code
stringlengths
35
6.69k
score
float64
6.5
11.5
module tbRegFile32; reg Clock, Reset, RegWrite; reg [4:0] ReadReg1, ReadReg2, WriteRegNo; reg [31:0] WriteData; wire [31:0] ReadData1, ReadData2; RegFile_32 rgf ( ReadData1, ReadData2, Clock, Reset, RegWrite, ReadReg1, ReadReg2, WriteRegNo, WriteData ); initial begin $monitor( $time, ": Reset = %b, RegWrite = %b, ReadReg1 = %b, ReadReg2 = %b, WriteRegNo = %b, WriteData = %b, ReadData1 = %b, ReadData2 = %b.", Reset, RegWrite, ReadReg1, ReadReg2, WriteRegNo, WriteData, ReadData1, ReadData2); #0 Clock = 1'b1; ReadReg1 = 5'b00000; ReadReg2 = 5'b11111; Reset = 1'b1; #2 Reset = 1'b0; #10 Reset = 1'b1; RegWrite = 1'b1; WriteData = 32'h00000001; WriteRegNo = 5'b00000; repeat (31) begin #10 WriteData = WriteData + 32'h00000001; WriteRegNo = WriteRegNo + 5'b00001; end #10 RegWrite = 1'b0; ReadReg1 = 5'b00000; ReadReg2 = 5'b00001; repeat (15) begin #10 ReadReg1 = ReadReg1 + 5'b00010; ReadReg2 = ReadReg2 + 5'b00010; end #10 $finish; end always #5 Clock = ~Clock; endmodule
6.672416
module fpga_gf2m #( parameter DIGITAL = 32, parameter DATA_WIDTH = 163 ) ( input clk, // Clock input rst, // Asynchronous reset active low input wire start, input wire [DATA_WIDTH - 1 : 0] a, input wire [DATA_WIDTH - 1 : 0] g, input wire [BWIDTH - 1:0] b, output reg [DATA_WIDTH - 1 : 0] t_i_j, output reg done ); parameter ITERATION_NUMBER = DATA_WIDTH / DIGITAL; parameter BWIDTH = (ITERATION_NUMBER + 1) * DIGITAL; parameter IDLE = 2'b00; parameter CAL = 2'b01; parameter DONE = 2'b10; reg state; reg [12:0] counter; reg [DATA_WIDTH - 1 : 0] reg_a; reg [DATA_WIDTH - 1 : 0] reg_g; reg [BWIDTH - 1:0] reg_b; wire [DIGITAL - 1:0] b_in; wire [DATA_WIDTH - 1 : 0] out_t_i_j; wire wire_done; gf2m #( .DATA_WIDTH(DATA_WIDTH), .DIGITAL(DIGITAL) ) fpgainst ( .rst(rst), .clk(clk), .start(start), .a(reg_a), .g(reg_g), .b(b_in), .t_i_j(out_t_i_j), .done(wire_done) ); // done always @(posedge clk or negedge rst) begin : proc_done if (~rst) begin done <= 0; end else begin case (wire_done) 1'b0: done <= done; 1'b1: done <= 1'b1; default: done <= done; endcase end end always @(posedge clk or negedge rst) begin : proc_t_i_j if (~rst) begin t_i_j <= 0; end else begin case (wire_done) 1'b0: t_i_j <= t_i_j; 1'b1: t_i_j <= out_t_i_j; default: t_i_j <= t_i_j; endcase end end // counter always @(posedge clk or negedge rst) begin : proc_counter if (~rst) begin counter <= 0; end else begin case (state) IDLE: begin counter <= 12'd0; end CAL: begin if (counter < ITERATION_NUMBER) counter <= counter + 1; else counter <= 12'd0; end default: counter <= 12'd0; endcase end end // reg_b_in assign b_in = reg_b[(ITERATION_NUMBER+1)*DIGITAL-1 : (ITERATION_NUMBER)*DIGITAL]; // reg_a always @(posedge clk or negedge rst) begin : reg_a34 if (~rst) begin reg_a <= 0; end else begin case (state) IDLE: begin if (start) reg_a <= a; else reg_a <= 0; end default: reg_a <= reg_a; endcase end end // reg_b always @(posedge clk or negedge rst) begin : reg_b24 if (~rst) begin reg_b <= 0; end else begin case (state) IDLE: begin if (start) reg_b <= b; else reg_b <= 0; end CAL: begin reg_b = reg_b <<< DIGITAL; end default: reg_b <= reg_b; endcase end end // reg_g always @(posedge clk or negedge rst) begin : proc_reg_g32 if (~rst) begin reg_g <= 0; end else begin case (state) IDLE: begin if (start) reg_g <= g; else reg_g <= 0; end default: reg_g <= reg_g; endcase end end always @(posedge clk or negedge rst) begin : proc_state_machine if (~rst) begin state <= IDLE; end else begin case (state) IDLE: begin if (start) begin state <= CAL; end else begin state <= state; end end CAL: begin if (counter < ITERATION_NUMBER) state <= CAL; else state <= DONE; end DONE: begin state <= DONE; end default: state <= IDLE; endcase end end endmodule
6.91314
module processing_element ( reset, clk, in_a, in_b, out_a, out_b, out_c ); input reset; input clk; input [`DWIDTH-1:0] in_a; input [`DWIDTH-1:0] in_b; output [`DWIDTH-1:0] out_a; output [`DWIDTH-1:0] out_b; output [`DWIDTH-1:0] out_c; //reduced precision reg [`DWIDTH-1:0] out_a; reg [`DWIDTH-1:0] out_b; wire [`DWIDTH-1:0] out_c; wire [`DWIDTH-1:0] out_mac; assign out_c = out_mac; seq_mac u_mac ( .a(in_a), .b(in_b), .out(out_mac), .reset(reset), .clk(clk) ); always @(posedge clk) begin if (reset) begin out_a <= 0; out_b <= 0; end else begin out_a <= in_a; out_b <= in_b; end end endmodule
6.504296
module processing_element ( reset, clk, in_a, in_b, out_a, out_b, out_c ); input reset; input clk; input [`DWIDTH-1:0] in_a; input [`DWIDTH-1:0] in_b; output [`DWIDTH-1:0] out_a; output [`DWIDTH-1:0] out_b; output [`DWIDTH-1:0] out_c; //reduced precision reg [`DWIDTH-1:0] out_a; reg [`DWIDTH-1:0] out_b; wire [`DWIDTH-1:0] out_c; wire [`DWIDTH-1:0] out_mac; assign out_c = out_mac; seq_mac u_mac ( .a(in_a), .b(in_b), .out(out_mac), .reset(reset), .clk(clk) ); always @(posedge clk) begin if (reset) begin out_a <= 0; out_b <= 0; end else begin out_a <= in_a; out_b <= in_b; end end endmodule
6.504296
