Upload 2 files
Browse files- TempTAC.ipynb +1219 -0
- spatial-approach.ipynb +1692 -0
TempTAC.ipynb
ADDED
@@ -0,0 +1,1219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "7033b456-1f53-4201-bb2d-64a02e01ffa8",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Imports"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "33731b76-6b28-4fd4-b193-036a317f3f28",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, accuracy_score\n",
|
19 |
+
"from sklearn.utils.class_weight import compute_class_weight\n",
|
20 |
+
"\n",
|
21 |
+
"from torch.utils.data import TensorDataset, DataLoader\n",
|
22 |
+
"from sklearn.model_selection import train_test_split\n",
|
23 |
+
"from sklearn.preprocessing import MinMaxScaler\n",
|
24 |
+
"from collections import Counter\n",
|
25 |
+
"from tqdm.notebook import tqdm\n",
|
26 |
+
"\n",
|
27 |
+
"import torch.nn.functional as F\n",
|
28 |
+
"import matplotlib.pyplot as plt\n",
|
29 |
+
"import torch.optim as optim\n",
|
30 |
+
"import torch.nn as nn\n",
|
31 |
+
"import seaborn as sns\n",
|
32 |
+
"import pandas as pd\n",
|
33 |
+
"import numpy as np\n",
|
34 |
+
"import warnings\n",
|
35 |
+
"import imblearn\n",
|
36 |
+
"import optuna\n",
|
37 |
+
"import torch\n",
|
38 |
+
"import copy\n",
|
39 |
+
"import json\n",
|
40 |
+
"import os\n",
|
41 |
+
"\n",
|
42 |
+
"warnings.filterwarnings(\"ignore\", category=DeprecationWarning) \n",
|
43 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"cell_type": "markdown",
|
48 |
+
"id": "5ade242d-aabb-4b16-b10a-0572f4198a95",
|
49 |
+
"metadata": {},
|
50 |
+
"source": [
|
51 |
+
"## Load CLS-tokens and map 'incomplete-classes' to their respective full classes\n"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 2,
|
57 |
+
"id": "b994e92d-effd-4575-b1db-27154b903ad2",
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"#X = torch.load('/home/evan/D1/project/code/raw_cls_tokens_features.pt', map_location=device)\n",
|
62 |
+
"#X = torch.load('/home/evan/D1/project/code/stretched_cls_tokens.pt', map_location=device)\n",
|
63 |
+
"#X = torch.load('/home/evan/D1/project/code/reflected_cls_tokens.pt', map_location=device)\n",
|
64 |
+
"\n",
|
65 |
+
"y = np.load('/home/evan/D1/project/code/cls_tokens_labels.npy')\n",
|
66 |
+
"frame_counts = np.load('/home/evan/D1/project/code/frame_counts.npy')\n",
|
67 |
+
"\n",
|
68 |
+
"\n",
|
69 |
+
"class_mapping = {0:0, 1: 1, 2: 2, 3: 1, 4: 2}\n",
|
70 |
+
"\n",
|
71 |
+
"for i, label in enumerate(y):\n",
|
72 |
+
" y[i] = class_mapping[label]\n",
|
73 |
+
"print('Done')"
|
74 |
+
]
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "markdown",
|
78 |
+
"id": "f1d19317-da86-4539-bafb-1d0b35f6e46a",
|
79 |
+
"metadata": {},
|
80 |
+
"source": [
|
81 |
+
"## Helper functions to split sequence, extract and (add context frames - inactive)"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 3,
|
87 |
+
"id": "14c04222-3270-4adf-95b0-d92be6f771ed",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"def split_sequences_np(arr):\n",
|
92 |
+
" \"\"\"Find the difference between consecutive elements\"\"\"\n",
|
93 |
+
" \n",
|
94 |
+
" diffs = np.diff(arr)\n",
|
95 |
+
" # Identify where the difference is not 1 (i.e., breaks in consecutive sequences)\n",
|
96 |
+
" breaks = np.where(diffs != 1)[0] + 1\n",
|
97 |
+
" \n",
|
98 |
+
" # Use numpy split to divide the array at every break point\n",
|
99 |
+
" return np.split(arr, breaks)\n",
|
100 |
+
"\n",
|
101 |
+
"def extract_data(games, boundaries, X, y, indices):\n",
|
102 |
+
" X_split, y_split, idx_split = [], [], []\n",
|
103 |
+
" for g in games:\n",
|
104 |
+
" start = 0 if g == 0 else boundaries[g-1]\n",
|
105 |
+
" end = boundaries[g]\n",
|
106 |
+
" X_split.append(X[start:end])\n",
|
107 |
+
" y_split.append(y[start:end])\n",
|
108 |
+
" idx_split.extend(indices[start:end])\n",
|
109 |
+
" return torch.cat(X_split), torch.cat(y_split), idx_split\n",
|
110 |
+
"\n",
|
111 |
+
"def add_context_frames(seq, total_frames, context_size=0, last_context_end=0):\n",
|
112 |
+
" \"\"\"Adds context frames to the sequence, ensuring no overlap with other sequences or video boundaries\"\"\"\n",
|
113 |
+
" seq_start_idx, seq_end_idx = seq[0], seq[-1]\n",
|
114 |
+
" \n",
|
115 |
+
" # Calculate start and end of context\n",
|
116 |
+
" start_with_context = max(seq_start_idx - context_size, last_context_end + 1, 0)\n",
|
117 |
+
" end_with_context = min(seq_end_idx + context_size, total_frames - 1)\n",
|
118 |
+
" \n",
|
119 |
+
" return start_with_context, end_with_context\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "markdown",
|
124 |
+
"id": "7e946392-df5b-4773-9808-55cc58c57840",
|
125 |
+
"metadata": {},
|
126 |
+
"source": [
|
127 |
+
"## Undersample tackle-sequences"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"id": "b2f72e9f-9755-4f59-bf06-242d3e0696fc",
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"import numpy as np\n",
|
138 |
+
"import torch\n",
|
139 |
+
"\n",
|
140 |
+
"def extract_tackle_sequences_and_undersample(X, y, frame_counts, device='cuda', max_tackles=500):\n",
|
141 |
+
" new_X, new_y, kept_indices = [], [], []\n",
|
142 |
+
" all_seq = []\n",
|
143 |
+
" class_lengths = {} # Stores sequence lengths and counts by class\n",
|
144 |
+
" total_sequences = 0 # Total count of all sequences\n",
|
145 |
+
" tackle_count = 0 # Counter for class 0 sequences\n",
|
146 |
+
" tackle_count2 = 0 # Counter for class 2 sequences\n",
|
147 |
+
"\n",
|
148 |
+
" start_idx = 0\n",
|
149 |
+
" last_context_end = -1\n",
|
150 |
+
"\n",
|
151 |
+
" for z, count in enumerate(frame_counts):\n",
|
152 |
+
" end_idx = start_idx + count\n",
|
153 |
+
"\n",
|
154 |
+
" key_frame_indices = np.where(y[start_idx:end_idx] != 0)[0] + start_idx\n",
|
155 |
+
" seq_splitted = split_sequences_np(key_frame_indices)\n",
|
156 |
+
"\n",
|
157 |
+
" background_frame_indices = np.where(y[start_idx:end_idx] == 0)[0] + start_idx\n",
|
158 |
+
" bg_seq_splitted = split_sequences_np(background_frame_indices)\n",
|
159 |
+
"\n",
|
160 |
+
" for bg_seq in bg_seq_splitted:\n",
|
161 |
+
" if len(bg_seq) >= 70:\n",
|
162 |
+
" if y[bg_seq[0]] == 0: # Check if the sequence is of class 0\n",
|
163 |
+
" if tackle_count >= max_tackles:\n",
|
164 |
+
" continue # Skip if maximum number of tackles has been reached\n",
|
165 |
+
" else:\n",
|
166 |
+
" tackle_count += 1\n",
|
167 |
+
" start_random = np.random.randint(35, len(bg_seq) - 34)\n",
|
168 |
+
" random_seq = bg_seq[start_random:start_random + 25]\n",
|
169 |
+
" all_seq.append(random_seq)\n",
|
170 |
+
" total_sequences += 1\n",
|
171 |
+
"\n",
|
172 |
+
" class_id = y[random_seq[0]]\n",
|
173 |
+
" if class_id not in class_lengths:\n",
|
174 |
+
" class_lengths[class_id] = {'lengths': [], 'count': 0}\n",
|
175 |
+
" class_lengths[class_id]['lengths'].append(len(random_seq))\n",
|
176 |
+
" class_lengths[class_id]['count'] += 1\n",
|
177 |
+
"\n",
|
178 |
+
" new_bg_seq_x = X[random_seq[0]:random_seq[-1] + 1]\n",
|
179 |
+
" new_bg_seq_y = y[random_seq[0]:random_seq[-1] + 1]\n",
|
180 |
+
"\n",
|
181 |
+
" new_X.extend(new_bg_seq_x)\n",
|
182 |
+
" new_y.extend(new_bg_seq_y)\n",
|
183 |
+
"\n",
|
184 |
+
" for seq in seq_splitted:\n",
|
185 |
+
" if seq.size > 0:\n",
|
186 |
+
" if y[seq[0]] == 2: # Check if the sequence is of class 0\n",
|
187 |
+
" if tackle_count2 >= 280:\n",
|
188 |
+
" continue # Skip if maximum number of tackles has been reached\n",
|
189 |
+
" else:\n",
|
190 |
+
" tackle_count2 += 1\n",
|
191 |
+
"\n",
|
192 |
+
" all_seq.append(seq)\n",
|
193 |
+
" total_sequences += 1\n",
|
194 |
+
"\n",
|
195 |
+
" class_id = y[seq[0]]\n",
|
196 |
+
" if class_id not in class_lengths:\n",
|
197 |
+
" class_lengths[class_id] = {'lengths': [], 'count': 0}\n",
|
198 |
+
" class_lengths[class_id]['lengths'].append(len(seq))\n",
|
199 |
+
" class_lengths[class_id]['count'] += 1\n",
|
200 |
