 |
+
)
|
| 366 |
+
self.num_activated_experts = num_activated_experts
|
| 367 |
+
|
| 368 |
+
def forward(self, x):
|
| 369 |
+
wtype = x.dtype
|
| 370 |
+
identity = x
|
| 371 |
+
orig_shape = x.shape
|
| 372 |
+
topk_idx, topk_weight, aux_loss = self.gate(x)
|
| 373 |
+
x = x.view(-1, x.shape[-1])
|
| 374 |
+
flat_topk_idx = topk_idx.view(-1)
|
| 375 |
+
if self.training and not self._force_inference_output:
|
| 376 |
+
x = x.repeat_interleave(self.num_activated_experts, dim=0)
|
| 377 |
+
y = torch.empty_like(x, dtype=wtype)
|
| 378 |
+
for i, expert in enumerate(self.experts):
|
| 379 |
+
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
|
| 380 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
| 381 |
+
y = y.view(*orig_shape).to(dtype=wtype)
|
| 382 |
+
# y = AddAuxiliaryLoss.apply(y, aux_loss)
|
| 383 |
+
else:
|
| 384 |
+
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
| 385 |
+
y = y + self.shared_experts(identity)
|
| 386 |
+
return y
|
| 387 |
+
|
| 388 |
+
@torch.no_grad()
|
| 389 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
| 390 |
+
expert_cache = torch.zeros_like(x)
|
| 391 |
+
idxs = flat_expert_indices.argsort()
|
| 392 |
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
| 393 |
+
token_idxs = idxs // self.num_activated_experts
|
| 394 |
+
for i, end_idx in enumerate(tokens_per_expert):
|
| 395 |
+
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
| 396 |
+
if start_idx == end_idx:
|
| 397 |
+
continue
|
| 398 |
+
expert = self.experts[i]
|
| 399 |
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
| 400 |
+
expert_tokens = x[exp_token_idx]
|
| 401 |
+
expert_out = expert(expert_tokens)
|
| 402 |
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
| 403 |
+
|
| 404 |
+
# for fp16 and other dtype
|
| 405 |
+
expert_cache = expert_cache.to(expert_out.dtype)
|
| 406 |
+
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce="sum")
|
| 407 |
+
return expert_cache
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
class TextProjection(nn.Module):
|
| 411 |
+
def __init__(self, in_features, hidden_size):
|
| 412 |
+
super().__init__()
|
| 413 |
+
self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)
|
| 414 |
+
|
| 415 |
+
def forward(self, caption):
|
| 416 |
+
hidden_states = self.linear(caption)
|
| 417 |
+
return hidden_states
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
@maybe_allow_in_graph
|
| 421 |
+
class HiDreamImageSingleTransformerBlock(nn.Module):
|
| 422 |
+
def __init__(
|
| 423 |
+
self,
|
| 424 |
+
dim: int,
|
| 425 |
+
num_attention_heads: int,
|
| 426 |
+
attention_head_dim: int,
|
| 427 |
+
num_routed_experts: int = 4,
|
| 428 |
+
num_activated_experts: int = 2,
|
| 429 |
+
_force_inference_output: bool = False,
|
| 430 |
+
):
|
| 431 |
+
super().__init__()
|
| 432 |
+
self.num_attention_heads = num_attention_heads
|
| 433 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True))
|
| 434 |
+
|
| 435 |
+
# 1. Attention
|
| 436 |
+
self.norm1_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
| 437 |
+
self.attn1 = HiDreamAttention(
|
| 438 |
+
query_dim=dim,
|
| 439 |
+