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = ((~opcode) == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = ('0 == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = ('1 == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == (~'b0101001)); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == '0); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == '1); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module encoder_32_5 ( output reg [4:0] S, input wire [31:0] i, input wire [15:0] RegIn, input wire inport1Enable, input wire clk ); reg [31:0] comboSig; always @(clk) begin comboSig[15:0] <= RegIn; comboSig[25:16] <= i[25:16]; comboSig[26] <= inport1Enable; comboSig[31:27] <= 0; case (comboSig) 32'h01: S <= 5'b00000; 32'h02: S <= 5'b00001; 32'h04: S <= 5'b00010; 32'h08: S <= 5'b00011; 32'h10: S <= 5'b00100; 32'h20: S <= 5'b00101; 32'h40: S <= 5'b00110; 32'h80: S <= 5'b00111; 32'h100: S <= 5'b01000; 32'h200: S <= 5'b01001; 32'h400: S <= 5'b01010; 32'h800: S <= 5'b01011; 32'h1000: S <= 5'b01100; 32'h2000: S <= 5'b01101; 32'h4000: S <= 5'b01110; 32'h8000: S <= 5'b01111; 32'h10000: S <= 5'b10000; 32'h20000: S <= 5'b10001; 32'h40000: S <= 5'b10010; 32'h80000: S <= 5'b10011; 32'h100000: S <= 5'b10100; 32'h200000: S <= 5'b10101; 32'h400000: S <= 5'b10110; 32'h800000: S <= 5'b10111; 32'h2000000: S <= 5'b11001; 32'h4000000: S <= 5'b11010; default: begin end endcase end endmodule
7.61766
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode != 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module adder32 ( result, a, b ); input [31:0] a; input [31:0] b; output [31:0] result; wire [32:0] sum = {1'b0, a} + {1'b0, b}; assign result = sum[32] ? sum[32:1] : sum[31:0]; endmodule
8.194085
module top_module ( input clk, input resetn, // active-low synchronous reset input [3:1] r, // request output [3:1] g // grant ); parameter A = 0, B = 1, C = 2, D = 3; reg [1:0] cstate, nstate; always @(posedge clk) begin if (!resetn) begin cstate <= A; end else begin cstate <= nstate; end end always @(*) begin case (cstate) A: begin casex (r) 3'bxx1: nstate = B; 3'bx10: nstate = C; 3'b100: nstate = D; default: nstate = A; endcase end B: nstate = r[1] ? B : A; C: nstate = r[2] ? C : A; D: nstate = r[3] ? D : A; endcase end assign g = {cstate == D, cstate == C, cstate == B}; endmodule
7.203305
module test_seq_tb (); reg clk; reg rst_n; wire din; wire dout; reg [23:0] data; assign din = data[23]; initial begin clk = 0; rst_n = 1; #10 rst_n = 0; #10 rst_n = 1; data = 24'b1010_0101_1001_0101_0100_1001; end always #2 clk = ~clk; always @(posedge clk) begin data = {data[22:0], data[23]}; end test_seq dut ( .clk (clk), .rst_n(rst_n), .din (din), .dout (dout) ); endmodule
7.106176
module top_module ( input [2:0] sel, input [3:0] data0, input [3:0] data1, input [3:0] data2, input [3:0] data3, input [3:0] data4, input [3:0] data5, output reg [3:0] out ); // always @(*) begin // This is a combinational circuit case (sel) 3'b000: out = data0; 3'b001: out = data1; 3'b010: out = data2; 3'b011: out = data3; 3'b100: out = data4; 3'b101: out = data5; default: out = 0; endcase end endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (~(opcode == 'b011110100)); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = '0; wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = '1; wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input clk, input resetn, // active-low synchronous reset input x, input y, output f, output g ); parameter IDLE = 0, F0 = 1, F1 = 2; parameter X0 = 3, X1 = 4, X2 = 5; parameter Y0 = 6, Y1 = 7; parameter Y00 = 8, Y01 = 9; reg [3:0] cstate, nstate; always @(posedge clk) begin if (!resetn) begin cstate <= IDLE; end else begin cstate <= nstate; end end always @(*) begin case (cstate) IDLE: nstate = F0; F0: nstate = F1; F1: nstate = x ? X0 : F1; X0: nstate = x ? X0 : X1; X1: nstate = x ? X2 : F1; X2: nstate = y ? Y1 : Y0; Y1: nstate = Y1; Y0: nstate = y ? Y01 : Y00; Y01: nstate = Y01; Y00: nstate = Y00; endcase end assign f = (cstate == F0); assign g = (cstate == X2 || cstate == Y1 || cstate == Y0 || cstate == Y01); endmodule
7.203305
module test_mod3 ( clk, rst_n, din, dout ); input clk; input rst_n; input din; output reg dout; reg [1:0] state, next_state; parameter idle = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11; always @(posedge clk or negedge rst_n) begin if (!rst_n) state <= idle; else state <= next_state; end always @(state, din) begin case (state) idle: begin if (din == 1'b0) next_state <= idle; else next_state <= s1; end s1: begin if (din == 1'b0) next_state <= s1; else next_state <= s2; end s2: begin if (din == 1'b0) next_state <= s2; else next_state <= s3; end s3: begin if (din == 1'b0) next_state <= idle; else next_state <= s1; end default: next_state <= idle; endcase end always @(posedge clk or negedge rst_n) begin if (!rst_n) dout <= 1'b0; else case (next_state) s3: dout <= 1'b1; default: dout <= 1'b0; endcase end endmodule
6.709397
module top_module ( input [3:0] in, output reg [1:0] pos ); always @(*) begin case (in) 4'b0000: pos = 2'b00; 4'b0001: pos = 2'b00; 4'b0010: pos = 2'b01; 4'b0011: pos = 2'b00; 4'b0100: pos = 2'b10; 4'b0101: pos = 2'b00; 4'b0110: pos = 2'b01; 4'b0111: pos = 2'b00; 4'b1000: pos = 2'b11; 4'b1001: pos = 2'b00; 4'b1010: pos = 2'b01; 4'b1011: pos = 2'b00; 4'b1100: pos = 2'b10; 4'b1101: pos = 2'b00; 4'b1110: pos = 2'b01; 4'b1111: pos = 2'b00; endcase end endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = ((~opcode) == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = ('0 == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = ('1 == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == (~'b011110100)); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == '0); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == '1); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode != 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module test_level_pluse ( clk, rst_n, din, dout ); input clk; input rst_n; input din; output dout; reg d1, d2; always @(posedge clk or negedge rst_n) begin if (!rst_n) begin d1 <= 1'b0; d2 <= 1'b0; end else begin d1 <= din; d2 <= d1; end end assign dout = d1 && (~d2); endmodule
6.881229