+
"\n",
|
201 |
+
" \n",
|
202 |
+
" # This line will return the same values for start and end, as 0 context is added. background is sampled randomly instead in loop before this.\n",
|
203 |
+
" context_start, context_end = add_context_frames(seq, end_idx, last_context_end=last_context_end)\n",
|
204 |
+
" \n",
|
205 |
+
" new_X.extend(X[context_start:context_end + 1])\n",
|
206 |
+
" new_y.extend(y[context_start:context_end + 1])\n",
|
207 |
+
"\n",
|
208 |
+
" last_context_end = context_end\n",
|
209 |
+
"\n",
|
210 |
+
" start_idx = end_idx\n",
|
211 |
+
"\n",
|
212 |
+
" new_X = torch.stack(new_X)\n",
|
213 |
+
" new_X = torch.tensor(new_X, dtype=torch.float32, device=device)\n",
|
214 |
+
" new_y = torch.tensor(new_y, dtype=torch.long, device=device)\n",
|
215 |
+
"\n",
|
216 |
+
" return new_X, new_y, kept_indices, all_seq, class_lengths, total_sequences\n",
|
217 |
+
"\n",
|
218 |
+
"new_X, new_y, kept_indices, all_seq, class_lengths, total_sequences = extract_tackle_sequences_and_undersample(X, y, frame_counts)\n",
|
219 |
+
"\n",
|
220 |
+
"# Compute and print average lengths and counts for each class\n",
|
221 |
+
"for class_id, info in class_lengths.items():\n",
|
222 |
+
" average_length = np.mean(info['lengths'])\n",
|
223 |
+
" print(f'Class {class_id} - Average Sequence Length: {average_length:.2f}, Count: {info[\"count\"]}')\n",
|
224 |
+
"\n",
|
225 |
+
"print(f'Total sequences processed: {total_sequences}')\n",
|
226 |
+
"print(new_X.shape)\n",
|
227 |
+
"print(new_y.shape)\n",
|
228 |
+
"print(np.unique(new_y.cpu(), return_counts=True))\n"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "markdown",
|
233 |
+
"id": "efe164b4-4541-4c9e-8ec4-af08d33062db",
|
234 |
+
"metadata": {},
|
235 |
+
"source": [
|
236 |
+
"## Split games into either train, val, test to ensure no data leakage"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 7,
|
242 |
+
"id": "0fd784d3-b7d5-41d7-bc18-9429fa07f2f4",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [],
|
245 |
+
"source": [
|
246 |
+
"import numpy as np\n",
|
247 |
+
"import torch\n",
|
248 |
+
"\n",
|
249 |
+
"def split_data_by_game(X, y, kept_indices, frame_counts, split_ratio=(0.7, 0.15, 0.15), seed=None):\n",
|
250 |
+
" # Set the random seed for reproducibility\n",
|
251 |
+
" np.random.seed(seed)\n",
|
252 |
+
" \n",
|
253 |
+
" # Calculate the cumulative sum of frame counts to determine game boundaries\n",
|
254 |
+
" boundaries = np.cumsum(frame_counts)\n",
|
255 |
+
" \n",
|
256 |
+
" # Create lists to hold data for train, validation, and test sets\n",
|
257 |
+
" X_train, y_train, X_val, y_val, X_test, y_test = [], [], [], [], [], []\n",
|
258 |
+
" idx_train, idx_val, idx_test = [], [], []\n",
|
259 |
+
" \n",
|
260 |
+
" # Shuffle the indices to randomize which games go into which set\n",
|
261 |
+
" game_indices = np.arange(len(frame_counts))\n",
|
262 |
+
" np.random.shuffle(game_indices)\n",
|
263 |
+
" \n",
|
264 |
+
" total_games = len(game_indices)\n",
|
265 |
+
" num_train = int(total_games * split_ratio[0])\n",
|
266 |
+
" num_val = int(total_games * split_ratio[1])\n",
|
267 |
+
" \n",
|
268 |
+
" print('Number of total games: ', total_games)\n",
|
269 |
+
" print('Number of train games: ', num_train)\n",
|
270 |
+
" print('Number of val games: ', num_val)\n",
|
271 |
+
" \n",
|
272 |
+
" \n",
|
273 |
+
" # Assign games to train, validation, and test sets\n",
|
274 |
+
" train_games = game_indices[:num_train]\n",
|
275 |
+
" val_games = game_indices[num_train:num_train + num_val]\n",
|
276 |
+
" test_games = game_indices[num_train + num_val:]\n",
|
277 |
+
"\n",
|
278 |
+
"\n",
|
279 |
+
" # Extract data for each split\n",
|
280 |
+
" X_train, y_train, idx_train = extract_data(train_games, boundaries, X, y, kept_indices)\n",
|
281 |
+
" X_val, y_val, idx_val = extract_data(val_games, boundaries, X, y, kept_indices)\n",
|
282 |
+
" X_test, y_test, idx_test = extract_data(test_games, boundaries, X, y, kept_indices)\n",
|
283 |
+
" \n",
|
284 |
+
" return (X_train, y_train, idx_train), (X_val, y_val, idx_val), (X_test, y_test, idx_test)\n",
|
285 |
+
"\n",
|
286 |
+
"# Set the random seed for reproducibility\n",
|
287 |
+
"seed = 42\n",
|
288 |
+
"\n",
|
289 |
+
"split_ratio = (0.7, 0.15, 0.15)\n",
|
290 |
+
"(X_train, y_train, idx_train), (X_val, y_val, idx_val), (X_test, y_test, idx_test) = split_data_by_game(new_X, new_y, kept_indices, frame_counts, split_ratio, seed)\n",
|
291 |
+
"\n",
|
292 |
+
"print(np.unique(y_train.cpu(), return_counts=True)[1])\n",
|
293 |
+
"print(np.unique(y_val.cpu(), return_counts=True)[1])\n",
|
294 |
+
"print(np.unique(y_test.cpu(), return_counts=True)[1])\n"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "markdown",
|
299 |
+
"id": "894031df-d48f-4f99-ab80-1ad37cd021e3",
|
300 |
+
"metadata": {},
|
301 |
+
"source": [
|
302 |
+
"## Create tensors"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": 8,
|
308 |
+
"id": "40f2921a-5ea6-40fc-898b-58816a1887ab",
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": [
|
312 |
+
"X_train = torch.tensor(X_train, dtype=torch.float32, device=device)\n",
|
313 |
+
"y_train = torch.tensor(y_train, dtype=torch.long, device=device)\n",
|
314 |
+
"\n",
|
315 |
+
"X_val = torch.tensor(X_val, dtype=torch.float32, device=device)\n",
|
316 |
+
"y_val = torch.tensor(y_val, dtype=torch.long, device=device)\n",
|
317 |
+
"\n",
|
318 |
+
"X_test = torch.tensor(X_test, dtype=torch.float32, device=device)\n",
|
319 |
+
"y_test = torch.tensor(y_test, dtype=torch.long, device=device)"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "markdown",
|
324 |
+
"id": "69eb8af6-0455-4f01-b7ca-19faf2027041",
|
325 |
+
"metadata": {},
|
326 |
+
"source": [
|
327 |
+
"## Shifting Window - Dataset + DataLoaders "
|
328 |
+
]
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"cell_type": "code",
|
332 |
+
"execution_count": 143,
|
333 |
+
"id": "e0f71c66-506d-428d-a4e5-008f3eb04fa4",
|
334 |
+
"metadata": {},
|
335 |
+
"outputs": [],
|
336 |
+
"source": [
|
337 |
+
"class FrameSequenceDataset(TensorDataset):\n",
|
338 |
+
" def __init__(self, X, y, window_size):\n",
|
339 |
+
" self.X = X\n",
|
340 |
+
" self.y = y\n",
|
341 |
+
" self.window_size = window_size\n",
|
342 |
+
" \n",
|
343 |
+
" def __len__(self):\n",
|
344 |
+
" # Calculate how many complete non-overlapping windows fit into the dataset\n",
|
345 |
+
" return (len(self.y) // self.window_size)\n",
|
346 |
+
" \n",
|
347 |
+
" def __getitem__(self, index):\n",
|
348 |
+
" # Calculate the start and end of the sequence based on the window size and index\n",
|
349 |
+
" start = index * self.window_size\n",
|
350 |
+
" end = start + self.window_size\n",
|
351 |
+
" X_seq = self.X[start:end]\n",
|
352 |
+
" \n",
|
353 |
+
" y_seq = self.y[start:end]\n",
|
354 |
+
" return X_seq, y_seq\n",
|
355 |
+
"\n",
|
356 |
+
"window_size = 75 # 25 fps\n",
|
357 |
+
"train_dataset = FrameSequenceDataset(X_train, y_train, window_size)\n",
|
358 |
+
"val_dataset = FrameSequenceDataset(X_val, y_val, window_size)\n",
|
359 |
+
"test_dataset = FrameSequenceDataset(X_test, y_test, window_size)\n",
|
360 |
+
"\n",
|
361 |
+
"\n",
|
362 |
+
"train_loader = DataLoader(train_dataset, batch_size=256, shuffle=False)\n",
|
363 |
+
"val_loader = DataLoader(val_dataset, batch_size=256, shuffle=False)\n",
|
364 |
+
"test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False)"
|
365 |
+
]
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"cell_type": "markdown",
|
369 |
+
"id": "ac9b8966-22a8-45d1-8991-170ea1311b1d",
|
370 |
+
"metadata": {},
|
371 |
+
"source": [
|
372 |
+
"## Sliding Window - Dataset + DataLoaders "
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": 152,
|
378 |
+
"id": "07938ef3-2bac-4ac3-805b-f01e0920540e",
|
379 |
+
"metadata": {},
|
380 |
+
"outputs": [],
|
381 |
+
"source": [
|
382 |
+
