Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -25,7 +25,7 @@ tags:
|
|
| 25 |
- crispr
|
| 26 |
- cas9
|
| 27 |
- open-data
|
| 28 |
-
-
|
| 29 |
pretty_name: STXBP1 ClinVar Curated Variants
|
| 30 |
size_categories:
|
| 31 |
- 10M<n<100M
|
|
@@ -151,4 +151,93 @@ _Main split for Hugging Face: JSONL format (see above for statistics)._
|
|
| 151 |
"onc_fields": {},
|
| 152 |
"sci_fields": {},
|
| 153 |
"incl_fields": {}
|
| 154 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
- crispr
|
| 26 |
- cas9
|
| 27 |
- open-data
|
| 28 |
+
- instruction-tuning
|
| 29 |
pretty_name: STXBP1 ClinVar Curated Variants
|
| 30 |
size_categories:
|
| 31 |
- 10M<n<100M
|
|
|
|
| 151 |
"onc_fields": {},
|
| 152 |
"sci_fields": {},
|
| 153 |
"incl_fields": {}
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
===================================================================================================================
|
| 159 |
+
## You can easily load this dataset using the 🤗 Datasets library.
|
| 160 |
+
|
| 161 |
+
The Hugging Face infrastructure will automatically use the efficient Parquet files by default, but you can also specify the JSONL if you prefer.
|
| 162 |
+
|
| 163 |
+
### Install dependencies (if needed):
|
| 164 |
+
|
| 165 |
+
```bash
|
| 166 |
+
pip install datasets```
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
## Load the full dataset (Parquet, recommended)
|
| 171 |
+
|
| 172 |
+
```from datasets import load_dataset
|
| 173 |
+
|
| 174 |
+
# This will automatically use the Parquet shards
|
| 175 |
+
ds = load_dataset("SkyWhal3/ClinVar-STXBP1-NLP-Dataset")
|
| 176 |
+
|
| 177 |
+
# Access examples
|
| 178 |
+
print(ds["train"][0])```
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
## To force JSONL loading (if you prefer the original format):
|
| 183 |
+
|
| 184 |
+
```from datasets import load_dataset
|
| 185 |
+
|
| 186 |
+
# Specify data_files to point to JSONL file(s)
|
| 187 |
+
ds = load_dataset(
|
| 188 |
+
"SkyWhal3/ClinVar-STXBP1-NLP-Dataset",
|
| 189 |
+
data_files="ClinVar-STXBP1-NLP-Dataset.jsonl",
|
| 190 |
+
split="train"
|
| 191 |
+
)
|
| 192 |
+
print(ds[0])```
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
## Other ways to use the data
|
| 196 |
+
Load all Parquet shards with pandas
|
| 197 |
+
|
| 198 |
+
```import pandas as pd
|
| 199 |
+
import glob
|
| 200 |
+
|
| 201 |
+
# Load all Parquet shards in the train directory
|
| 202 |
+
parquet_files = glob.glob("default/train/*.parquet")
|
| 203 |
+
df = pd.concat([pd.read_parquet(pq) for pq in parquet_files], ignore_index=True)
|
| 204 |
+
print(df.shape)
|
| 205 |
+
print(df.head())```
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
## Filter for a gene (e.g., STXBP1)
|
| 209 |
+
|
| 210 |
+
```df = pd.read_parquet("default/train/0000.parquet")
|
| 211 |
+
stxbp1_df = df[df["gene"] == "STXBP1"]
|
| 212 |
+
print(stxbp1_df.head())```
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
## Randomly sample a subset
|
| 216 |
+
|
| 217 |
+
```sample = df.sample(n=5, random_state=42)
|
| 218 |
+
print(sample)```
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
## Load with Polars (for high performance)
|
| 222 |
+
|
| 223 |
+
```import polars as pl
|
| 224 |
+
|
| 225 |
+
df = pl.read_parquet("default/train/0000.parquet")
|
| 226 |
+
print(df.head())```
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
## Query with DuckDB (SQL-style)
|
| 230 |
+
|
| 231 |
+
```import duckdb
|
| 232 |
+
|
| 233 |
+
con = duckdb.connect()
|
| 234 |
+
df = con.execute("SELECT * FROM 'default/train/0000.parquet' WHERE gene='STXBP1' LIMIT 5").df()
|
| 235 |
+
print(df)```
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
```## Streaming mode with 🤗 Datasets
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
ds = load_dataset("SkyWhal3/ClinVar-STXBP1-NLP-Dataset", split="train", streaming=True)
|
| 242 |
+
for record in ds.take(5):
|
| 243 |
+
print(record)```
|