heads=num_attention_heads,
|
| 440 |
+
dim_head=attention_head_dim,
|
| 441 |
+
processor=HiDreamAttnProcessor(),
|
| 442 |
+
single=True,
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# 3. Feed-forward
|
| 446 |
+
self.norm3_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
| 447 |
+
if num_routed_experts > 0:
|
| 448 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
| 449 |
+
dim=dim,
|
| 450 |
+
hidden_dim=4 * dim,
|
| 451 |
+
num_routed_experts=num_routed_experts,
|
| 452 |
+
num_activated_experts=num_activated_experts,
|
| 453 |
+
_force_inference_output=_force_inference_output,
|
| 454 |
+
)
|
| 455 |
+
else:
|
| 456 |
+
self.ff_i = HiDreamImageFeedForwardSwiGLU(dim=dim, hidden_dim=4 * dim)
|
| 457 |
+
|
| 458 |
+
def forward(
|
| 459 |
+
self,
|
| 460 |
+
hidden_states: torch.Tensor,
|
| 461 |
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
| 462 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 463 |
+
temb: Optional[torch.Tensor] = None,
|
| 464 |
+
image_rotary_emb: torch.Tensor = None,
|
| 465 |
+
) -> torch.Tensor:
|
| 466 |
+
wtype = hidden_states.dtype
|
| 467 |
+
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = self.adaLN_modulation(temb)[
|
| 468 |
+
:, None
|
| 469 |
+
].chunk(6, dim=-1)
|
| 470 |
+
|
| 471 |
+
# 1. MM-Attention
|
| 472 |
+
norm_hidden_states = self.norm1_i(hidden_states).to(dtype=wtype)
|
| 473 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa_i) + shift_msa_i
|
| 474 |
+
attn_output_i = self.attn1(
|
| 475 |
+
norm_hidden_states,
|
| 476 |
+
hidden_states_masks,
|
| 477 |
+
image_rotary_emb=image_rotary_emb,
|
| 478 |
+
)
|
| 479 |
+
hidden_states = gate_msa_i * attn_output_i + hidden_states
|
| 480 |
+
|
| 481 |
+
# 2. Feed-forward
|
| 482 |
+
norm_hidden_states = self.norm3_i(hidden_states).to(dtype=wtype)
|
| 483 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp_i) + shift_mlp_i
|
| 484 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_hidden_states.to(dtype=wtype))
|
| 485 |
+
hidden_states = ff_output_i + hidden_states
|
| 486 |
+
return hidden_states
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
@maybe_allow_in_graph
|
| 490 |
+
class HiDreamImageTransformerBlock(nn.Module):
|
| 491 |
+
def __init__(
|
| 492 |
+
self,
|
| 493 |
+
dim: int,
|
| 494 |
+
num_attention_heads: int,
|
| 495 |
+
attention_head_dim: int,
|
| 496 |
+
num_routed_experts: int = 4,
|
| 497 |
+
num_activated_experts: int = 2,
|
| 498 |
+
_force_inference_output: bool = False,
|
| 499 |
+
):
|
| 500 |
+
super().__init__()
|
| 501 |
+
self.num_attention_heads = num_attention_heads
|
| 502 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 12 * dim, bias=True))
|
| 503 |
+
|
| 504 |
+
# 1. Attention
|
| 505 |
+
self.norm1_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
| 506 |
+
self.norm1_t = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
| 507 |
+
self.attn1 = HiDreamAttention(
|
| 508 |
+
query_dim=dim,
|
| 509 |
+
heads=num_attention_heads,
|
| 510 |
+
dim_head=attention_head_dim,
|
| 511 |
+
processor=HiDreamAttnProcessor(),
|
| 512 |
+
single=False,
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