"class FrameSequenceDataset(TensorDataset):\n",
|
383 |
+
" def __init__(self, X, y, window_size):\n",
|
384 |
+
" self.X = X\n",
|
385 |
+
" self.y = y\n",
|
386 |
+
" self.window_size = window_size\n",
|
387 |
+
" \n",
|
388 |
+
" def __len__(self):\n",
|
389 |
+
" # Adjust the length to allow for complete windows only\n",
|
390 |
+
" return len(self.y) - self.window_size + 1\n",
|
391 |
+
" \n",
|
392 |
+
" def __getitem__(self, index):\n",
|
393 |
+
" # Extract a window of data starting at `index`\n",
|
394 |
+
" X_seq = self.X[index:index + self.window_size]\n",
|
395 |
+
" y_seq = self.y[index:index + self.window_size]\n",
|
396 |
+
" return X_seq, y_seq\n",
|
397 |
+
"\n",
|
398 |
+
"\n",
|
399 |
+
"window_size = 25 # 25 fps\n",
|
400 |
+
"train_dataset = FrameSequenceDataset(X_train, y_train, window_size)\n",
|
401 |
+
"val_dataset = FrameSequenceDataset(X_val, y_val, window_size)\n",
|
402 |
+
"test_dataset = FrameSequenceDataset(X_test, y_test, window_size)\n",
|
403 |
+
"\n",
|
404 |
+
"\n",
|
405 |
+
"train_loader = DataLoader(train_dataset, batch_size=128, shuffle=False)\n",
|
406 |
+
"val_loader = DataLoader(val_dataset, batch_size=128, shuffle=False)\n",
|
407 |
+
"test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False)"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"cell_type": "markdown",
|
412 |
+
"id": "41cfd268-5fc0-40bd-84c6-6a2ce89abdf4",
|
413 |
+
"metadata": {
|
414 |
+
"tags": []
|
415 |
+
},
|
416 |
+
"source": [
|
417 |
+
"## TempTAC and Attention-module"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "code",
|
422 |
+
"execution_count": 35,
|
423 |
+
"id": "2005f77b-9722-41bf-ac86-ceaef2912bde",
|
424 |
+
"metadata": {},
|
425 |
+
"outputs": [],
|
426 |
+
"source": [
|
427 |
+
"class AttentionModule(nn.Module):\n",
|
428 |
+
" def __init__(self, input_size, heads):\n",
|
429 |
+
" super().__init__()\n",
|
430 |
+
" self.self_attention = nn.MultiheadAttention(embed_dim=input_size, num_heads=heads)\n",
|
431 |
+
" \n",
|
432 |
+
" def forward(self, x):\n",
|
433 |
+
" # x: [seq_len, batch_size, features]\n",
|
434 |
+
" x = x.permute(1, 0, 2) # Adjusting for MultiheadAttention\n",
|
435 |
+
" attn_output, _ = self.self_attention(x, x, x)\n",
|
436 |
+
" return attn_output.permute(1, 0, 2) # Return same shape\n",
|
437 |
+
"\n",
|
438 |
+
"\n",
|
439 |
+
"\n",
|
440 |
+
"class TempTAC(nn.Module):\n",
|
441 |
+
" def __init__(self, input_size, hidden_size, output_dim, num_layers, device, dropout_prob=0.5):\n",
|
442 |
+
" super().__init__()\n",
|
443 |
+
" self.lstm = nn.LSTM(input_size=input_size + output_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout_prob, bidirectional=True)\n",
|
444 |
+
" self.linear = nn.Linear(hidden_size * 2, output_dim)\n",
|
445 |
+
" self.dropout = nn.Dropout(dropout_prob)\n",
|
446 |
+
" self.device = device\n",
|
447 |
+
" self.attention = AttentionModule(input_size, heads=8) # Attention layer after LSTM\n",
|
448 |
+
" self.prev_output_weight = nn.Parameter(torch.tensor(1.0)) # Initialize learnable weight for previous output influence\n",
|
449 |
+
" self.hidden_size = hidden_size\n",
|
450 |
+
" self.num_layers = num_layers\n",
|
451 |
+
" self.output_dim = output_dim\n",
|
452 |
+
" \n",
|
453 |
+
" \n",
|
454 |
+
" def init_hidden(self, batch_size):\n",
|
455 |
+
" return (torch.zeros(self.num_layers * 2, batch_size, self.hidden_size).to(self.device),\n",
|
456 |
+
" torch.zeros(self.num_layers * 2, batch_size, self.hidden_size).to(self.device))\n",
|
457 |
+
"\n",
|
458 |
+
" def forward(self, x, hidden, current_batch_size):\n",
|
459 |
+
" batch_size, seq_len, _ = x.size()\n",
|
460 |
+
" prev_output = torch.zeros(batch_size, 1, self.output_dim, device=self.device)\n",
|
461 |
+
" \n",
|
462 |
+
" # Apply attention to the output of the current timestep\n",
|
463 |
+
" x = self.attention(x) # Remove sequence length dimension for attention\n",
|
464 |
+
" \n",
|
465 |
+
" outputs = []\n",
|
466 |
+
" for t in range(seq_len):\n",
|
467 |
+
" weighted_prev_output = prev_output * self.prev_output_weight # Apply learned weight to previous output\n",
|
468 |
+
" \n",
|
469 |
+
" lstm_input = torch.cat((x[:, t:t+1, :], weighted_prev_output), dim=-1)\n",
|
470 |
+
" \n",
|
471 |
+
" lstm_out, hidden = self.lstm(lstm_input, hidden)\n",
|
472 |
+
" lstm_out = self.dropout(lstm_out)\n",
|
473 |
+
" \n",
|
474 |
+
" prev_output = self.linear(lstm_out) # Linear layer and unsqueeze to match dimensions\n",
|
475 |
+
" outputs.append(prev_output)\n",
|
476 |
+
"\n",
|
477 |
+
" return torch.cat(outputs, dim=1), hidden"
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "markdown",
|
482 |
+
"id": "f08e28c7-2082-42e6-97dc-9144f44f5227",
|
483 |
+
"metadata": {
|
484 |
+
"tags": []
|
485 |
+
},
|
486 |
+
"source": [
|
487 |
+
"### Models parameter counter"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"cell_type": "code",
|
492 |
+
"execution_count": 317,
|
493 |
+
"id": "0616329c-5aaf-4681-a820-ea078f80042a",
|
494 |
+
"metadata": {},
|
495 |
+
"outputs": [],
|
496 |
+
"source": [
|
497 |
+
"def count_parameters(model):\n",
|
498 |
+
" return sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
499 |
+
"\n",
|
500 |
+
"#model = EnhancedMultiLayerClassifier(1024, 3)\n",
|
501 |
+
"print(\"Number of trainable parameters:\", count_parameters(model))\n",
|
502 |
+
"print(\"Number of training instances:\", sum(np.unique(y_train.cpu(), return_counts=True)[1]))"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "markdown",
|
507 |
+
"id": "cd58d059-8f30-4562-aac3-82762f4afbe7",
|
508 |
+
"metadata": {
|
509 |
+
"tags": []
|
510 |
+
},
|
511 |
+
"source": [
|
512 |
+
"## Training Loop"
|
513 |
+
]
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"cell_type": "code",
|
517 |
+
"execution_count": 133,
|
518 |
+
"id": "aba45731-cd21-41bc-8812-a3c7f30f1b06",
|
519 |
+
"metadata": {},
|
520 |
+
"outputs": [],
|
521 |
+
"source": [
|
522 |
+
"import torch\n",
|
523 |
+
"import torch.nn as nn\n",
|
524 |
+
"from sklearn.metrics import classification_report\n",
|
525 |
+
"from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau\n",
|
526 |
+
"\n",
|
527 |
+
"\n",
|
528 |
+
"config = {'l1_lambda': 3.326004484093452e-05,\n",
|
529 |
+
"'lr': 0.0004256783934105,\n",
|
530 |
+
"'weight_decay': 1.4334181994254526e-05}\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
"def train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs=10):\n",
|
534 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
535 |
+
" model.to(device)\n",
|
536 |
+
" \n",
|
537 |
+
" training_losses = []\n",
|
538 |
+
" validation_losses = []\n",
|
539 |
+
" \n",
|
540 |
+
" best_val = 100\n",
|
541 |
+
" break_margin = 2\n",
|
542 |
+
" \n",
|
543 |
+
" best_f1 = 0.0\n",
|
544 |
+
"\n",
|
545 |
+
" l1_lambda = config['l1_lambda']\n",
|
546 |
+
"\n",
|
547 |
+
" batch_size = 256\n",
|
548 |
+
" current_lr = optimizer.param_groups[0]['lr']\n",
|
549 |
+
" \n",
|
550 |
+
" \n",
|
551 |
+
" for epoch in range(num_epochs):\n",
|
552 |
+
" model.train()\n",
|
553 |
+
" total_train_loss = 0\n",
|
554 |
+
" \n",
|
555 |
+
" # Initialize hidden state for the first batch size\n",
|
556 |
+
" initial_batch = next(iter(train_loader))\n",
|
557 |
+
" \n",
|
558 |
+
" initial_batch_size = initial_batch[0].size(0)\n",
|
559 |
+
" \n",
|
560 |
+
" hidden = model.init_hidden(initial_batch_size)\n",
|
561 |
+
" clip_value = 1\n",
|
562 |
+
" for inputs, labels in train_loader:\n",
|
563 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
564 |
+
" current_batch_size = inputs.size(0)\n",
|
565 |
+
" \n",
|
566 |
+
" # Adjust hidden state size if current batch size differs from the initial batch size\n",
|
567 |
+
" if current_batch_size != initial_batch_size:\n",
|
568 |
+
" adjusted_hidden = (hidden[0][:, :current_batch_size, :].contiguous(),\n",
|
569 |
+
" hidden[1][:, :current_batch_size, :].contiguous())\n",
