NEPALI-ASR / tasrring.py
SumitMdhr's picture
Update tasrring.py
c1a946e verified
"""TODO(squad_v1_pt): Add a description here."""
import json
import csv
import datasets
from datasets.tasks import QuestionAnsweringExtractive
# TODO(squad_v1_pt): BibTeX citation
_CITATION = """\
@article{2016arXiv160605250R,
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
Konstantin and {Liang}, Percy},
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
journal = {arXiv e-prints},
year = 2016,
eid = {arXiv:1606.05250},
pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
eprint = {1606.05250},
}
"""
# TODO(squad_v1_pt):
_DESCRIPTION = """\
NEPALI ASR
"""
_URL = "https://huggingface.co/datasets/SumitMdhr/NEPALI-ASR/resolve/main/"
_URLS = {
"audio": _URL + "audio.tar.gz",
"transcription": _URL + "c_1_trans.csv",
}
class NepaliAsr(datasets.GeneratorBasedBuilder):
def _info(self):
# TODO(squad_v1_pt): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"audio": datasets.Audio(),
"label": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://www.openslr.org/54/",
citation=_CITATION,
task_templates=[
datasets.tasks.AutomaticSpeechRecognition(
audio_column="audio", transcription_column="label"
)
],
)
def _split_generators(self, dl_manager):
path = dl_manager.download(_URLS["audio"])
audio_iters = dl_manager.iter_archive(path)
index_file = dl_manager.download(_URLS["transcription"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"transcriptions": index_file, "audios": audio_iters},
),
]
def _generate_examples(self, transcriptions, audios):
idx = 0
transcript = []
with open(transcriptions, encoding="utf-8") as f:
reader = csv.DictReader(f)
for key, row in enumerate(reader):
transcript.append(row["trans"])
for filepath, audio in audios:
yield idx, {
"audio": filepath,
"label": transcript[idx],
}
idx += 1