module test_level_pluse_tb (); reg clk; reg rst_n; reg din; wire dout; initial begin clk = 0; rst_n = 1; din = 0; #10 rst_n = 0; #10 rst_n = 1; #20 din = 0; #20 din = 1; #20 din = 0; #20 din = 1; #20 $stop; end always #2 clk <= ~clk; test_level_pluse dut ( .clk (clk), .rst_n(rst_n), .din (din), .dout (dout) ); endmodule
6.881229
module top_module ( input [7:0] in, output reg [2:0] pos ); always @(*) begin casez (in) 8'bzzzzzzz1: pos = 0; 8'bzzzzzz1z: pos = 1; 8'bzzzzz1zz: pos = 2; 8'bzzzz1zzz: pos = 3; 8'bzzz1zzzz: pos = 4; 8'bzz1zzzzz: pos = 5; 8'bz1zzzzzz: pos = 6; 8'b1zzzzzzz: pos = 7; default: pos = 0; endcase end endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (~(add || sub)); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = '0; wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = '1; wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module top_module ( input [15:0] scancode, output reg left, output reg down, output reg right, output reg up ); always @(*) begin left = 0; down = 0; right = 0; up = 0; case (scancode) 16'he06b: left = 1; 16'he072: down = 1; 16'he074: right = 1; 16'he075: up = 1; endcase end endmodule
7.203305
module Bit36Adder ( a, b, cin, sum, cout ); input [36:1] a, b; input cin; output [36:1] sum; output cout; wire w1, w2; Bit16Adder B16A_0 ( a[16:1], b[16:1], cin, sum[16:1], w1 ); Bit16Adder B16A_1 ( a[32:17], b[32:17], w1, sum[32:17], w2 ); Bit4Adder B4A_2 ( a[36:33], b[36:33], w2, sum[36:33], cout ); endmodule
6.866082
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = ((!add) || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = ('0 || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = ('1 || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || (!sub)); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || '0); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || '1); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add && sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module test_div3 ( clkin, rst_n, clkout ); input clkin; input rst_n; output clkout; reg [1:0] count1, count2; reg pos, neg; always @(posedge clkin or negedge rst_n) begin if (!rst_n) begin count1 <= 2'd0; pos <= 1'b0; end else begin case (count1) 2'd0: begin pos <= 1'b1; count1 <= count1 + 1'b1; end 2'd1: begin pos <= 1'b0; count1 <= count1 + 1'b1; end 2'd2: begin pos <= 1'b0; count1 <= 2'd0; end default: begin pos <= 1'b0; count1 <= 2'd0; end endcase end end always @(negedge clkin or negedge rst_n) begin if (!rst_n) begin count2 <= 2'd0; neg <= 1'b0; end else begin case (count2) 2'd0: begin neg <= 1'b1; count2 <= count2 + 1'b1; end 2'd1: begin neg <= 1'b0; count2 <= count2 + 1'b1; end 2'd2: begin neg <= 1'b0; count2 <= 2'd0; end default: begin neg <= 1'b0; count2 <= 2'd0; end endcase end end assign clkout = pos | neg; endmodule
6.747281
module top_module ( input [7:0] a, b, c, d, output [7:0] min ); // wire [7:0] min_temp1; wire [7:0] min_temp2; // assign intermediate_result1 = compare? true: false; assign min_temp1 = (a <= b) ? a : b; assign min_temp2 = (c <= d) ? c : d; assign min = (min_temp1 <= min_temp2) ? min_temp1 : min_temp2; endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (~(opcode == 'b01110101)); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = '0; wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = '1; wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module test_div3_v2 ( clkin, rst_n, clkout ); input clkin; input rst_n; output clkout; reg pos, neg; reg [1:0] cnt1, cnt2; always @(posedge clkin or negedge rst_n) begin if (!rst_n) cnt1 <= 2'd0; else begin if (cnt1 < 2'd2) cnt1 <= cnt1 + 1'b1; else cnt1 <= 2'd0; end end always @(posedge clkin or negedge rst_n) begin if (!rst_n) begin pos <= 1'b0; end else begin case (cnt1) 2'd0: pos <= 1'b1; 2'd1: pos <= 1'd0; 2'd2: pos <= 1'd0; default: pos <= 1'b0; endcase end end always @(negedge clkin or negedge rst_n) begin if (!rst_n) cnt2 <= 2'd0; else begin if (cnt2 < 2'd2) cnt2 <= cnt2 + 1'b1; else cnt2 <= 2'd0; end end always @(negedge clkin or negedge rst_n) begin if (!rst_n) begin neg <= 1'b0; end else begin case (cnt2) 2'd0: neg <= 1'b1; 2'd1: neg <= 1'd0; 2'd2: neg <= 1'd0; default: neg <= 1'b0; endcase end end assign clkout = pos || neg; endmodule
7.144119
module test_div3_v2_tb (); reg clkin; reg rst_n; wire clkout; initial begin clkin = 0; rst_n = 1; #10 rst_n = 0; #10 rst_n = 1; end always #2 clkin <= ~clkin; test_div3_v2 dut ( .clkin (clkin), .rst_n (rst_n), .clkout(clkout) ); endmodule
6.511095
module top_module ( input [7:0] in, output parity ); assign parity = ^in; endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = ((~opcode) == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = ('0 == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = ('1 == 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == (~'b01110101)); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == '0); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == '1); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode != 'b01110101); wire [4:0] RD = IR[10:8]; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module test_div5 ( clkin, rst_n, clkout ); input clkin; input rst_n; output clkout; reg pos, neg; reg [2:0] cnt1, cnt2; always @(posedge clkin or negedge rst_n) begin if (!rst_n) cnt1 <= 3'd0; else begin if (cnt1 < 3'd4) cnt1 <= cnt1 + 1'b1; else cnt1 <= 3'd0; end end always @(posedge clkin or negedge rst_n) begin if (!rst_n) pos <= 1'b0; else begin case (cnt1) 3'd0: pos <= 1'b1; 3'd1: pos <= 1'b1; default: pos <= 1'b0; endcase end end always @(negedge clkin or negedge rst_n) begin if (!rst_n) cnt2 <= 3'd0; else begin if (cnt2 < 3'd4) cnt2 <= cnt2 + 1'b1; else cnt2 <= 3'd0; end end always @(negedge clkin or negedge rst_n) begin if (!rst_n) neg <= 1'b0; else begin case (cnt2) 3'd0: neg <= 1'b1; 3'd1: neg <= 1'b1; default: neg <= 1'b0; endcase end end assign clkout = pos | neg; endmodule