# 3. Feed-forward
|
| 516 |
+
self.norm3_i = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
| 517 |
+
if num_routed_experts > 0:
|
| 518 |
+
self.ff_i = MOEFeedForwardSwiGLU(
|
| 519 |
+
dim=dim,
|
| 520 |
+
hidden_dim=4 * dim,
|
| 521 |
+
num_routed_experts=num_routed_experts,
|
| 522 |
+
num_activated_experts=num_activated_experts,
|
| 523 |
+
_force_inference_output=_force_inference_output,
|
| 524 |
+
)
|
| 525 |
+
else:
|
| 526 |
+
self.ff_i = HiDreamImageFeedForwardSwiGLU(dim=dim, hidden_dim=4 * dim)
|
| 527 |
+
self.norm3_t = nn.LayerNorm(dim, eps=1e-06, elementwise_affine=False)
|
| 528 |
+
self.ff_t = HiDreamImageFeedForwardSwiGLU(dim=dim, hidden_dim=4 * dim)
|
| 529 |
+
|
| 530 |
+
def forward(
|
| 531 |
+
self,
|
| 532 |
+
hidden_states: torch.Tensor,
|
| 533 |
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
| 534 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 535 |
+
temb: Optional[torch.Tensor] = None,
|
| 536 |
+
image_rotary_emb: torch.Tensor = None,
|
| 537 |
+
) -> torch.Tensor:
|
| 538 |
+
wtype = hidden_states.dtype
|
| 539 |
+
(
|
| 540 |
+
shift_msa_i,
|
| 541 |
+
scale_msa_i,
|
| 542 |
+
gate_msa_i,
|
| 543 |
+
shift_mlp_i,
|
| 544 |
+
scale_mlp_i,
|
| 545 |
+
gate_mlp_i,
|
| 546 |
+
shift_msa_t,
|
| 547 |
+
scale_msa_t,
|
| 548 |
+
gate_msa_t,
|
| 549 |
+
shift_mlp_t,
|
| 550 |
+
scale_mlp_t,
|
| 551 |
+
gate_mlp_t,
|
| 552 |
+
) = self.adaLN_modulation(temb)[:, None].chunk(12, dim=-1)
|
| 553 |
+
|
| 554 |
+
# 1. MM-Attention
|
| 555 |
+
norm_hidden_states = self.norm1_i(hidden_states).to(dtype=wtype)
|
| 556 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa_i) + shift_msa_i
|
| 557 |
+
norm_encoder_hidden_states = self.norm1_t(encoder_hidden_states).to(dtype=wtype)
|
| 558 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + scale_msa_t) + shift_msa_t
|
| 559 |
+
|
| 560 |
+
attn_output_i, attn_output_t = self.attn1(
|
| 561 |
+
norm_hidden_states,
|
| 562 |
+
hidden_states_masks,
|
| 563 |
+
norm_encoder_hidden_states,
|
| 564 |
+
image_rotary_emb=image_rotary_emb,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
hidden_states = gate_msa_i * attn_output_i + hidden_states
|
| 568 |
+
encoder_hidden_states = gate_msa_t * attn_output_t + encoder_hidden_states
|
| 569 |
+
|
| 570 |
+
# 2. Feed-forward
|
| 571 |
+
norm_hidden_states = self.norm3_i(hidden_states).to(dtype=wtype)
|
| 572 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp_i) + shift_mlp_i
|
| 573 |
+
norm_encoder_hidden_states = self.norm3_t(encoder_hidden_states).to(dtype=wtype)
|
| 574 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + scale_mlp_t) + shift_mlp_t
|
| 575 |
+
|
| 576 |
+
ff_output_i = gate_mlp_i * self.ff_i(norm_hidden_states)
|
| 577 |
+
ff_output_t = gate_mlp_t * self.ff_t(norm_encoder_hidden_states)
|
| 578 |
+
hidden_states = ff_output_i + hidden_states
|
| 579 |
+
encoder_hidden_states = ff_output_t + encoder_hidden_states
|
| 580 |
+
return hidden_states, encoder_hidden_states
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
class HiDreamBlock(nn.Module):
|
| 584 |
+