|
570 |
+
"\n",
|
571 |
+
" else:\n",
|
572 |
+
" adjusted_hidden = hidden\n",
|
573 |
+
" \n",
|
574 |
+
" outputs, adjusted_hidden = model(inputs, adjusted_hidden, current_batch_size)\n",
|
575 |
+
" \n",
|
576 |
+
" hidden = tuple([h.data for h in adjusted_hidden]) # Detach hidden state from graph to prevent backprop through entire dataset\n",
|
577 |
+
" \n",
|
578 |
+
" optimizer.zero_grad()\n",
|
579 |
+
" \n",
|
580 |
+
" \n",
|
581 |
+
" # Calculate loss for the entire sequence at once\n",
|
582 |
+
" loss = criterion(outputs.transpose(1, 2), labels)\n",
|
583 |
+
" \n",
|
584 |
+
" #l1_norm = sum(torch.linalg.norm(p, 1) for p in model.parameters())\n",
|
585 |
+
" l1_norm = sum(p.abs().sum() for p in model.parameters())\n",
|
586 |
+
"\n",
|
587 |
+
" loss = loss + l1_lambda * l1_norm\n",
|
588 |
+
" \n",
|
589 |
+
" loss.backward()\n",
|
590 |
+
" torch.nn.utils.clip_grad_norm_(model.parameters(), clip_value)\n",
|
591 |
+
" optimizer.step()\n",
|
592 |
+
" total_train_loss += loss.item()\n",
|
593 |
+
"\n",
|
594 |
+
" average_train_loss = total_train_loss / len(train_loader)\n",
|
595 |
+
" training_losses.append(average_train_loss) \n",
|
596 |
+
" \n",
|
597 |
+
" \n",
|
598 |
+
" model.eval()\n",
|
599 |
+
" total_val_loss = 0\n",
|
600 |
+
" all_preds = []\n",
|
601 |
+
" all_targets = []\n",
|
602 |
+
" total, correct = 0, 0\n",
|
603 |
+
" with torch.no_grad():\n",
|
604 |
+
" initial_batch = next(iter(val_loader))\n",
|
605 |
+
" initial_batch_size = initial_batch[0].size(0)\n",
|
606 |
+
" hidden = model.init_hidden(initial_batch_size)\n",
|
607 |
+
" \n",
|
608 |
+
" for inputs, labels in val_loader:\n",
|
609 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
610 |
+
" current_batch_size = inputs.size(0)\n",
|
611 |
+
" \n",
|
612 |
+
" # Adjust hidden state size if current batch size differs from the initial batch size\n",
|
613 |
+
" if current_batch_size != initial_batch_size:\n",
|
614 |
+
" adjusted_hidden = (hidden[0][:, :current_batch_size, :].contiguous(),\n",
|
615 |
+
" hidden[1][:, :current_batch_size, :].contiguous())\n",
|
616 |
+
" else:\n",
|
617 |
+
" adjusted_hidden = hidden\n",
|
618 |
+
" \n",
|
619 |
+
" outputs, adjusted_hidden = model(inputs, adjusted_hidden, current_batch_size)\n",
|
620 |
+
" val_loss = criterion(outputs.transpose(1, 2), labels)\n",
|
621 |
+
" total_val_loss += val_loss.item()\n",
|
622 |
+
"\n",
|
623 |
+
" for i in range(outputs.shape[1]):\n",
|
624 |
+
" _, predicted = torch.max(outputs[:, i, :].data, 1)\n",
|
625 |
+
" total += labels[:, i].size(0)\n",
|
626 |
+
" correct += (predicted.cpu() == labels[:, i].cpu()).sum().item()\n",
|
627 |
+
" \n",
|
628 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
629 |
+
" all_targets.extend(labels[:, i].cpu().numpy())\n",
|
630 |
+
"\n",
|
631 |
+
" average_val_loss = total_val_loss / len(val_loader)\n",
|
632 |
+
" validation_losses.append(average_val_loss) \n",
|
633 |
+
" accuracy = 100 * correct / total\n",
|
634 |
+
" scheduler.step(val_loss)\n",
|
635 |
+
" \n",
|
636 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(np.array(all_targets).flatten(), np.array(all_preds).flatten(), average='weighted', zero_division=0)\n",
|
637 |
+
" \n",
|
638 |
+
" if f1 > best_f1:\n",
|
639 |
+
" best_f1 = f1\n",
|
640 |
+
" best_epoch = epoch\n",
|
641 |
+
" best_model_state_dict = model.state_dict()\n",
|
642 |
+
" best_all_targets = all_targets\n",
|
643 |
+
" best_all_preds = all_preds\n",
|
644 |
+
" \n",
|
645 |
+
" if (int(epoch) % 5) == 0:\n",
|
646 |
+
" print(f'Epoch [{epoch+1}/{num_epochs}], Training Loss: {average_train_loss:.4f}, Validation Loss: {average_val_loss:.4f}, Accuracy: {accuracy:.2f}%')\n",
|
647 |
+
" print(f'Epoch [{epoch+1}/{num_epochs}] Current Learning Rate: {current_lr}')\n",
|
648 |
+
" \n",
|
649 |
+
" \n",
|
650 |
+
" current_lr = optimizer.param_groups[0]['lr']\n",
|
651 |
+
" \n",
|
652 |
+
" if average_val_loss < best_val:\n",
|
653 |
+
" best_val = average_val_loss\n",
|
654 |
+
" time_to_break = 0\n",
|
655 |
+
" print('New best val loss: ', average_val_loss)\n",
|
656 |
+
" else:\n",
|
657 |
+
" time_to_break += 1\n",
|
658 |
+
" \n",
|
659 |
+
" if time_to_break > break_margin:\n",
|
660 |
+
" print('Break margin hit!')\n",
|
661 |
+
" break\n",
|
662 |
+
"\n",
|
663 |
+
" \n",
|
664 |
+
" return best_model_state_dict, best_all_targets, best_all_preds, validation_losses, training_losses\n",
|
665 |
+
"\n",
|
666 |
+
"\n",
|
667 |
+
"model = TempTAC(input_size=1024, hidden_size=256, output_dim=3, num_layers=2, device=device, dropout_prob=0.5)\n",
|
668 |
+
"model\n",
|
669 |
+
"\n",
|
670 |
+
"classes = np.unique(y_train.cpu())\n",
|
671 |
+
"weights = compute_class_weight(class_weight='balanced', classes=classes, y=y_train.cpu().numpy())\n",
|
672 |
+
"class_weights = torch.tensor(weights, dtype=torch.float32).to(device)\n",
|
673 |
+
"\n",
|
674 |
+
"optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])\n",
|
675 |
+
"\n",
|
676 |
+
"criterion = nn.CrossEntropyLoss(weight=class_weights).to(device)\n",
|
677 |
+
"scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=4, verbose=True)\n",
|
678 |
+
"\n",
|
679 |
+
"best_model_state_dict, all_targets, all_preds, validation_losses, training_losses = train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs=400)\n",
|
680 |
+
"\n",
|
681 |
+
"all_targets = np.array(all_targets).flatten()\n",
|
682 |
+
"all_preds = np.array(all_preds).flatten()\n",
|
683 |
+
"\n",
|
684 |
+
"model.load_state_dict(best_model_state_dict)\n",
|
685 |
+
"\n",
|
686 |
+
"print(classification_report(all_targets, all_preds, target_names=['background', 'tackle-live', 'tackle-replay']))\n"
|
687 |
+
]
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"cell_type": "markdown",
|
691 |
+
"id": "9d90b440-75a7-40d0-92f7-770973c52c48",
|
692 |
+
"metadata": {},
|
693 |
+
"source": [
|
694 |
+
"## Optimize hyperparams"
|
695 |
+
]
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"cell_type": "code",
|
699 |
+
"execution_count": null,
|
700 |
+
"id": "79d2914f-7397-42a8-9ba3-180b7aeba5cd",
|
701 |
+
"metadata": {},
|
702 |
+
"outputs": [],
|
703 |
+
"source": [
|
704 |
+
"import logging\n",
|
705 |
+
"import sys\n",
|
706 |
+
"import torch\n",
|
707 |
+
"import pandas as pd\n",
|
708 |
+
"import torch.nn as nn\n",
|
709 |
+
"from sklearn.metrics import classification_report\n",
|
710 |
+
"from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau\n",
|
711 |
+
"\n",
|
712 |
+
"\n",
|
713 |
+
"def objective(trial, train_loader, val_loader, num_epochs=10, device=torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")):\n",
|
714 |
+
" \n",
|
715 |
+
" model = TempTAC(input_size=1024, hidden_size=256, output_dim=3, num_layers=2, device=device, dropout_prob=0.5)\n",
|
716 |
+
"\n",
|
717 |
+
" \n",
|
718 |
+
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
719 |
+
" model.to(device)\n",
|
720 |
+
" \n",
|
721 |
+
" training_losses, validation_losses = [], []\n",
|
722 |
+
" \n",
|
723 |
+
" best_val = float('inf')\n",
|
724 |
+
" break_margin = 3\n",
|
725 |
+
" best_f1 = 0.0\n",
|
726 |
+
" \n",
|
727 |
+
" # Updated to use suggest_float with log=True\n",
|
728 |
+
" lr = trial.suggest_float('lr', 1e-6, 1e-2, log=True)\n",
|
729 |
+
" weight_decay = trial.suggest_float('weight_decay', 1e-6, 1e-3, log=True)\n",
|
730 |
+
" l1_lambda = trial.suggest_float('l1_lambda', 0, 0.001)\n",
|
731 |
+
" \n",
|
732 |
+
" classes = np.unique(y_train.cpu())\n",
|
733 |
+
" weights = compute_class_weight(class_weight='balanced', classes=classes, y=y_train.cpu().numpy())\n",
|
734 |
+
" class_weights = torch.tensor(weights, dtype=torch.float32).to(device)\n",
|
735 |
+
"\n",
|
736 |
+
"\n",
|
737 |
+
" optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)\n",
|
738 |
+
" criterion = nn.CrossEntropyLoss(weight=class_weights).to(device) \n",