7.459377
module test_div5_tb (); reg clkin; reg rst_n; wire clkout; initial begin clkin = 0; rst_n = 1; #10 rst_n = 0; #10 rst_n = 1; end always #2 clkin <= ~clkin; test_div5 dut ( .clkin (clkin), .rst_n (rst_n), .clkout(clkout) ); endmodule
6.959045
module top_module ( input [99:0] in, output out_and, output out_or, output out_xor ); assign out_and = &in; assign out_or = |in; assign out_xor = ^in; endmodule
7.203305
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = (~IR[10:8]); wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = '0; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module y86_seq ( input clk, input rst, output [31:0] bus_A, input [31:0] bus_in, output [31:0] bus_out, output bus_WE, bus_RE, output [7:0] current_opcode ); reg [5:1] full; wire [4:0] ue = {full[4:1], full[5]}; always @(posedge clk) begin if (rst) full <= 'b010000; else full <= {ue[4], ue[3], ue[2], ue[1], ue[0]}; end reg [31:0] IR; always @(posedge clk) if (ue[0]) IR <= bus_in; reg [31:0] IP, A, B; wire [31:0] Aop, Bop; wire [7:0] opcode = IR[7:0]; wire [1:0] mod = IR[15:14]; reg ZF; wire load = ((opcode == 'b010001011) && (mod == 1)); wire move = ((opcode == 'b010001001) && (mod == 3)); wire store = ((opcode == 'b010001001) && (mod == 1)); wire memory = (load || store); wire add = (opcode == 'b01); wire sub = (opcode == 'b0101001); wire halt = (opcode == 'b011110100); wire aluop = (add || sub); wire jnez = (opcode == 'b01110101); wire [4:0] RD = '1; wire [4:0] RS = IR[13:11]; wire [4:0] Aad = (memory ? 6 : RD), Bad = RS; wire [31:0] distance = {{24{IR[15]}}, IR[15:8]}; wire [31:0] displacement = {{24{IR[23]}}, IR[23:16]}; wire btaken = (jnez && (!ZF)); wire [1:0] length = (memory ? 3 : (((aluop || move) || jnez) ? 2 : 1)); always @(posedge clk) if (rst) IP <= 0; else if (ue[1]) begin A <= Aop; B <= Bop; if ((!halt)) begin IP <= ((IP + length) + (btaken ? distance : 0)); end else begin $finish; end end reg [31:0] MAR, MDRw, C; wire [31:0] ALU_op2 = (memory ? displacement : (sub ? (~B) : B)); wire [31:0] ALUout = ((A + ALU_op2) + sub); always @(posedge clk) if (rst) ZF = 0; else if (ue[2]) begin MAR <= ALUout; C <= (move ? B : ALUout); MDRw <= B; if (aluop) ZF <= (ALUout == 0); end reg [31:0] MDRr; always @(posedge clk) if ((ue[3] && load)) MDRr <= bus_in; assign bus_A = (ue[3] ? MAR : (ue[0] ? IP : 0)); assign bus_RE = (ue[0] || (ue[3] && load)); reg [31:0] R[7:0]; assign Aop = R[Aad]; assign Bop = R[Bad]; assign bus_WE = (ue[3] && store); assign bus_out = MDRw; always @(posedge clk) if (rst) begin R[0] <= 0; R[1] <= 0; R[2] <= 0; R[3] <= 0; R[4] <= 0; R[5] <= 0; R[6] <= 0; R[7] <= 0; end else if (ue[4]) if (((aluop || move) || load)) if (load) R[RS] <= MDRr; else R[RD] <= C; assign current_opcode = opcode; endmodule
6.868788
module fulladder ( a, b, c, sum, carry ); input a, b, c; output sum, carry; assign sum = a ^ b ^ c; assign carry = (a & b) | (b & c) | (c & a); endmodule
7.454465
module test; wire sum, carry; reg a, b, c; fulladder f1 ( a, b, c, sum, carry ); initial begin $dumpfile("3a_full_adder.vcd"); $dumpvars(0, test); #5 begin a = 0; b = 0; c = 0; end #5 begin a = 0; b = 0; c = 1; end #5 begin a = 0; b = 1; c = 0; end #5 begin a = 0; b = 1; c = 1; end #5 begin a = 1; b = 0; c = 0; end #5 begin a = 1; b = 0; c = 1; end #5 begin a = 1; b = 1; c = 0; end #5 begin a = 1; b = 1; c = 1; end #5 $finish; end always @(a or b or c) $strobe( "At time = (%0t),a = (%b),b = (%b),c = (%b),sum = (%b),carry = (%b)", $time, a, b, c, sum, carry ); endmodule
6.964054
module top_module ( input [2:0] a, b, input cin, output [2:0] cout, output [2:0] sum ); FA FA1 ( a[0], b[0], cin, cout[0], sum[0] ); FA FA2 ( a[1], b[1], cout[0], cout[1], sum[1] ); FA FA3 ( a[2], b[2], cout[1], cout[2], sum[2] ); endmodule
7.203305
module FA ( input a, b, cin, output cout, sum ); wire w1, w2, w3, w4; xor (w1, a, b); xor (sum, cin, w1); and (w2, a, b); and (w3, b, cin); and (w4, a, cin); or (cout, w2, w3, w4); endmodule
8.362615
module fulladder ( A, B, Cin, S, Cout ); input A, B, Cin; output S; output Cout; assign S = A ^ B ^ Cin; assign Cout = A & B + Cin & (A ^ B); endmodule
7.454465
module adder_3bits ( input [2:0] a, b, input cin, output [2:0] sum, output co ); wire w1, w2, w3; full_adder x ( .a (a[0]), .b (b[0]), .ci(cin), .s (sum[0]), .co(w1) ); full_adder y ( .a (a[1]), .b (b[1]), .ci(w1), .s (sum[1]), .co(w2) ); full_adder z ( .a (a[2]), .b (b[2]), .ci(w2), .s (sum[2]), .co(co) ); // XOR second to last and last carry out for overflow flag (1 if overflow) // Need another output for overflow flag endmodule
7.015374
module top_module ( input [2:0] SW, // R input [1:0] KEY, // L and clk output [2:0] LEDR ); // Q reg [2:0] d; assign d = { KEY[1] ? SW[2] : LEDR[1] ^ LEDR[2], KEY[1] ? SW[1] : LEDR[0], KEY[1] ? SW[0] : LEDR[2] }; always @(posedge KEY[0]) LEDR <= d; endmodule
7.203305
module S3MUX ( flush, stall, x, y ); input flush, stall; input [2:0] x; output [2:0] y; assign y = ((flush || stall) == 1) ? 0 : x; endmodule
7.124145
module three_b_bc_tb; wire y_out; reg x_in, clock, reset; three_b_bc dut (.*); initial #200 $finish; initial begin reset = 0; clock = 0; #5 reset = 1; repeat (32) #5 clock = ~clock; end initial begin x_in = 0; #15 x_in = 1; repeat (16) #10 x_in = ~x_in; end endmodule
6.776646
module fullsubtractor ( x, y, z, d, b ); input x, y, z; output d, b; assign d = x ^ y ^ z; assign b = ~x & z | ~x & y | y & z; endmodule
6.741456