def __init__(self, block: Union[HiDreamImageTransformerBlock, HiDreamImageSingleTransformerBlock]):
|
| 585 |
+
super().__init__()
|
| 586 |
+
self.block = block
|
| 587 |
+
|
| 588 |
+
def forward(
|
| 589 |
+
self,
|
| 590 |
+
hidden_states: torch.Tensor,
|
| 591 |
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
| 592 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 593 |
+
temb: Optional[torch.Tensor] = None,
|
| 594 |
+
image_rotary_emb: torch.Tensor = None,
|
| 595 |
+
) -> torch.Tensor:
|
| 596 |
+
return self.block(
|
| 597 |
+
hidden_states=hidden_states,
|
| 598 |
+
hidden_states_masks=hidden_states_masks,
|
| 599 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 600 |
+
temb=temb,
|
| 601 |
+
image_rotary_emb=image_rotary_emb,
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
class HiDreamImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 606 |
+
_supports_gradient_checkpointing = True
|
| 607 |
+
_no_split_modules = ["HiDreamImageTransformerBlock", "HiDreamImageSingleTransformerBlock"]
|
| 608 |
+
|
| 609 |
+
@register_to_config
|
| 610 |
+
def __init__(
|
| 611 |
+
self,
|
| 612 |
+
patch_size: Optional[int] = None,
|
| 613 |
+
in_channels: int = 64,
|
| 614 |
+
out_channels: Optional[int] = None,
|
| 615 |
+
num_layers: int = 16,
|
| 616 |
+
num_single_layers: int = 32,
|
| 617 |
+
attention_head_dim: int = 128,
|
| 618 |
+
num_attention_heads: int = 20,
|
| 619 |
+
caption_channels: List[int] = None,
|
| 620 |
+
text_emb_dim: int = 2048,
|
| 621 |
+
num_routed_experts: int = 4,
|
| 622 |
+
num_activated_experts: int = 2,
|
| 623 |
+
axes_dims_rope: Tuple[int, int] = (32, 32),
|
| 624 |
+
max_resolution: Tuple[int, int] = (128, 128),
|
| 625 |
+
llama_layers: List[int] = None,
|
| 626 |
+
force_inference_output: bool = False,
|
| 627 |
+
):
|
| 628 |
+
super().__init__()
|
| 629 |
+
self.out_channels = out_channels or in_channels
|
| 630 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 631 |
+
|
| 632 |
+
self.t_embedder = HiDreamImageTimestepEmbed(self.inner_dim)
|
| 633 |
+
self.p_embedder = HiDreamImagePooledEmbed(text_emb_dim, self.inner_dim)
|
| 634 |
+
self.x_embedder = HiDreamImagePatchEmbed(
|
| 635 |
+
patch_size=patch_size,
|
| 636 |
+
in_channels=in_channels,
|
| 637 |
+
out_channels=self.inner_dim,
|
| 638 |
+
)
|
| 639 |
+
self.pe_embedder = HiDreamImageEmbedND(theta=10000, axes_dim=axes_dims_rope)
|
| 640 |
+
|
| 641 |
+
self.double_stream_blocks = nn.ModuleList(
|
| 642 |
+
[
|
| 643 |
+
HiDreamBlock(
|
| 644 |
+
HiDreamImageTransformerBlock(
|
| 645 |
+
dim=self.inner_dim,
|
| 646 |
+
num_attention_heads=num_attention_heads,
|
| 647 |
+
attention_head_dim=attention_head_dim,
|
| 648 |
+
num_routed_experts=num_routed_experts,
|
| 649 |
+
num_activated_experts=num_activated_experts,
|
| 650 |
+
_force_inference_output=force_inference_output,
|
| 651 |
+
)
|
| 652 |
+
)
|
| 653 |
+
for _ in range(num_layers)
|
| 654 |
+
]
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
self.single_stream_blocks = nn.ModuleList(
|
| 658 |
+
[
|
| 659 |
+
HiDreamBlock(
|
| 660 |
+
HiDreamImageSingleTransformerBlock(
|
| 661 |
+
