ingerid commited on
Commit
ec95081
·
unverified ·
1 Parent(s): 78d3f85

remove draft data loader script

Browse files
Files changed (1) hide show
  1. nb_samtale.py +0 -165
nb_samtale.py DELETED
@@ -1,165 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # Lint as: python3
16
- """NB Samtale: Norwegian conversation speech corpus"""
17
-
18
-
19
- import csv
20
- import json
21
- import os
22
-
23
- import datasets
24
-
25
-
26
- # TODO: Add BibTeX citation
27
- # Find for instance the citation on arxiv or on the dataset repo/website
28
-
29
-
30
- _DESCRIPTION = """\
31
- NB Samtale is a speech corpus made by the Language Bank at the National Library of Norway.
32
- The corpus contains orthographically transcribed speech from podcasts and recordings of live events at the National Library.
33
- The corpus is intended as an open source dataset for Automatic Speech Recognition (ASR) development,
34
- and is specifically aimed at improving ASR systems’ handle on conversational speech.
35
- """
36
-
37
- _HOMEPAGE = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-85/"
38
-
39
- _LICENSE = "CC-ZERO-license"
40
-
41
- # TODO: Add link to the official dataset URLs here
42
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
43
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
44
- _URLS = {
45
- "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
46
- "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
47
- }
48
-
49
-
50
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
51
- class NewDataset(datasets.GeneratorBasedBuilder):
52
- """TODO: Short description of my dataset."""
53
-
54
- VERSION = datasets.Version("1.1.0")
55
-
56
- # This is an example of a dataset with multiple configurations.
57
- # If you don't want/need to define several sub-sets in your dataset,
58
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
59
-
60
- # If you need to make complex sub-parts in the datasets with configurable options
61
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
62
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
63
-
64
- # You will be able to load one or the other configurations in the following list with
65
- # data = datasets.load_dataset('my_dataset', 'first_domain')
66
- # data = datasets.load_dataset('my_dataset', 'second_domain')
67
- BUILDER_CONFIGS = [
68
- datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
69
- datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
70
- ]
71
-
72
- DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
73
-
74
- def _info(self):
75
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
76
- if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
77
- features = datasets.Features(
78
- {
79
- "sentence": datasets.Value("string"),
80
- "option1": datasets.Value("string"),
81
- "answer": datasets.Value("string")
82
- # These are the features of your dataset like images, labels ...
83
- }
84
- )
85
- else: # This is an example to show how to have different features for "first_domain" and "second_domain"
86
- features = datasets.Features(
87
- {
88
- "sentence": datasets.Value("string"),
89
- "option2": datasets.Value("string"),
90
- "second_domain_answer": datasets.Value("string")
91
- # These are the features of your dataset like images, labels ...
92
- }
93
- )
94
- return datasets.DatasetInfo(
95
- # This is the description that will appear on the datasets page.
96
- description=_DESCRIPTION,
97
- # This defines the different columns of the dataset and their types
98
- features=features, # Here we define them above because they are different between the two configurations
99
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
100
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
101
- # supervised_keys=("sentence", "label"),
102
- # Homepage of the dataset for documentation
103
- homepage=_HOMEPAGE,
104
- # License for the dataset if available
105
- license=_LICENSE,
106
- # Citation for the dataset
107
- citation=_CITATION,
108
- )
109
-
110
- def _split_generators(self, dl_manager):
111
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
112
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
113
-
114
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
115
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
116
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
117
- urls = _URLS[self.config.name]
118
- data_dir = dl_manager.download_and_extract(urls)
119
- return [
120
- datasets.SplitGenerator(
121
- name=datasets.Split.TRAIN,
122
- # These kwargs will be passed to _generate_examples
123
- gen_kwargs={
124
- "filepath": os.path.join(data_dir, "train.jsonl"),
125
- "split": "train",
126
- },
127
- ),
128
- datasets.SplitGenerator(
129
- name=datasets.Split.VALIDATION,
130
- # These kwargs will be passed to _generate_examples
131
- gen_kwargs={
132
- "filepath": os.path.join(data_dir, "dev.jsonl"),
133
- "split": "dev",
134
- },
135
- ),
136
- datasets.SplitGenerator(
137
- name=datasets.Split.TEST,
138
- # These kwargs will be passed to _generate_examples
139
- gen_kwargs={
140
- "filepath": os.path.join(data_dir, "test.jsonl"),
141
- "split": "test"
142
- },
143
- ),
144
- ]
145
-
146
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
147
- def _generate_examples(self, filepath, split):
148
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
149
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
150
- with open(filepath, encoding="utf-8") as f:
151
- for key, row in enumerate(f):
152
- data = json.loads(row)
153
- if self.config.name == "first_domain":
154
- # Yields examples as (key, example) tuples
155
- yield key, {
156
- "sentence": data["sentence"],
157
- "option1": data["option1"],
158
- "answer": "" if split == "test" else data["answer"],
159
- }
160
- else:
161
- yield key, {
162
- "sentence": data["sentence"],
163
- "option2": data["option2"],
164
- "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
165
- }