module //// //// //// //// Author: Rudolf Usselmann //// //// rudi@asics.ws //// //// //// ///////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2002 Rudolf Usselmann //// //// rudi@asics.ws //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer.//// //// //// //// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY //// //// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED //// //// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS //// //// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR //// //// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, //// //// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES //// //// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE //// //// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR //// //// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF //// //// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT //// //// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT //// //// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE //// //// POSSIBILITY OF SUCH DAMAGE. //// //// //// ///////////////////////////////////////////////////////////////////// module des3(desOut, desIn, key1, key2, key3, decrypt, clk); output [63:0] desOut; input [63:0] desIn; input [55:0] key1; input [55:0] key2; input [55:0] key3; input decrypt; input clk; wire [55:0] key_a; wire [55:0] key_b; wire [55:0] key_c; wire [63:0] stage1_out, stage2_out; reg [55:0] key_b_r [16:0]; reg [55:0] key_c_r [33:0]; integer i; assign key_a = decrypt ? key3 : key1; assign key_b = key2; assign key_c = decrypt ? key1 : key3; always @(posedge clk) key_b_r[0] <= #1 key_b; always @(posedge clk) for(i=0;i<16;i=i+1) key_b_r[i+1] <= #1 key_b_r[i]; always @(posedge clk) key_c_r[0] <= #1 key_c; always @(posedge clk) for(i=0;i<33;i=i+1) key_c_r[i+1] <= #1 key_c_r[i]; des u0( .desOut(stage1_out), .desIn(desIn), .key(key_a), .decrypt(decrypt), .clk(clk) ); des u1( .desOut(stage2_out), .desIn(stage1_out), .key(key_b_r[16]), .decrypt(!decrypt), .clk(clk) ); des u2( .desOut(desOut), .desIn(stage2_out), .key(key_c_r[33]), .decrypt(decrypt), .clk(clk) ); endmodule
8.238592
module top_module ( input clk, input enable, input S, input A, B, C, output Z ); reg [7:0] q; wire [2:0] n; assign n = {A, B, C}; always @(posedge clk) begin if (enable) q <= {q[6:0], S}; else q <= q; end assign Z = q[n]; endmodule
7.203305
module MAC3 ( //numbers input wire [7:0] W1, input wire [7:0] I1, input wire [7:0] W2, input wire [7:0] I2, input wire [7:0] W3, input wire [7:0] I3, output reg [7:0] OUTPUT, //control input wire CLK, input wire EN, input wire RST ); wire mul1out; wire mul2out; wire mul3out; wire sum1out; wire sum2out; wire sum3out; MUL mul1 ( W1, I1, mul1out ); MUL mul2 ( W2, I2, mul2out ); MUL mul3 ( W3, I3, mul3out ); SUM sum1 ( mul2out, mul1out, sum1out ); SUM sum2 ( mul3out, OUTPUT, sum2out ); SUm sum3 ( sum1out, sum2out, sum3out ); always @(posedge CLK) begin if (RST) begin OUTPUT <= 0; end else if (EN) begin OUTPUT <= sum3out; end end endmodule
8.045542
module baudgen ( input wire clk, output wire ser_clk ); localparam lim = (`CLKFREQ / `BAUD) - 1; localparam w = $clog2(lim); wire [w-1:0] limit = lim; reg [w-1:0] counter; assign ser_clk = (counter == limit); always @(posedge clk) counter <= ser_clk ? 0 : (counter + 1); endmodule
7.298257
module baudgen2 ( input wire clk, input wire restart, output wire ser_clk ); localparam lim = (`CLKFREQ / (2 * `BAUD)) - 1; localparam w = $clog2(lim); wire [w-1:0] limit = lim; reg [w-1:0] counter; assign ser_clk = (counter == limit); always @(posedge clk) if (restart) counter <= 0; else counter <= ser_clk ? 0 : (counter + 1); endmodule
7.26565
module uart ( input wire clk, input wire resetq, output wire uart_busy, // High means UART is transmitting output reg uart_tx, // UART transmit wire input wire uart_wr_i, // Raise to transmit byte input wire [7:0] uart_dat_i ); reg [3:0] bitcount; // 0 means idle, so this is a 1-based counter reg [8:0] shifter; assign uart_busy = |bitcount; wire sending = |bitcount; wire ser_clk; baudgen _baudgen ( .clk(clk), .ser_clk(ser_clk) ); always @(negedge resetq or posedge clk) begin if (!resetq) begin uart_tx <= 1; bitcount <= 0; shifter <= 0; end else begin if (uart_wr_i) begin {shifter, uart_tx} <= {uart_dat_i[7:0], 1'b0, 1'b1}; bitcount <= 1 + 8 + 1; // 1 start, 8 data, 1 stop end else if (ser_clk & sending) begin {shifter, uart_tx} <= {1'b1, shifter}; bitcount <= bitcount - 4'd1; end end end endmodule
7.01014
module rxuart ( input wire clk, input wire resetq, input wire uart_rx, // UART recv wire input wire rd, // read strobe output wire valid, // has data output wire [7:0] data ); // data reg [4:0] bitcount; reg [7:0] shifter; // bitcount == 11111: idle // 0-17: sampling incoming bits // 18: character received // On starting edge, wait 3 half-bits then sample, and sample every 2 bits thereafter wire idle = &bitcount; assign valid = (bitcount == 18); wire sample; reg [2:0] hh = 3'b111; wire [2:0] hhN = {hh[1:0], uart_rx}; wire startbit = idle & (hhN[2:1] == 2'b10); wire [7:0] shifterN = sample ? {hh[1], shifter[7:1]} : shifter; wire ser_clk; baudgen2 _baudgen ( .clk(clk), .restart(startbit), .ser_clk(ser_clk) ); reg [4:0] bitcountN; always @* if (startbit) bitcountN = 0; else if (!idle & !valid & ser_clk) bitcountN = bitcount + 5'd1; else if (valid & rd) bitcountN = 5'b11111; else bitcountN = bitcount; // 3,5,7,9,11,13,15,17 assign sample = (|bitcount[4:1]) & bitcount[0] & ser_clk; assign data = shifter; always @(negedge resetq or posedge clk) begin if (!resetq) begin hh <= 3'b111; bitcount <= 5'b11111; shifter <= 0; end else begin hh <= hhN; bitcount <= bitcountN; shifter <= shifterN; end end endmodule