dim=self.inner_dim,
|
| 662 |
+
num_attention_heads=num_attention_heads,
|
| 663 |
+
attention_head_dim=attention_head_dim,
|
| 664 |
+
num_routed_experts=num_routed_experts,
|
| 665 |
+
num_activated_experts=num_activated_experts,
|
| 666 |
+
_force_inference_output=force_inference_output,
|
| 667 |
+
)
|
| 668 |
+
)
|
| 669 |
+
for _ in range(num_single_layers)
|
| 670 |
+
]
|
| 671 |
+
)
|
| 672 |
+
|
| 673 |
+
self.final_layer = HiDreamImageOutEmbed(self.inner_dim, patch_size, self.out_channels)
|
| 674 |
+
|
| 675 |
+
caption_channels = [caption_channels[1]] * (num_layers + num_single_layers) + [caption_channels[0]]
|
| 676 |
+
caption_projection = []
|
| 677 |
+
for caption_channel in caption_channels:
|
| 678 |
+
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim))
|
| 679 |
+
self.caption_projection = nn.ModuleList(caption_projection)
|
| 680 |
+
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
| 681 |
+
|
| 682 |
+
self.gradient_checkpointing = False
|
| 683 |
+
|
| 684 |
+
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
| 685 |
+
if is_training and not self.config.force_inference_output:
|
| 686 |
+
B, S, F = x.shape
|
| 687 |
+
C = F // (self.config.patch_size * self.config.patch_size)
|
| 688 |
+
x = (
|
| 689 |
+
x.reshape(B, S, self.config.patch_size, self.config.patch_size, C)
|
| 690 |
+
.permute(0, 4, 1, 2, 3)
|
| 691 |
+
.reshape(B, C, S, self.config.patch_size * self.config.patch_size)
|
| 692 |
+
)
|
| 693 |
+
else:
|
| 694 |
+
x_arr = []
|
| 695 |
+
p1 = self.config.patch_size
|
| 696 |
+
p2 = self.config.patch_size
|
| 697 |
+
for i, img_size in enumerate(img_sizes):
|
| 698 |
+
pH, pW = img_size
|
| 699 |
+
t = x[i, : pH * pW].reshape(1, pH, pW, -1)
|
| 700 |
+
F_token = t.shape[-1]
|
| 701 |
+
C = F_token // (p1 * p2)
|
| 702 |
+
t = t.reshape(1, pH, pW, p1, p2, C)
|
| 703 |
+
t = t.permute(0, 5, 1, 3, 2, 4)
|
| 704 |
+
t = t.reshape(1, C, pH * p1, pW * p2)
|
| 705 |
+
x_arr.append(t)
|
| 706 |
+
x = torch.cat(x_arr, dim=0)
|
| 707 |
+
return x
|
| 708 |
+
|
| 709 |
+
def patchify(self, hidden_states):
|
| 710 |
+
batch_size, channels, height, width = hidden_states.shape
|
| 711 |
+
patch_size = self.config.patch_size
|
| 712 |
+
patch_height, patch_width = height // patch_size, width // patch_size
|
| 713 |
+
device = hidden_states.device
|
| 714 |
+
dtype = hidden_states.dtype
|
| 715 |
+
|
| 716 |
+
# create img_sizes
|
| 717 |
+
img_sizes = torch.tensor([patch_height, patch_width], dtype=torch.int64, device=device).reshape(-1)
|
| 718 |
+
img_sizes = img_sizes.unsqueeze(0).repeat(batch_size, 1)
|
| 719 |
+
|
| 720 |
+
# create hidden_states_masks
|
| 721 |
+
if hidden_states.shape[-2] != hidden_states.shape[-1]:
|
| 722 |
+
hidden_states_masks = torch.zeros((batch_size, self.max_seq), dtype=dtype, device=device)
|
| 723 |
+
hidden_states_masks[:, : patch_height * patch_width] = 1.0
|
| 724 |
+
else:
|
| 725 |
+
hidden_states_masks = None
|
| 726 |
+
|
| 727 |
+
# create img_ids
|
| 728 |
+
img_ids = torch.zeros(patch_height, patch_width, 3, device=device)
|
| 729 |
+
row_indices = torch.arange(patch_height, device=device)[:, None]