|
739 |
+
" scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=4, verbose=True)\n",
|
740 |
+
" \n",
|
741 |
+
" batch_size = 256\n",
|
742 |
+
" \n",
|
743 |
+
" current_lr = optimizer.param_groups[0]['lr']\n",
|
744 |
+
" \n",
|
745 |
+
" \n",
|
746 |
+
" for epoch in range(num_epochs):\n",
|
747 |
+
" model.train()\n",
|
748 |
+
" total_train_loss = 0\n",
|
749 |
+
"\n",
|
750 |
+
" # Initialize hidden state for the first batch size\n",
|
751 |
+
" initial_batch = next(iter(train_loader))\n",
|
752 |
+
" \n",
|
753 |
+
" initial_batch_size = initial_batch[0].size(0)\n",
|
754 |
+
" \n",
|
755 |
+
" hidden = model.init_hidden(initial_batch_size)\n",
|
756 |
+
" clip_value = 1\n",
|
757 |
+
" for inputs, labels in train_loader:\n",
|
758 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
759 |
+
" current_batch_size = inputs.size(0)\n",
|
760 |
+
" \n",
|
761 |
+
" # Adjust hidden state size if current batch size differs from the initial batch size\n",
|
762 |
+
" if current_batch_size != initial_batch_size:\n",
|
763 |
+
" adjusted_hidden = (hidden[0][:, :current_batch_size, :].contiguous(),\n",
|
764 |
+
" hidden[1][:, :current_batch_size, :].contiguous())\n",
|
765 |
+
"\n",
|
766 |
+
" else:\n",
|
767 |
+
" adjusted_hidden = hidden\n",
|
768 |
+
" \n",
|
769 |
+
" outputs, adjusted_hidden = model(inputs, adjusted_hidden, current_batch_size)\n",
|
770 |
+
" \n",
|
771 |
+
" hidden = tuple([h.data for h in adjusted_hidden]) # Detach hidden state from graph to prevent backprop through entire dataset\n",
|
772 |
+
" \n",
|
773 |
+
" optimizer.zero_grad()\n",
|
774 |
+
" \n",
|
775 |
+
" # Calculate loss for the entire sequence at once\n",
|
776 |
+
" loss = criterion(outputs.transpose(1, 2), labels)\n",
|
777 |
+
" \n",
|
778 |
+
" #l1_norm = sum(torch.linalg.norm(p, 1) for p in model.parameters())\n",
|
779 |
+
" l1_norm = sum(p.abs().sum() for p in model.parameters())\n",
|
780 |
+
"\n",
|
781 |
+
" loss = loss + l1_lambda * l1_norm\n",
|
782 |
+
" \n",
|
783 |
+
" loss.backward()\n",
|
784 |
+
" torch.nn.utils.clip_grad_norm_(model.parameters(), clip_value) # gradient clipping\n",
|
785 |
+
" optimizer.step()\n",
|
786 |
+
" total_train_loss += loss.item()\n",
|
787 |
+
"\n",
|
788 |
+
" average_train_loss = total_train_loss / len(train_loader)\n",
|
789 |
+
" training_losses.append(average_train_loss) \n",
|
790 |
+
" \n",
|
791 |
+
" \n",
|
792 |
+
" model.eval()\n",
|
793 |
+
" total_val_loss = 0\n",
|
794 |
+
" all_preds = []\n",
|
795 |
+
" all_targets = []\n",
|
796 |
+
" total, correct = 0, 0\n",
|
797 |
+
" with torch.no_grad():\n",
|
798 |
+
" initial_batch = next(iter(val_loader))\n",
|
799 |
+
" initial_batch_size = initial_batch[0].size(0)\n",
|
800 |
+
" hidden = model.init_hidden(initial_batch_size)\n",
|
801 |
+
" \n",
|
802 |
+
" for inputs, labels in val_loader:\n",
|
803 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
804 |
+
" current_batch_size = inputs.size(0)\n",
|
805 |
+
" \n",
|
806 |
+
" # Adjust hidden state size if current batch size differs from the initial batch size\n",
|
807 |
+
" if current_batch_size != initial_batch_size:\n",
|
808 |
+
" adjusted_hidden = (hidden[0][:, :current_batch_size, :].contiguous(),\n",
|
809 |
+
" hidden[1][:, :current_batch_size, :].contiguous())\n",
|
810 |
+
" else:\n",
|
811 |
+
" adjusted_hidden = hidden\n",
|
812 |
+
" \n",
|
813 |
+
" outputs, adjusted_hidden = model(inputs, adjusted_hidden, current_batch_size)\n",
|
814 |
+
" val_loss = criterion(outputs.transpose(1, 2), labels)\n",
|
815 |
+
" total_val_loss += val_loss.item()\n",
|
816 |
+
"\n",
|
817 |
+
" for i in range(outputs.shape[1]):\n",
|
818 |
+
" _, predicted = torch.max(outputs[:, i, :].data, 1)\n",
|
819 |
+
" total += labels[:, i].size(0)\n",
|
820 |
+
" correct += (predicted.cpu() == labels[:, i].cpu()).sum().item()\n",
|
821 |
+
" \n",
|
822 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
823 |
+
" all_targets.extend(labels[:, i].cpu().numpy())\n",
|
824 |
+
"\n",
|
825 |
+
" average_val_loss = total_val_loss / len(val_loader)\n",
|
826 |
+
" validation_losses.append(average_val_loss) \n",
|
827 |
+
" accuracy = 100 * correct / total\n",
|
828 |
+
" scheduler.step(average_val_loss)\n",
|
829 |
+
" \n",
|
830 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(np.array(all_targets).flatten(), np.array(all_preds).flatten(), average='weighted', zero_division=0)\n",
|
831 |
+
" \n",
|
832 |
+
" if f1 > best_f1:\n",
|
833 |
+
" best_f1 = f1\n",
|
834 |
+
" best_epoch = epoch\n",
|
835 |
+
" best_model_state_dict = model.state_dict()\n",
|
836 |
+
" best_all_targets = all_targets\n",
|
837 |
+
" best_all_preds = all_preds\n",
|
838 |
+
" \n",
|
839 |
+
" current_lr = optimizer.param_groups[0]['lr']\n",
|
840 |
+
" \n",
|
841 |
+
" if val_loss < best_val:\n",
|
842 |
+
" best_val = val_loss\n",
|
843 |
+
" time_to_break = 0\n",
|
844 |
+
" else:\n",
|
845 |
+
" time_to_break += 1\n",
|
846 |
+
" \n",
|
847 |
+
" if time_to_break > break_margin:\n",
|
848 |
+
" #print('Break margin hit!')\n",
|
849 |
+
" break\n",
|
850 |
+
" \n",
|
851 |
+
" trial.report(f1, epoch)\n",
|
852 |
+
" if trial.should_prune():\n",
|
853 |
+
" raise optuna.TrialPruned()\n",
|
854 |
+
" \n",
|
855 |
+
" \n",
|
856 |
+
"\n",
|
857 |
+
" \n",
|
858 |
+
" return f1\n",
|
859 |
+
"\n",
|
860 |
+
"\n",
|
861 |
+
"study = optuna.create_study(direction='maximize', sampler=optuna.samplers.TPESampler())\n",
|
862 |
+
"\n",
|
863 |
+
"optuna.logging.get_logger('optuna').addHandler(logging.StreamHandler(sys.stdout))\n",
|
864 |
+
"\n",
|
865 |
+
"study.optimize(lambda trial: objective(trial, train_loader, val_loader, num_epochs=1000, device=device), n_trials=100)\n",
|
866 |
+
"\n",
|
867 |
+
"\n",
|
868 |
+
"# Save study data to a df\n",
|
869 |
+
"study_data = study.trials_dataframe()\n",
|
870 |
+
"\n",
|
871 |
+
"# Save the df to a csv\n",
|
872 |
+
"study_data.to_csv('study_data.csv', index=False)\n",
|
873 |
+
"\n",
|
874 |
+
"print(\"Best trial:\")\n",
|
875 |
+
"trial = study.best_trial\n",
|
876 |
+
"print(f\" Value: {trial.value}\")\n",
|
877 |
+
"print(\" Params: \")\n",
|
878 |
+
"for key, value in trial.params.items():\n",
|
879 |
+
" print(f\" {key}: {value}\")"
|
880 |
+
]
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"cell_type": "markdown",
|
884 |
+
"id": "07e04c1d-2a4c-43f5-a0c8-1fb20f84959f",
|
885 |
+
"metadata": {},
|
886 |
+
"source": [
|
887 |
+
"## Read saved optuna-study"
|
888 |
+
]
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"cell_type": "code",
|
892 |
+
"execution_count": 27,
|
893 |
+
"id": "ce47bc92-5b33-4561-bbc9-edd10f6a86d7",
|
894 |
+
"metadata": {},
|
895 |
+
"outputs": [],
|
896 |
+
"source": [
|
897 |
+
"# Load the csv saved above\n",
|
898 |
+
"study_data = pd.read_csv('study_data.csv')\n",
|
899 |
+
"\n",
|
900 |
+
"# Find the best trial (higher value is better = idxmax, min use idxmin)\n",
|
901 |
+
"best_trial = study_data.loc[study_data['value'].idxmax()]\n",
|
902 |
+
"\n",
|
903 |
+
"# Print info about best trial\n",
|
904 |
+
"print(\"Best Trial:\")\n",
|
905 |
+
"print(best_trial)\n",
|
906 |
+
"\n",
|
907 |
+
"# Print parameters of the best trial\n",
|
908 |
+
"print(\"\\nBest Trial Parameters:\")\n",
|
909 |
+
"for param in [col for col in study_data.columns if col.startswith('params_')]:\n",
|
910 |
+
" print(f\"{param.replace('params_', '')}: {best_trial[param]}\")\n"
|
911 |
+
]
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"cell_type": "code",
|
915 |
+
"execution_count": 1250,
|
916 |
+
"id": "afae28e4-417f-48a5-baf9-7e1be9aa3e15",
|
917 |
+
"metadata": {},
|
918 |
+
"outputs": [],
|
919 |
+
"source": [
|
920 |
+
"from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, accuracy_score\n",
|
921 |
+
"conf_matrix = confusion_matrix(np.array(all_targets).flatten(), np.array(all_preds).flatten())\n",