6.632783
module buart ( input wire clk, input wire resetq, input wire rx, // recv wire output wire tx, // xmit wire input wire rd, // read strobe input wire wr, // write strobe output wire valid, // has recv data output wire busy, // is transmitting input wire [7:0] tx_data, output wire [7:0] rx_data // data ); rxuart _rx ( .clk(clk), .resetq(resetq), .uart_rx(rx), .rd(rd), .valid(valid), .data(rx_data) ); uart _tx ( .clk(clk), .resetq(resetq), .uart_busy(busy), .uart_tx(tx), .uart_wr_i(wr), .uart_dat_i(tx_data) ); endmodule
8.065655
module outpin ( input clk, output pin, input we, input wd, output rd ); SB_IO #( .PIN_TYPE(6'b0101_01) ) _io ( .PACKAGE_PIN(pin), .CLOCK_ENABLE(we), .OUTPUT_CLK(clk), .D_OUT_0(wd), .D_IN_0(rd) ); endmodule
7.044247
module third_register ( input [31:0] WriteDataE, input [31:0] ALUResult, input [31:0] PCPlus4E, input [ 4:0] RdE, input clk, input rst, input RegWriteE, input MemWriteE, input [ 1:0] ResultSrcE, output reg [31:0] ALUResultM, output reg [31:0] WriteDataM, output reg [31:0] PCPlus4M, output reg [ 4:0] RdM, output reg RegWriteM, output reg MemWriteM, output reg [ 1:0] ResultSrcM ); always @(posedge clk) begin if (rst) begin RegWriteM <= 0; MemWriteM <= 0; ResultSrcM <= 2'b00; ALUResultM <= 32'd0; WriteDataM <= 32'd0; RdM <= 5'd0; PCPlus4M <= 32'd0; end else begin RegWriteM <= RegWriteE; MemWriteM <= MemWriteE; ResultSrcM <= ResultSrcE; ALUResultM <= ALUResult; WriteDataM <= WriteDataE; RdM <= RdE; PCPlus4M <= PCPlus4E; end end endmodule
7.344693
module pipe_3stage ( out, in, clk ); input in, clk; output reg out; reg pipe1, pipe2, pipe3, pipe4; always @(posedge clk) begin pipe1 <= in; pipe2 <= pipe1; pipe3 <= pipe2; pipe4 <= pipe3; out <= pipe4; end endmodule
6.580929
module pipe_3stage_address ( out, in, clk ); input [7:0] in; input clk; output reg [7:0] out; reg [7:0] pipe1, pipe2, pipe3, pipe4; always @(posedge clk) begin pipe1 <= in; pipe2 <= pipe1; pipe3 <= pipe2; pipe4 <= pipe3; out <= pipe4; end endmodule
7.1017
module pipe_3stage_data ( out, in, clk ); input [29:0] in; input clk; output reg [29:0] out; reg [29:0] pipe1, pipe2, pipe3; always @(posedge clk) begin pipe1 <= in; //pipe2<=pipe1; //pipe3<=pipe2; out <= pipe1; end endmodule
6.781458
module testbench; wire [63:0] producto; wire [31:0] a, b, c; tester test ( clk, reset, a, b, c, ack, Done_Flag, producto, valid_data ); multiplicador3 imul ( producto, Done_Flag, a, b, c, clk, reset, valid_data, ack ); endmodule
7.015571
module simon_parallel ( clk, data_ina, data_inb, data_inc, data_rdy, cipher_outa, cipher_outb, cipher_outc, Trig, Done ); input clk, data_ina, data_inb, data_inc; input [1:0] data_rdy; output cipher_outa, cipher_outb, cipher_outc; output reg Trig, Done; wire keya, keyb, keyc; wire [`BIT_COUNTER-1:0] bit_counter; wire round_counter_out; wire [`ROUND_COUNTER-1:0] round_counter; wire s2; wire [1:0] s1, s3; wire shifter_enable1, shifter_enable2; wire lut_ff_enable, fifo_ff_enable; always @(posedge clk) begin if (round_counter == 0 && bit_counter == 1) //So it means first 4 rounds Trig = 1; else Trig = 0; if (data_rdy == 3 && round_counter == 67 && bit_counter == 62) Done = 1; else Done = 0; end datapath_simon_parallel DATAPATH ( .clk(clk), .data_ina(data_ina), .data_inb(data_inb), .data_inc(data_inc), .data_rdy(data_rdy), .key_ina(keya), .key_inb(keyb), .key_inc(keyc), .cipher_outa(cipher_outa), .cipher_outb(cipher_outb), .cipher_outc(cipher_outc), .round_counter(round_counter_out), .round_num(round_counter), .bit_counter(bit_counter) ); key_schedule_modified1_simon_parallel KEY_SCH_1 ( .clk(clk), .data_in(data_ina), .data_rdy(data_rdy), .key_out(keya), .bit_counter(bit_counter), .round_counter_out(round_counter_out), .round_counter(round_counter), .s2(s2), .s1(s1), .s3(s3), .shifter_enable1(shifter_enable1), .shifter_enable2(shifter_enable2), .lut_ff_enable(lut_ff_enable), .fifo_ff_enable(fifo_ff_enable) ); key_schedule_modified2_simon_parallel KEY_SCH_2 ( .clk(clk), .data_in(data_inb), .key_out(keyb), .bit_counter(bit_counter), .s2(s2), .s1(s1), .s3(s3), .shifter_enable1(shifter_enable1), .shifter_enable2(shifter_enable2), .lut_ff_enable(lut_ff_enable), .fifo_ff_enable(fifo_ff_enable) ); key_schedule_modified3_simon_parallel KEY_SCH_3 ( .clk(clk), .data_in(data_inc), .key_out(keyc), .s2(s2), .s1(s1), .s3(s3), .shifter_enable1(shifter_enable1), .shifter_enable2(shifter_enable2), .lut_ff_enable(lut_ff_enable), .fifo_ff_enable(fifo_ff_enable) ); endmodule
7.587745
module sasebo_simon ( Din, Dout, Drdy, Dvld, EN, BSY, CLK, RSTn, Trig ); //------------------------------------------------ input [(128*6)-1:0] Din; // Data input output [127:0] Dout; // Data output input Drdy; // Data input ready output Dvld; // Data output valid input EN; // circuit enable output BSY; // Busy signal input CLK; // System clock input RSTn; // Reset (Low active) output Trig; // Based on The number of desired rounds can be adjusted //------------------------------------------------ reg [(128*6)-1:0] dat; wire [ 127:0] dat_next; reg [ 68:0] rnd; reg sel; // Indicate final round reg Dvld; //, BSY; wire rst; wire BSY; //for simon reg data_rdy; reg [ 127:0] count; reg [ 1:0] state; reg [255:0] share_a, share_b, share_c; wire [127:0] res; wire Done; reg [127:0] Ser_2_Par; //------------------------------------------------ assign rst = ~RSTn; always @(posedge CLK or posedge rst) begin if (rst) Dvld <= 0; else if (EN) Dvld <= Done; end always @(posedge CLK or posedge rst) begin if (rst) begin dat <= {256{1'h0}}; share_a <= {256{1'h0}}; share_b <= {256{1'h0}}; share_c <= {256{1'h0}}; end else if (EN) begin if (Drdy) begin // dat <= Din; share_a <= Din[767:512]; share_b <= Din[511:256]; share_c <= Din[255:0]; end else begin share_a <= {1'd0, share_a[255:1]}; share_b <= {1'd0, share_b[255:1]}; share_c <= {1'd0, share_c[255:1]}; end end end assign Dout = Ser_2_Par; //dat; assign BSY = (&state); always @(posedge CLK or posedge rst) begin if (rst) state <= 2'b00; else if (EN) begin if (Drdy) state <= 2'b10; else if (count[127] == 1 && state == 2'b10) state <= 2'b01; else if (count[127] == 1 && state == 2'b01) state <= 2'b00; else if (count[5] && state == 2'b00) state <= 2'b11; if (Done) state <= 2'b00; end end always @(posedge CLK or posedge rst) begin if (rst) count = 128'b0; else if (EN) begin if (Drdy) count = 1; else count = {count[126:0], count[127]}; if (state == 3) count = 0; if (Done) count = 0; end end wire cipher_outa, cipher_outb, cipher_outc; reg [127:0] cout_a, cout_b, cout_c; simon_parallel my_simon_core ( .clk(CLK), .data_ina(share_a[0]), .data_inb(share_b[0]), .data_inc(share_c[0]), .data_rdy(state), .cipher_outa(cipher_outa), .cipher_outb(cipher_outb), .cipher_outc(cipher_outc), .Done(Done), .Trig(Trig) ); always @(posedge CLK) begin cout_a <= {cipher_outa, cout_a[127:1]}; cout_b <= {cipher_outb, cout_b[127:1]}; cout_c <= {cipher_outc, cout_c[127:1]}; end always @(posedge CLK) begin if (Drdy) begin Ser_2_Par <= 0; end if (Dvld) begin Ser_2_Par <= cout_a ^ cout_b ^ cout_c; //[383:256] ^ res[255:128] ^ res[127:0]; end end endmodule
8.20872
module TopModule_tb; // Inputs reg [767:0] Din; reg Drdy; reg EN; reg CLK; reg RSTn; // Outputs wire [127:0] Dout; wire Dvld; wire BSY; wire Trig; // Instantiate the Unit Under Test (UUT) sasebo_simon uut ( .Din (Din), .Dout(Dout), .Drdy(Drdy), .Dvld(Dvld), .EN (EN), .BSY (BSY), .CLK (CLK), .RSTn(RSTn), .Trig(Trig) ); always #5 CLK = ~CLK; initial begin // Initialize Inputs Din = 0; Drdy = 0; EN = 0; CLK = 0; RSTn = 1; // Wait 100 ns for global reset to finish #20; RSTn = 0; #40; RSTn = 1; EN = 1; #20; Din = 768'h63736564207372656c6c6576617274200f0e0d0c0b0a0908070605040302010063736564207372656c6c6576617274200f0e0d0c0b0a0908070605040302010063736564207372656c6c6576617274200f0e0d0c0b0a09080706050403020100; #10; Drdy = 1; #10; Drdy = 0; // Add stimulus here end endmodule
8.900291
module put each share into isolated modules // such that no two shares are mixed into the same slice // to cause leakage. ////////////////////////////////////////////////////////////////////////////////// module bitSpeck128_128_hierarchy_carry_sharing( input clk, input data_ina, data_inb, data_inc, input k_data_ina, k_data_inb, k_data_inc, input carry_init_a,carry_init_b,carry_init_c, input we, Start, output [1:0] cipher_out1, cipher_out2, cipher_out3, output rndlessthan32); // Global reg [5:0] roundcnt; reg [5:0] shiftcnt; wire shiftlessthan8, shiftlessthan3, rnd0; assign shiftlessthan8 = (shiftcnt < 8); assign shiftlessthan3 = (shiftcnt < 3); assign rndlessthan32 = (roundcnt < 32); assign rnd0 =roundcnt[0]; //one bit input for key schedule wire rc; assign rc = (shiftcnt == 6'd0) ? roundcnt[0]: ((shiftcnt == 6'd1) ? roundcnt[1]: ((shiftcnt == 6'd2) ? roundcnt[2]: ((shiftcnt == 6'd3) ? roundcnt[3]: ((shiftcnt == 6'd4) ? roundcnt[4]: ((shiftcnt == 6'd5) ? roundcnt[5] : 1'b0))))); assign EN = (rndlessthan32) && (shiftcnt != 6'd63) && (Start); always @(posedge clk) begin // this is the reset part if (~Start) begin // RESET BLOCK roundcnt <= 6'd0; shiftcnt <= 6'd0; end else begin // MAIN BLOCK if (rndlessthan32) begin shiftcnt <= shiftcnt + 1; if(~EN) begin roundcnt <= roundcnt + 1; end end end end wire X_m1, X_m2, X_m3, Y_m1, Y_m2, Y_m3, C_m1, C_m2, C_m3; wire K_X_m1, K_X_m2, K_X_m3, K_Y_m1, K_Y_m2, K_Y_m3, K_C_m1, K_C_m2, K_C_m3; wire share_out1, share_out2, share_out3; wire share_out11, share_out22, share_out33; share datapath1(clk, we, Start, EN,data_ina, shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, K_Y_m1, X_m2, Y_m2, C_m2, carry_init_a, X_m1, Y_m1, C_m1, share_out1, share_out11); share datapath2(clk, we, Start, EN,data_inb, shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, K_Y_m2, X_m3, Y_m3, C_m3, carry_init_b, X_m2, Y_m2, C_m2, share_out2, share_out22); share datapath3(clk, we, Start, EN,data_inc, shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, K_Y_m3, X_m1, Y_m1, C_m1, carry_init_c, X_m3, Y_m3, C_m3, share_out3, share_out33); key_share keysch1(clk, we, Start, EN,k_data_ina, shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, rc, K_X_m2, K_Y_m2, K_C_m2, K_X_m1, K_Y_m1, K_C_m1); key_share keysch2(clk, we, Start, EN,k_data_inb, shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, 1'b0, K_X_m3, K_Y_m3, K_C_m3, K_X_m2, K_Y_m2, K_C_m2); key_share keysch3(clk, we, Start, EN,k_data_inc, shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, 1'b0, K_X_m1, K_Y_m1, K_C_m1, K_X_m3, K_Y_m3, K_C_m3); assign cipher_out1 = {share_out1, share_out11}; assign cipher_out2 = {share_out2, share_out22}; assign cipher_out3 = {share_out3, share_out33}; //assign Done = roundcnt[5]; endmodule
7.604776