|
| 730 |
+
col_indices = torch.arange(patch_width, device=device)[None, :]
|
| 731 |
+
img_ids[..., 1] = img_ids[..., 1] + row_indices
|
| 732 |
+
img_ids[..., 2] = img_ids[..., 2] + col_indices
|
| 733 |
+
img_ids = img_ids.reshape(patch_height * patch_width, -1)
|
| 734 |
+
|
| 735 |
+
if hidden_states.shape[-2] != hidden_states.shape[-1]:
|
| 736 |
+
# Handle non-square latents
|
| 737 |
+
img_ids_pad = torch.zeros(self.max_seq, 3, device=device)
|
| 738 |
+
img_ids_pad[: patch_height * patch_width, :] = img_ids
|
| 739 |
+
img_ids = img_ids_pad.unsqueeze(0).repeat(batch_size, 1, 1)
|
| 740 |
+
else:
|
| 741 |
+
img_ids = img_ids.unsqueeze(0).repeat(batch_size, 1, 1)
|
| 742 |
+
|
| 743 |
+
# patchify hidden_states
|
| 744 |
+
if hidden_states.shape[-2] != hidden_states.shape[-1]:
|
| 745 |
+
# Handle non-square latents
|
| 746 |
+
out = torch.zeros(
|
| 747 |
+
(batch_size, channels, self.max_seq, patch_size * patch_size),
|
| 748 |
+
dtype=dtype,
|
| 749 |
+
device=device,
|
| 750 |
+
)
|
| 751 |
+
hidden_states = hidden_states.reshape(
|
| 752 |
+
batch_size, channels, patch_height, patch_size, patch_width, patch_size
|
| 753 |
+
)
|
| 754 |
+
hidden_states = hidden_states.permute(0, 1, 2, 4, 3, 5)
|
| 755 |
+
hidden_states = hidden_states.reshape(
|
| 756 |
+
batch_size, channels, patch_height * patch_width, patch_size * patch_size
|
| 757 |
+
)
|
| 758 |
+
out[:, :, 0 : patch_height * patch_width] = hidden_states
|
| 759 |
+
hidden_states = out
|
| 760 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
| 761 |
+
batch_size, self.max_seq, patch_size * patch_size * channels
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
else:
|
| 765 |
+
# Handle square latents
|
| 766 |
+
hidden_states = hidden_states.reshape(
|
| 767 |
+
batch_size, channels, patch_height, patch_size, patch_width, patch_size
|
| 768 |
+
)
|
| 769 |
+
hidden_states = hidden_states.permute(0, 2, 4, 3, 5, 1)
|
| 770 |
+
hidden_states = hidden_states.reshape(
|
| 771 |
+
batch_size, patch_height * patch_width, patch_size * patch_size * channels
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
return hidden_states, hidden_states_masks, img_sizes, img_ids
|
| 775 |
+
|
| 776 |
+
def forward(
|
| 777 |
+
self,
|
| 778 |
+
hidden_states: torch.Tensor,
|
| 779 |
+
timesteps: torch.LongTensor = None,
|
| 780 |
+
encoder_hidden_states_t5: torch.Tensor = None,
|
| 781 |
+
encoder_hidden_states_llama3: torch.Tensor = None,
|
| 782 |
+
pooled_embeds: torch.Tensor = None,
|
| 783 |
+
img_ids: Optional[torch.Tensor] = None,
|
| 784 |
+
img_sizes: Optional[List[Tuple[int, int]]] = None,
|
| 785 |
+
hidden_states_masks: Optional[torch.Tensor] = None,
|
| 786 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 787 |
+
return_dict: bool = True,
|
| 788 |
+
**kwargs,
|
| 789 |
+
):
|
| 790 |
+
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
|
| 791 |
+
|
| 792 |
+
if encoder_hidden_states is not None:
|
| 793 |
+
deprecation_message = "The `encoder_hidden_states` argument is deprecated. Please use `encoder_hidden_states_t5` and `encoder_hidden_states_llama3` instead."