|
922 |
+
"# conf_matrix = confusion_matrix(all_preds, all_targets)\n",
|
923 |
+
"labels = [\"background\", \"tackle-live\", \"tackle-replay\"]\n",
|
924 |
+
"#labels = [\"background\", \"tackle-live\", \"tackle-replay\", \"tackle-live-incomplete\", \"tackle-replay-incomplete\"]\n",
|
925 |
+
"\n",
|
926 |
+
" \n",
|
927 |
+
"sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
|
928 |
+
"# plt.title('Confusion Matrix')\n",
|
929 |
+
"plt.xlabel('Predicted Label')\n",
|
930 |
+
"plt.ylabel('True Label')\n",
|
931 |
+
"#plt.savefig(\"new_best_8_context_frames_window_25.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
932 |
+
"plt.show()"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"cell_type": "markdown",
|
937 |
+
"id": "fa1b431a-63e7-4eb1-bca0-1d1c33ba0101",
|
938 |
+
"metadata": {
|
939 |
+
"tags": []
|
940 |
+
},
|
941 |
+
"source": [
|
942 |
+
"## Plot loss"
|
943 |
+
]
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"cell_type": "code",
|
947 |
+
"execution_count": 134,
|
948 |
+
"id": "1f6c292f-e5d9-4aad-a4df-fa0be0bb34d8",
|
949 |
+
"metadata": {},
|
950 |
+
"outputs": [],
|
951 |
+
"source": [
|
952 |
+
"scaler = MinMaxScaler()\n",
|
953 |
+
"\n",
|
954 |
+
"length=len(training_losses)\n",
|
955 |
+
"\n",
|
956 |
+
"# For better plotting, we normalize\n",
|
957 |
+
"training_losses_normalized = scaler.fit_transform(np.array(training_losses).reshape(-1, 1)).flatten()\n",
|
958 |
+
"validation_losses_normalized = scaler.fit_transform(np.array(validation_losses).reshape(-1, 1)).flatten()\n",
|
959 |
+
"\n",
|
960 |
+
"# Update df with normalized values\n",
|
961 |
+
"df = pd.DataFrame({\n",
|
962 |
+
" 'Epoch': np.arange(length),\n",
|
963 |
+
" 'Train Loss': training_losses_normalized,\n",
|
964 |
+
" 'Validation Loss': validation_losses_normalized\n",
|
965 |
+
"})\n",
|
966 |
+
"\n",
|
967 |
+
"# Plot normalized losses\n",
|
968 |
+
"plt.figure(figsize=(10, 6))\n",
|
969 |
+
"plt.plot(df['Epoch'], df['Train Loss'], label='Train Loss (Normalized)', marker='o')\n",
|
970 |
+
"plt.plot(df['Epoch'], df['Validation Loss'], label='Validation Loss (Normalized)', marker='o')\n",
|
971 |
+
"plt.title('Training vs Validation Loss (Normalized)')\n",
|
972 |
+
"plt.xlabel('Epoch')\n",
|
973 |
+
"plt.ylabel('Normalized Loss')\n",
|
974 |
+
"plt.legend()\n",
|
975 |
+
"plt.grid(True)\n",
|
976 |
+
"plt.tight_layout()\n",
|
977 |
+
"\n",
|
978 |
+
"# Save loss\n",
|
979 |
+
"#np.save('Optimized-reflected-run/training_losses-undersampled-window-75-sliding-window.npy', training_losses)\n",
|
980 |
+
"#np.save('Optimized-reflected-run/validation_losses-undersampled-window-75-sliding-window.npy', validation_losses)\n",
|
981 |
+
"#plt.savefig(f'Optimized-reflected-run/train_val_loss-undersampled-window-75-sliding-window.pdf', format='pdf')\n",
|
982 |
+
"\n",
|
983 |
+
"plt.show()"
|
984 |
+
]
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"cell_type": "markdown",
|
988 |
+
"id": "6d39fcce-8d36-42ed-ab48-2721e4d6dc20",
|
989 |
+
"metadata": {},
|
990 |
+
"source": [
|
991 |
+
"## Run inference on test-set"
|
992 |
+
]
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"cell_type": "code",
|
996 |
+
"execution_count": 153,
|
997 |
+
"id": "a03c40bf-6f14-4f48-a09a-5736ed2ce083",
|
998 |
+
"metadata": {},
|
999 |
+
"outputs": [],
|
1000 |
+
"source": [
|
1001 |
+
"# For loading prev models\n",
|
1002 |
+
"# model.load_state_dict(torch.load('Optimized-reflected-run/sliding-window/best_lstm-undersampled-window-25-sliding-window.pt'))\n",
|
1003 |
+
"\n",
|
1004 |
+
"def run_inference_test_set(): \n",
|
1005 |
+
" all_targets = []\n",
|
1006 |
+
" all_preds = []\n",
|
1007 |
+
"\n",
|
1008 |
+
" initial_batch_size = 256\n",
|
1009 |
+
"\n",
|
1010 |
+
" initial_batch = next(iter(test_loader))\n",
|
1011 |
+
"\n",
|
1012 |
+
" initial_batch_size = initial_batch[0].size(0)\n",
|
1013 |
+
"\n",
|
1014 |
+
" hidden = model.init_hidden(initial_batch_size)\n",
|
1015 |
+
"\n",
|
1016 |
+
" total_val_loss = 0\n",
|
1017 |
+
" total = 0\n",
|
1018 |
+
" correct = 0\n",
|
1019 |
+
"\n",
|
1020 |
+
" for i, (inputs, labels) in enumerate(test_loader):\n",
|
1021 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
1022 |
+
" current_batch_size = inputs.size(0)\n",
|
1023 |
+
"\n",
|
1024 |
+
" # Adjust hidden state size if current batch size differs from the initial batch size\n",
|
1025 |
+
" if current_batch_size != initial_batch_size:\n",
|
1026 |
+
" adjusted_hidden = (hidden[0][:, :current_batch_size, :].contiguous(),\n",
|
1027 |
+
" hidden[1][:, :current_batch_size, :].contiguous())\n",
|
1028 |
+
" else:\n",
|
1029 |
+
" adjusted_hidden = hidden\n",
|
1030 |
+
"\n",
|
1031 |
+
"\n",
|
1032 |
+
"\n",
|
1033 |
+
" outputs, adjusted_hidden = model(inputs, adjusted_hidden, current_batch_size)\n",
|
1034 |
+
"\n",
|
1035 |
+
" val_loss = criterion(outputs.transpose(1, 2), labels)\n",
|
1036 |
+
" total_val_loss += val_loss.item()\n",
|
1037 |
+
"\n",
|
1038 |
+
" for i in range(outputs.shape[1]):\n",
|
1039 |
+
" _, predicted = torch.max(outputs[:, i, :].data, 1)\n",
|
1040 |
+
" total += labels[:, i].size(0)\n",
|
1041 |
+
" correct += (predicted.cpu() == labels[:, i].cpu()).sum().item()\n",
|
1042 |
+
"\n",
|
1043 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
1044 |
+
" all_targets.extend(labels[:, i].cpu().numpy())\n",
|
1045 |
+
" return all_preds, all_targets \n",
|
1046 |
+
"\n",
|
1047 |
+
"\n",
|
1048 |
+
"test_predictions, test_targets = run_inference_test_set()\n",
|
1049 |
+
"\n",
|
1050 |
+
"\n",
|
1051 |
+
"# Plot classification report\n",
|
1052 |
+
"print(classification_report(test_targets, test_predictions, target_names=['background', 'tackle-live', 'tackle-replay']))\n",
|
1053 |
+
"\n",
|
1054 |
+
"# Create CM\n",
|
1055 |
+
"conf_matrix = confusion_matrix(test_targets, test_predictions)\n",
|
1056 |
+
"\n",
|
1057 |
+
"\n",
|
1058 |
+
"labels = [\"background\", \"tackle-live\", \"tackle-replay\"]\n",
|
1059 |
+
"\n",
|
1060 |
+
" \n",
|
1061 |
+
"sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
|
1062 |
+
"# plt.title('Confusion Matrix')\n",
|
1063 |
+
"plt.xlabel('Predicted Label')\n",
|
1064 |
+
"plt.ylabel('True Label')\n",
|
1065 |
+
"#plt.savefig(\"Optimized-reflected-run/best_lstm-undersampled-window-75-sliding-window.pdf\", format=\"pdf\", bbox_inches=\"tight\") \n",
|
1066 |
+
"plt.show()\n",
|
1067 |
+
"\n",
|
1068 |
+
"#torch.save(model.state_dict(), 'Optimized-reflected-run/best_lstm-undersampled-window-75-sliding-window.pt')"
|
1069 |
+
]
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"cell_type": "markdown",
|
1073 |
+
"id": "e850e4dd-72e2-4c94-8938-483787968faf",
|
1074 |
+
"metadata": {},
|
1075 |
+
"source": [
|
1076 |
+
"## Print ROC-curves"
|
1077 |
+
]
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"cell_type": "code",
|
1081 |
+
"execution_count": 154,
|
1082 |
+
"id": "bc0464b9-c3d7-4e4f-b821-7cca0b824b97",
|
1083 |
+
"metadata": {},
|
1084 |
+
"outputs": [],
|
1085 |
+
"source": [
|
1086 |
+
"from sklearn.metrics import roc_curve, auc\n",
|
1087 |
+
"from sklearn.preprocessing import label_binarize\n",
|
1088 |
+
"\n",
|
1089 |
+
"class_names = ['background', 'tackle-live', 'tackle-replay']\n",
|
1090 |
+
"n_classes = len(class_names)\n",
|
1091 |
+
"\n",
|
1092 |
+
"# binarize the targets and predictions for roc curve computation\n",
|
1093 |
+
"test_targets_bin = label_binarize(test_targets, classes=[0, 1, 2])\n",
|
1094 |
+
"test_predictions_bin = label_binarize(test_predictions, classes=[0, 1, 2])\n",
|
1095 |
+
"\n",
|
1096 |
+
"# roc curve and auc for each class\n",
|
1097 |
+
"fpr = {}\n",
|
1098 |
+
"tpr = {}\n",
|
1099 |
+
"roc_auc = {}\n",
|
1100 |
+
"\n",
|
1101 |
+
"for i in range(n_classes):\n",
|
1102 |
+
" fpr[i], tpr[i], _ = roc_curve(test_targets_bin[:, i], test_predictions_bin[:, i])\n",
|
1103 |
+
