Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
import pyarrow as pa | |
import pyarrow.parquet as pq | |
import torch | |
from transformers import AutoModel, AutoTokenizer | |
query_prefix = "Represent this sentence for searching relevant passages: " | |
topic_file_names = [ | |
"topics.dl21.txt", | |
"topics.dl22.txt", | |
"topics.dl23.txt", | |
"topics.msmarco-v2-doc.dev.txt", | |
"topics.msmarco-v2-doc.dev2.txt", | |
"topics.rag24.raggy-dev.txt", | |
"topics.rag24.researchy-dev.txt", | |
] | |
model_names = [ | |
"Snowflake/snowflake-arctic-embed-l", | |
"Snowflake/snowflake-arctic-embed-m-v1.5", | |
] | |
for model_name in model_names: | |
print(f"Running query embeddings using {model_name}") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModel.from_pretrained( | |
model_name, | |
add_pooling_layer=False, | |
) | |
model.eval() | |
device = "cuda" | |
model = model.to(device) | |
for file_name in topic_file_names: | |
short_file_name = ".".join(file_name.split(".")[:-1]) | |
data = [] | |
print(f"starting on {file_name}") | |
with open(file_name, "r") as f: | |
for line in f: | |
line = line.strip().split("\t") | |
qid = line[0] | |
query_text = line[1] | |
queries_with_prefix = [ | |
"{}{}".format(query_prefix, i) for i in [query_text] | |
] | |
query_tokens = tokenizer( | |
queries_with_prefix, | |
padding=True, | |
truncation=True, | |
return_tensors="pt", | |
max_length=512, | |
) | |
# Compute token embeddings | |
with torch.autocast( | |
"cuda", dtype=torch.bfloat16 | |
), torch.inference_mode(): | |
query_embeddings = ( | |
model(**query_tokens.to(device))[0][:, 0] | |
.cpu() | |
.to(torch.float32) | |
.detach() | |
.numpy()[0] | |
) | |
item = {"id": qid, "text": query_text, "embedding": query_embeddings} | |
data.append(item) | |
table = pa.Table.from_pylist(data) | |
pq.write_table( | |
table, f"{model_name.split('/')[1]}-{short_file_name}.parquet" | |
) | |