|
| 794 |
+
deprecate("encoder_hidden_states", "0.35.0", deprecation_message)
|
| 795 |
+
encoder_hidden_states_t5 = encoder_hidden_states[0]
|
| 796 |
+
encoder_hidden_states_llama3 = encoder_hidden_states[1]
|
| 797 |
+
|
| 798 |
+
if img_ids is not None and img_sizes is not None and hidden_states_masks is None:
|
| 799 |
+
deprecation_message = (
|
| 800 |
+
"Passing `img_ids` and `img_sizes` with unpachified `hidden_states` is deprecated and will be ignored."
|
| 801 |
+
)
|
| 802 |
+
deprecate("img_ids", "0.35.0", deprecation_message)
|
| 803 |
+
|
| 804 |
+
if hidden_states_masks is not None and (img_ids is None or img_sizes is None):
|
| 805 |
+
raise ValueError("if `hidden_states_masks` is passed, `img_ids` and `img_sizes` must also be passed.")
|
| 806 |
+
elif hidden_states_masks is not None and hidden_states.ndim != 3:
|
| 807 |
+
raise ValueError(
|
| 808 |
+
"if `hidden_states_masks` is passed, `hidden_states` must be a 3D tensors with shape (batch_size, patch_height * patch_width, patch_size * patch_size * channels)"
|
| 809 |
+
)
|
| 810 |
+
|
| 811 |
+
if attention_kwargs is not None:
|
| 812 |
+
attention_kwargs = attention_kwargs.copy()
|
| 813 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
| 814 |
+
else:
|
| 815 |
+
lora_scale = 1.0
|
| 816 |
+
|
| 817 |
+
if USE_PEFT_BACKEND:
|
| 818 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 819 |
+
scale_lora_layers(self, lora_scale)
|
| 820 |
+
else:
|
| 821 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
| 822 |
+
logger.warning(
|
| 823 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
| 824 |
+
)
|
| 825 |
+
|
| 826 |
+
# spatial forward
|
| 827 |
+
batch_size = hidden_states.shape[0]
|
| 828 |
+
hidden_states_type = hidden_states.dtype
|
| 829 |
+
|
| 830 |
+
# Patchify the input
|
| 831 |
+
if hidden_states_masks is None:
|
| 832 |
+
hidden_states, hidden_states_masks, img_sizes, img_ids = self.patchify(hidden_states)
|
| 833 |
+
|
| 834 |
+
# Embed the hidden states
|
| 835 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 836 |
+
|
| 837 |
+
# 0. time
|
| 838 |
+
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
| 839 |
+
p_embedder = self.p_embedder(pooled_embeds)
|
| 840 |
+
temb = timesteps + p_embedder
|
| 841 |
+
|
| 842 |
+
encoder_hidden_states = [encoder_hidden_states_llama3[k] for k in self.config.llama_layers]
|
| 843 |
+
|
| 844 |
+
if self.caption_projection is not None:
|
| 845 |
+
new_encoder_hidden_states = []
|
| 846 |
+
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
| 847 |
+
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
| 848 |
+
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
| 849 |
+
new_encoder_hidden_states.append(enc_hidden_state)
|
| 850 |
+
encoder_hidden_states = new_encoder_hidden_states
|
| 851 |
+
encoder_hidden_states_t5 = self.caption_projection[-1](encoder_hidden_states_t5)
|
| 852 |
+
encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, -1, hidden_states.shape[-1])
|
| 853 |
+
encoder_hidden_states.append(encoder_hidden_states_t5)
|
| 854 |
+
|
| 855 |
+
txt_ids = torch.zeros(
|
| 856 |
+
batch_size,
|
| 857 |
+
encoder_hidden_states[-1].shape[1]
|
| 858 |
+
+ encoder_hidden_states[-2].shape[1]
|
| 859 |
+
+ encoder_hidden_states[0].shape[1],
|
| 860 |
+
3,
|
| 861 |
+
device=img_ids.device,
|
| 862 |
+
dtype=img_ids.dtype,
|
| 863 |