" roc_auc[i] = auc(fpr[i], tpr[i])\n",
|
1104 |
+
"\n",
|
1105 |
+
"# plot rpc curves for each class\n",
|
1106 |
+
"plt.figure(figsize=(8, 6))\n",
|
1107 |
+
"for i in range(n_classes):\n",
|
1108 |
+
" plt.plot(fpr[i], tpr[i], label=f'{class_names[i]} (AUC = {roc_auc[i]:.2f})')\n",
|
1109 |
+
" \n",
|
1110 |
+
" \n",
|
1111 |
+
"plt.plot([0, 1], [0, 1], 'k--')\n",
|
1112 |
+
"plt.xlim([0.0, 1.0])\n",
|
1113 |
+
"plt.grid(visible=True)\n",
|
1114 |
+
"plt.ylim([0.0, 1.05])\n",
|
1115 |
+
"plt.xlabel('False Positive Rate')\n",
|
1116 |
+
"plt.ylabel('True Positive Rate')\n",
|
1117 |
+
"plt.title('Multi-class ROC Curve')\n",
|
1118 |
+
"plt.legend(loc='lower right')\n",
|
1119 |
+
"#plt.savefig(\"Optimized-reflected-run/roc-curve-25-sliding-window.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
1120 |
+
"plt.show()"
|
1121 |
+
]
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"cell_type": "markdown",
|
1125 |
+
"id": "796b2578-bc9d-40f9-80be-0dafa79f5920",
|
1126 |
+
"metadata": {},
|
1127 |
+
"source": [
|
1128 |
+
"## Baseline class"
|
1129 |
+
]
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"cell_type": "code",
|
1133 |
+
"execution_count": 166,
|
1134 |
+
"id": "b1802e66",
|
1135 |
+
"metadata": {},
|
1136 |
+
"outputs": [],
|
1137 |
+
"source": [
|
1138 |
+
"class Simple1DCNN(nn.Module):\n",
|
1139 |
+
" def __init__(self, num_channels, num_classes):\n",
|
1140 |
+
" super(Simple1DCNN, self).__init__()\n",
|
1141 |
+
" self.conv1 = nn.Conv1d(in_channels=num_channels, out_channels=32, kernel_size=3, padding=1)\n",
|
1142 |
+
" self.fc1 = nn.Linear(32 * (sequence_length // 2), num_classes) # adjust based on pooling and input length\n",
|
1143 |
+
"\n",
|
1144 |
+
" def forward(self, x):\n",
|
1145 |
+
" # x.shape = (batch, channels, sequence_length)\n",
|
1146 |
+
" x = F.relu(self.conv1(x))\n",
|
1147 |
+
" x = F.max_pool1d(x, kernel_size=2)\n",
|
1148 |
+
" \n",
|
1149 |
+
" # flatten to fully connected layer\n",
|
1150 |
+
" x = x.view(x.size(0), -1)\n",
|
1151 |
+
" \n",
|
1152 |
+
" x = self.fc1(x)\n",
|
1153 |
+
" return x"
|
1154 |
+
]
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"cell_type": "markdown",
|
1158 |
+
"id": "2b6936c0-3ced-4a97-b7d7-f4c86afdc5d9",
|
1159 |
+
"metadata": {},
|
1160 |
+
"source": [
|
1161 |
+
"## Loss plotting"
|
1162 |
+
]
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"cell_type": "code",
|
1166 |
+
"execution_count": 245,
|
1167 |
+
"id": "73975c4d-ca4c-454f-9a62-9849037c7426",
|
1168 |
+
"metadata": {},
|
1169 |
+
"outputs": [],
|
1170 |
+
"source": [
|
1171 |
+
"import pandas as pd\n",
|
1172 |
+
"import seaborn as sns\n",
|
1173 |
+
"import matplotlib.pyplot as plt\n",
|
1174 |
+
"\n",
|
1175 |
+
"epochs = len(training_losses) # number of epochs\n",
|
1176 |
+
"\n",
|
1177 |
+
"df = pd.DataFrame({\n",
|
1178 |
+
" 'Epoch': [i for i in range(epochs)],\n",
|
1179 |
+
" 'Train Loss': training_losses,\n",
|
1180 |
+
" 'Validation Loss': validation_losses\n",
|
1181 |
+
"})\n",
|
1182 |
+
"\n",
|
1183 |
+
"plt.figure(figsize=(10, 6))\n",
|
1184 |
+
"plt.plot(df['Epoch'], df['Train Loss'], label='Train Loss', marker='o')\n",
|
1185 |
+
"plt.plot(df['Epoch'], df['Validation Loss'], label='Validation Loss', marker='o')\n",
|
1186 |
+
"plt.title('Training vs Validation Loss')\n",
|
1187 |
+
"plt.xlabel('Epoch')\n",
|
1188 |
+
"plt.ylabel('Loss')\n",
|
1189 |
+
"plt.legend()\n",
|
1190 |
+
"plt.grid(True)\n",
|
1191 |
+
"plt.tight_layout()\n",
|
1192 |
+
"\n",
|
1193 |
+
"plt.savefig(f'baseline_cnn_training_validation_loss_plot.pdf', format='pdf')\n",
|
1194 |
+
"plt.show()"
|
1195 |
+
]
|
1196 |
+
}
|
1197 |
+
],
|
1198 |
+
"metadata": {
|
1199 |
+
"kernelspec": {
|
1200 |
+
"display_name": "Python (evan31818)",
|
1201 |
+
"language": "python",
|
1202 |
+
"name": "evan31818"
|
1203 |
+
},
|
1204 |
+
"language_info": {
|
1205 |
+
"codemirror_mode": {
|
1206 |
+
"name": "ipython",
|
1207 |
+
"version": 3
|
1208 |
+
},
|
1209 |
+
"file_extension": ".py",
|
1210 |
+
"mimetype": "text/x-python",
|
1211 |
+
"name": "python",
|
1212 |
+
"nbconvert_exporter": "python",
|
1213 |
+
"pygments_lexer": "ipython3",
|
1214 |
+
"version": "3.8.19"
|
1215 |
+
}
|
1216 |
+
},
|
1217 |
+
"nbformat": 4,
|
1218 |
+
"nbformat_minor": 5
|
1219 |
+
}
|
spatial-approach.ipynb
ADDED
@@ -0,0 +1,1692 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "11353711-2a7e-47a3-b2f0-287a6b5d2e99",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Imports"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "d217c9c8-a9be-4920-9196-48e20a98db56",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, accuracy_score\n",
|
19 |
+
"from torch.utils.data import TensorDataset, DataLoader\n",
|
20 |
+
"from sklearn.model_selection import train_test_split\n",
|
21 |
+
"from sklearn.preprocessing import label_binarize\n",
|
22 |
+
"from sklearn.metrics import roc_curve, auc\n",
|
23 |
+
"from imblearn.over_sampling import SMOTE\n",
|
24 |
+
"from sklearn.decomposition import PCA\n",
|
25 |
+
"from collections import Counter\n",
|
26 |
+
"\n",
|
27 |
+
"import torch.nn.functional as F\n",
|
28 |
+
"import matplotlib.pyplot as plt\n",
|
29 |
+
"import torch.optim as optim\n",
|
30 |
+
"import torch.nn as nn\n",
|
31 |
+
"import seaborn as sns\n",
|
32 |
+
"import numpy as np\n",
|
33 |
+
"\n",
|
34 |
+
"import imblearn\n",
|
35 |
+
"import optuna\n",
|
36 |
+
"import torch\n",
|
37 |
+
"import json\n",
|
38 |
+
"import os\n",
|
39 |
+
"\n",
|
40 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "markdown",
|
45 |
+
"id": "6270ebec-f9d2-4d5e-a146-7d16a149445e",
|
46 |
+
"metadata": {},
|
47 |
+
"source": [
|
48 |
+
"## Load CLS-tokens and map 'incomplete-classes' to their respective full classes"
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "code",
|
53 |
+
"execution_count": 6,
|
54 |
+
"id": "ae95e2b9-b741-4582-b36c-e47a05c56d4c",
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"X = torch.load('/home/evan/D1/project/code/sorted_cls_tokens_features.pt', map_location=device)\n",
|
59 |
+
"#X = torch.load('/home/evan/D1/project/code/stretched_cls_tokens.pt', map_location=device)\n",
|
60 |
+
"#X = torch.load('/home/evan/D1/project/code/reflected_cls_tokens.pt', map_location=device)\n",
|
61 |
+
"\n",
|
62 |
+
"y = np.load('/home/evan/D1/project/code/sorted_cls_tokens_labels.npy')\n",
|
63 |
+
"frame_counts = np.load('/home/evan/D1/project/code/frame_counts.npy')\n",
|
64 |
+
"\n",
|
65 |
+
"\n",
|
66 |
+
"class_mapping = {0:0, 1: 1, 2: 2, 3: 1, 4: 2}\n",
|
67 |
+
"\n",
|
68 |
+
"for i, label in enumerate(y):\n",
|
69 |
+
" y[i] = class_mapping[label]\n",
|
70 |
+
"print('Done')"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"id": "2114fe95-f71c-47fc-a954-975cbfec28d4",
|
76 |
+
"metadata": {},
|
77 |
+
"source": [
|
78 |
+
"## Split into train, val on games"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 7,
|
84 |
+
"id": "458096f5-39fb-4dda-9c26-b580213cc22b",
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"# Calculate cumulative start indices of each video in the concatenated tensor\n",
|
89 |
+
"cumulative_starts = np.insert(np.cumsum(frame_counts), 0, 0)[:-1]\n",
|
90 |
+
"\n",
|
91 |
+
"\n",
|
92 |
+
"split_ratio = (0.7, 0.15, 0.15) #train, validation, test\n",
|
93 |
+
"\n",
|
94 |
+
"num_videos = len(frame_counts)\n",
|
95 |
+
"num_train_videos = int(num_videos * split_ratio[0])\n",
|
96 |
+
"num_val_videos = int(num_videos * split_ratio[1])\n",
|
97 |
+
"\n",
|
98 |
+
"# Ensure total does not exceed the number of videos\n",
|
99 |
+
"num_test_videos = num_videos - num_train_videos - num_val_videos\n",
|
100 |
+
"\n",
|
101 |
+
"# Shuffle video indices to split into training, validation, and test sets\n",
|
102 |
+
"video_indices = np.arange(num_videos)\n",
|
103 |
+
"np.random.seed(42)\n",
|
104 |
+
"np.random.shuffle(video_indices)\n",
|
105 |
+
"\n",
|
106 |
+