module share ( input clk, we, Start, EN, input share_in, input shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, input keybit, input Xbit_else, Ybit_else, carry_else, carry_init, output wire Xbit_mine, Ybit_mine, carry_mine, output wire share_out_x, share_out_y ); wire X_out, Y_out; wire X_carry; reg [55:0] X_63_8; reg [7:0] X_7_0; assign X_carry = (shiftlessthan8) ? X_7_0[0] : X_out; wire Y_carry_even, Y_carry_odd, Y_carry_60_0, Y_carry; reg [60:0] Y_60_0; reg [2:0] Y_63_61_even, Y_63_61_odd; assign Y_carry_even = rnd0 ? Y_out : Y_60_0[0]; assign Y_carry_odd = rnd0 ? Y_60_0[0] : Y_out; assign Y_carry = rnd0 ? Y_63_61_odd[0] : Y_63_61_even[0]; assign Y_carry_60_0 = rnd0 ? ((shiftlessthan3) ? Y_63_61_odd[0] : Y_63_61_even[0]): ((shiftlessthan3) ? Y_63_61_even[0] : Y_63_61_odd[0]); //wire Xbit_mine, Ybit_mine, carry_mine; assign Xbit_mine = X_63_8[0]; assign Ybit_mine = Y_60_0[0]; always @(posedge clk) begin if (we) begin {X_63_8, X_7_0, Y_63_61_even, Y_60_0} <= { share_in, X_63_8, X_7_0, Y_63_61_even, Y_60_0[60:1] }; end else if (Start) begin if (rndlessthan32) begin if (shiftlessthan8) begin X_7_0 <= {X_out, X_7_0[7:1]}; end X_63_8 <= {X_carry, X_63_8[55:1]}; // Processing the right block in 64 clock cycles Y_60_0 <= {Y_carry_60_0, Y_60_0[60:1]}; Y_63_61_even <= {Y_carry_even, Y_63_61_even[2:1]}; Y_63_61_odd <= {Y_carry_odd, Y_63_61_odd[2:1]}; end else begin {X_63_8, X_7_0} <= {1'b0, X_63_8, X_7_0[7:1]}; {Y_63_61_even, Y_60_0} <= {1'b0, Y_63_61_even, Y_60_0[60:1]}; end end end assign share_out_x = X_7_0[0]; assign share_out_y = Y_60_0[0]; share_roundTI myRound ( clk, EN, keybit, Xbit_mine, Ybit_mine, Y_carry, Xbit_else, Ybit_else, carry_else, carry_init, X_out, Y_out, carry_mine ); endmodule
6.598089
module share_roundTI ( input clk, EN, input keybit, Xbit, Ybit1, Ybit2, input Xbit_else, Ybit_else, carry_else, carry_init, output X_out, Y_out, output reg carry ); assign X_out = carry ^ Xbit ^ Ybit1 ^ keybit; assign Y_out = X_out ^ Ybit2; always @(posedge clk) begin if (~EN) begin //carry <= 1'b0; carry <= carry_init; end // This is a TI representation of a nonlinear operation // but the three shares of the outputs are uniform else begin carry <= (Xbit && carry) ^ (Xbit && carry_else) ^ (Xbit_else && carry) ^ (Xbit && Ybit1) ^ (Xbit && Ybit_else) ^ (Xbit_else && Ybit1) ^ (Ybit1 && carry) ^ (Ybit1 && carry_else) ^ (Ybit_else && carry); end end endmodule
7.613275
module key_share ( input clk, we, Start, EN, input share_in, input shiftlessthan8, shiftlessthan3, rndlessthan32, rnd0, input keybit, input Xbit_else, Ybit_else, carry_else, output wire Xbit_mine, Ybit_mine, carry_mine ); wire X_out, Y_out; wire X_carry; reg [55:0] X_63_8; reg [7:0] X_7_0; assign X_carry = (shiftlessthan8) ? X_7_0[0] : X_out; wire Y_carry_even, Y_carry_odd, Y_carry_60_0, Y_carry; reg [60:0] Y_60_0; reg [2:0] Y_63_61_even, Y_63_61_odd; assign Y_carry_even = rnd0 ? Y_out : Y_60_0[0]; assign Y_carry_odd = rnd0 ? Y_60_0[0] : Y_out; assign Y_carry = rnd0 ? Y_63_61_odd[0] : Y_63_61_even[0]; assign Y_carry_60_0 = rnd0 ? ((shiftlessthan3) ? Y_63_61_odd[0] : Y_63_61_even[0]): ((shiftlessthan3) ? Y_63_61_even[0] : Y_63_61_odd[0]); assign Xbit_mine = X_63_8[0]; assign Ybit_mine = Y_60_0[0]; always @(posedge clk) begin if (we) begin {X_63_8, X_7_0, Y_63_61_even, Y_60_0} <= { share_in, X_63_8, X_7_0, Y_63_61_even, Y_60_0[60:1] }; end else if (Start) begin if (rndlessthan32) begin if (shiftlessthan8) begin X_7_0 <= {X_out, X_7_0[7:1]}; end X_63_8 <= {X_carry, X_63_8[55:1]}; // Processing the right block in 64 clock cycles Y_60_0 <= {Y_carry_60_0, Y_60_0[60:1]}; Y_63_61_even <= {Y_carry_even, Y_63_61_even[2:1]}; Y_63_61_odd <= {Y_carry_odd, Y_63_61_odd[2:1]}; end end end key_share_roundTI myRound ( clk, EN, keybit, Xbit_mine, Ybit_mine, Y_carry, Xbit_else, Ybit_else, carry_else, X_out, Y_out, carry_mine ); endmodule
7.071314
module key_share_roundTI ( input clk, EN, input keybit, Xbit, Ybit1, Ybit2, input Xbit_else, Ybit_else, carry_else, output X_out, Y_out, output reg carry ); assign X_out = carry ^ Xbit ^ Ybit1 ^ keybit; assign Y_out = X_out ^ Ybit2; always @(posedge clk) begin if (~EN) begin carry <= 1'b0; end // This is a TI representation of a nonlinear operation // but the three shares of the outputs are uniform else begin carry <= (Xbit && carry) ^ (Xbit && carry_else) ^ (Xbit_else && carry) ^ (Xbit && Ybit1) ^ (Xbit && Ybit_else) ^ (Xbit_else && Ybit1) ^ (Ybit1 && carry) ^ (Ybit1 && carry_else) ^ (Ybit_else && carry); end end endmodule
8.325179
module decoder_3to8( input reg [2:0] in, //Control inputs output wire [7:0] out ); //Going to do this naively with case statement for now, see how it synthesizes always @ * case(in) 3b'000: begin out[0]=1b'1; out[1:7]=7'b0; end 5b'001: begin out[0]=1'b0; out[1]=1b'1; out[2:7]=6'b0; end 5b'010: begin out[0:1]=2'b0; out[2]=1b'1; out[3:7]=5'b0; end 5b'011: begin out[0:2]=3'b0; out[3]=1b'1; out[4:7]=4'b0; end 5b'100: begin out[0:3]=4'b0; out[4]=1b'1; out[5:7]=3'b0; end 5b'101: begin out[0:4]=5'b0; out[5]=1b'1; out[6:7]=2'b0; end 5b'110: begin out[0:5]=6'b0; out[6]=1b'1; out[7]=1'b0; end 5b'111: begin out[0:6]=7'b0; out[7]=1b'1 end endcase endmodule
7.578914
module Reg8_1 ( out, in, clk, ctrl ); input ctrl; output [7:0] out; input [7:0] in; reg [7:0] Regs; input clk; assign out[0] = Regs[0]; assign out[1] = Regs[1]; assign out[2] = Regs[2]; assign out[3] = Regs[3]; assign out[4] = Regs[4]; assign out[5] = Regs[5]; assign out[6] = Regs[6]; assign out[7] = Regs[7]; always @(posedge clk) begin if (!ctrl) begin Regs[0] <= in[0]; Regs[1] <= in[1]; Regs[2] <= in[2]; Regs[3] <= in[3]; Regs[4] <= in[4]; Regs[5] <= in[5]; Regs[6] <= in[6]; Regs[7] <= in[7]; end end endmodule
6.75854
module Reg8_2 ( out, in, clk ); output [7:0] out; input [7:0] in; reg [7:0] Regs; input clk; assign out[0] = Regs[0]; assign out[1] = Regs[1]; assign out[2] = Regs[2]; assign out[3] = Regs[3]; assign out[4] = Regs[4]; assign out[5] = Regs[5]; assign out[6] = Regs[6]; assign out[7] = Regs[7]; always @(posedge clk) begin Regs[0] <= in[0]; Regs[1] <= in[1]; Regs[2] <= in[2]; Regs[3] <= in[3]; Regs[4] <= in[4]; Regs[5] <= in[5]; Regs[6] <= in[6]; Regs[7] <= in[7]; end endmodule
6.827413