+
)
|
| 864 |
+
ids = torch.cat((img_ids, txt_ids), dim=1)
|
| 865 |
+
image_rotary_emb = self.pe_embedder(ids)
|
| 866 |
+
|
| 867 |
+
# 2. Blocks
|
| 868 |
+
block_id = 0
|
| 869 |
+
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
| 870 |
+
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
| 871 |
+
for bid, block in enumerate(self.double_stream_blocks):
|
| 872 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
| 873 |
+
cur_encoder_hidden_states = torch.cat(
|
| 874 |
+
[initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1
|
| 875 |
+
)
|
| 876 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 877 |
+
hidden_states, initial_encoder_hidden_states = self._gradient_checkpointing_func(
|
| 878 |
+
block,
|
| 879 |
+
hidden_states,
|
| 880 |
+
hidden_states_masks,
|
| 881 |
+
cur_encoder_hidden_states,
|
| 882 |
+
temb,
|
| 883 |
+
image_rotary_emb,
|
| 884 |
+
)
|
| 885 |
+
else:
|
| 886 |
+
hidden_states, initial_encoder_hidden_states = block(
|
| 887 |
+
hidden_states=hidden_states,
|
| 888 |
+
hidden_states_masks=hidden_states_masks,
|
| 889 |
+
encoder_hidden_states=cur_encoder_hidden_states,
|
| 890 |
+
temb=temb,
|
| 891 |
+
image_rotary_emb=image_rotary_emb,
|
| 892 |
+
)
|
| 893 |
+
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
| 894 |
+
block_id += 1
|
| 895 |
+
|
| 896 |
+
image_tokens_seq_len = hidden_states.shape[1]
|
| 897 |
+
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
| 898 |
+
hidden_states_seq_len = hidden_states.shape[1]
|
| 899 |
+
if hidden_states_masks is not None:
|
| 900 |
+
encoder_attention_mask_ones = torch.ones(
|
| 901 |
+
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
| 902 |
+
device=hidden_states_masks.device,
|
| 903 |
+
dtype=hidden_states_masks.dtype,
|
| 904 |
+
)
|
| 905 |
+
hidden_states_masks = torch.cat([hidden_states_masks, encoder_attention_mask_ones], dim=1)
|
| 906 |
+
|
| 907 |
+
for bid, block in enumerate(self.single_stream_blocks):
|
| 908 |
+
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
|
| 909 |
+
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
| 910 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 911 |
+
hidden_states = self._gradient_checkpointing_func(
|
| 912 |
+
block,
|
| 913 |
+
hidden_states,
|
| 914 |
+
hidden_states_masks,
|
| 915 |
+
None,
|
| 916 |
+
temb,
|
| 917 |
+
image_rotary_emb,
|
| 918 |
+
)
|
| 919 |
+
else:
|
| 920 |
+
hidden_states = block(
|
| 921 |
+
hidden_states=hidden_states,
|
| 922 |
+
hidden_states_masks=hidden_states_masks,
|
| 923 |
+
encoder_hidden_states=None,
|
| 924 |
+
temb=temb,
|
| 925 |
+
image_rotary_emb=image_rotary_emb,
|
| 926 |
+
)
|
| 927 |
+
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
| 928 |
+
block_id += 1
|
| 929 |
+
|
| 930 |
+
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
| 931 |
+
output = self.final_layer(hidden_states, temb)
|
| 932 |
+
output = self.unpatchify(output, img_sizes, self.training)
|
| 933 |
+
if hidden_states_masks is not None:
|
| 934 |
+
hidden_states_masks = hidden_states_masks[:, :image_tokens_seq_len]
|
| 935 |
+
|
| 936 |
+
if USE_PEFT_BACKEND:
|
| 937 |
+
# remove `lora_scale` from each PEFT layer
|
| 938 |
+
unscale_lora_layers(self, lora_scale)
|
| 939 |
+
|
| 940 |
+
if not return_dict:
|
| 941 |
+
return (output,)
|
| 942 |
+
return Transformer2DModelOutput(sample=output)
|