"train_video_indices = video_indices[:num_train_videos]\n",
|
107 |
+
"val_video_indices = video_indices[num_train_videos:num_train_videos + num_val_videos]\n",
|
108 |
+
"test_video_indices = video_indices[num_train_videos + num_val_videos:]\n",
|
109 |
+
"\n",
|
110 |
+
"# Initialize lists for indices\n",
|
111 |
+
"train_indices, val_indices, test_indices = [], [], []\n",
|
112 |
+
"\n",
|
113 |
+
"# Populate the index lists\n",
|
114 |
+
"for idx in train_video_indices:\n",
|
115 |
+
" start, end = cumulative_starts[idx], cumulative_starts[idx] + frame_counts[idx]\n",
|
116 |
+
" train_indices.extend(range(start, end))\n",
|
117 |
+
"\n",
|
118 |
+
"for idx in val_video_indices:\n",
|
119 |
+
" start, end = cumulative_starts[idx], cumulative_starts[idx] + frame_counts[idx]\n",
|
120 |
+
" val_indices.extend(range(start, end))\n",
|
121 |
+
"\n",
|
122 |
+
"for idx in test_video_indices:\n",
|
123 |
+
" start, end = cumulative_starts[idx], cumulative_starts[idx] + frame_counts[idx]\n",
|
124 |
+
" test_indices.extend(range(start, end))\n",
|
125 |
+
"\n",
|
126 |
+
"# Convert indices to tensors and extract corresponding subsets\n",
|
127 |
+
"train_indices = torch.tensor(train_indices)\n",
|
128 |
+
"val_indices = torch.tensor(val_indices)\n",
|
129 |
+
"test_indices = torch.tensor(test_indices)\n",
|
130 |
+
"\n",
|
131 |
+
"X_train, y_train = X[train_indices], y[train_indices]\n",
|
132 |
+
"X_val, y_val = X[val_indices], y[val_indices]\n",
|
133 |
+
"X_test, y_test = X[test_indices], y[test_indices]"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "markdown",
|
138 |
+
"id": "b97efc93-d7e0-4a2a-aa36-ef2ade8a60e3",
|
139 |
+
"metadata": {},
|
140 |
+
"source": [
|
141 |
+
"## Undersample and create undersampled train, val, test datasets"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 8,
|
147 |
+
"id": "3af2b8d2-014b-439f-bf68-5d59d64c2812",
|
148 |
+
"metadata": {},
|
149 |
+
"outputs": [],
|
150 |
+
"source": [
|
151 |
+
"def undersample_data(X, y, target_counts):\n",
|
152 |
+
" unique_classes, counts = np.unique(y, return_counts=True)\n",
|
153 |
+
" undersampled_indices = []\n",
|
154 |
+
" print(counts)\n",
|
155 |
+
" \n",
|
156 |
+
"\n",
|
157 |
+
" for cls in unique_classes:\n",
|
158 |
+
" if cls == 0 or cls == 2 or cls == 1:\n",
|
159 |
+
" cls_indices = np.where(y == cls)[0]\n",
|
160 |
+
"\n",
|
161 |
+
" undersampled_cls_indices = np.random.choice(cls_indices, target_counts[int(cls)], replace=False)\n",
|
162 |
+
" undersampled_indices.extend(undersampled_cls_indices)\n",
|
163 |
+
" else:\n",
|
164 |
+
" cls_indices = np.where(y == cls)[0]\n",
|
165 |
+
" \n",
|
166 |
+
" max_count = len(cls_indices)\n",
|
167 |
+
"\n",
|
168 |
+
" undersampled_cls_indices = np.random.choice(cls_indices, max_count, replace=False)\n",
|
169 |
+
" undersampled_indices.extend(undersampled_cls_indices)\n",
|
170 |
+
"\n",
|
171 |
+
" np.random.shuffle(undersampled_indices) # Shuffle to mix classes\n",
|
172 |
+
" X_undersampled = X[undersampled_indices]\n",
|
173 |
+
" y_undersampled = y[undersampled_indices]\n",
|
174 |
+
"\n",
|
175 |
+
" return X_undersampled, y_undersampled\n",
|
176 |
+
"\n",
|
177 |
+
"np.random.seed(42) # Set a specific random seed for reproducibility\n",
|
178 |
+
"\n",
|
179 |
+
"#X_train, y_train = undersample_data(X_train, y_train, {0: 2750, 1: 2750, 2: 5500})\n",
|
180 |
+
"X_train, y_train = undersample_data(X_train, y_train, {0: 4000, 1: 4000, 2: 4000})\n",
|
181 |
+
"\n",
|
182 |
+
"\n",
|
183 |
+
"#X_val, y_val = undersample_data(X_val, y_val, {0: 688, 1: 688, 2: 688})\n",
|
184 |
+
"#X_val, y_val = undersample_data(X_val, y_val, {0: 500, 1: 500, 2: 500})\n",
|
185 |
+
"X_val, y_val = undersample_data(X_val, y_val, {0: 1000, 1: 1000, 2: 1000})\n",
|
186 |
+
"\n",
|
187 |
+
"\n",
|
188 |
+
"\n",
|
189 |
+
"#X_test, y_test = undersample_data(X_test, y_test, {0: 688, 1: 688, 2: 688})\n",
|
190 |
+
"#X_test, y_test = undersample_data(X_test, y_test, {0: 500, 1: 500, 2: 500})\n",
|
191 |
+
"X_test, y_test = undersample_data(X_test, y_test, {0: 1000, 1: 1000, 2: 1000})"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "markdown",
|
196 |
+
"id": "d0902a93-f7e4-4b00-8e1c-50e860f045cc",
|
197 |
+
"metadata": {},
|
198 |
+
"source": [
|
199 |
+
"## Check counts"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 9,
|
205 |
+
"id": "c4ffc18f-b5c6-4932-98d4-38e926c3ca4f",
|
206 |
+
"metadata": {},
|
207 |
+
"outputs": [],
|
208 |
+
"source": [
|
209 |
+
"print(np.unique(y_train, return_counts=True))\n",
|
210 |
+
"print(np.unique(y_val, return_counts=True)) \n",
|
211 |
+
"print(np.unique(y_test, return_counts=True))"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "markdown",
|
216 |
+
"id": "7be26503-cbdf-490c-bac7-9df3604b10fc",
|
217 |
+
"metadata": {},
|
218 |
+
"source": [
|
219 |
+
"## Move all to device"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 10,
|
225 |
+
"id": "cd691b16-56a1-4bbb-bb66-e39b292263c1",
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"X_train = torch.tensor(X_train, dtype=torch.float32, device=device)\n",
|
230 |
+
"y_train = torch.tensor(y_train, dtype=torch.long, device=device)\n",
|
231 |
+
"\n",
|
232 |
+
"X_val = torch.tensor(X_val, dtype=torch.float32, device=device)\n",
|
233 |
+
"y_val = torch.tensor(y_val, dtype=torch.long, device=device)\n",
|
234 |
+
"\n",
|
235 |
+
"X_test = torch.tensor(X_test, dtype=torch.float32, device=device)\n",
|
236 |
+
"y_test = torch.tensor(y_test, dtype=torch.long, device=device)"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "markdown",
|
241 |
+
"id": "e4c6da28-32d2-4979-baa3-274d8304eb89",
|
242 |
+
"metadata": {},
|
243 |
+
"source": [
|
244 |
+
"## Create dataloaders for train, val, test"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": 11,
|
250 |
+
"id": "7084da3b-f3ff-42be-afcc-8dc30d4ef3e2",
|
251 |
+
"metadata": {},
|
252 |
+
"outputs": [],
|
253 |
+
"source": [
|
254 |
+
"batch_size = 128\n",
|
255 |
+
"\n",
|
256 |
+
"train_dataset = TensorDataset(X_train, y_train)\n",
|
257 |
+
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
|
258 |
+
"\n",
|
259 |
+
"val_dataset = TensorDataset(X_val, y_val)\n",
|
260 |
+
"val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n",
|
261 |
+
"\n",
|
262 |
+
"test_dataset = TensorDataset(X_test, y_test)\n",
|
263 |
+
"test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "markdown",
|
268 |
+
"id": "9121e433-74be-4391-a60a-f30f18005259",
|
269 |
+
"metadata": {
|
270 |
+
"tags": []
|
271 |
+
},
|
272 |
+
"source": [
|
273 |
+
"## Set folder-name to save data"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 12,
|
279 |
+
"id": "0552af31-7025-4afd-b639-069e6704ca0b",
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"folder = '/home/evan/D1/project/code/smaller_model/raw/'\n",
|
284 |
+
"\n",
|
285 |
+
"if not os.path.exists(folder):\n",
|
286 |
+
" os.makedirs(folder, exist_ok=True)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "markdown",
|
291 |
+
"id": "d4bdb1c0-4bac-4092-aee3-bd7833fc0036",
|
292 |
+
"metadata": {},
|
293 |
+
"source": [
|
294 |
+
"## Create and initalize model"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": 13,
|
300 |
+
"id": "6f34a0e4-1fe8-45e9-a459-07feee5cde69",
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"import torch\n",
|
305 |
+
"import torch.nn as nn\n",
|
306 |
+
"import torch.nn.functional as F\n",
|
307 |
+
"\n",
|
308 |
+
"class BaseModel(nn.Module):\n",
|
309 |
+
" def __init__(self):\n",
|
310 |
+
" super(BaseModel, self).__init__()\n",
|
311 |
+
" \n",
|
312 |
+
" self.fc1 = nn.Linear(1024, 64)\n",
|
313 |
+
" self.dropout1 = nn.Dropout(0.4)\n",
|
314 |
+
" self.bn1 = nn.BatchNorm1d(64)\n",
|
315 |
+
" \n",
|
316 |
+
" self.fc2 = nn.Linear(64, 32)\n",
|
317 |
+
" self.dropout2 = nn.Dropout(0.3)\n",
|
318 |
+
" self.bn2 = nn.BatchNorm1d(32)\n",
|
319 |
+
" \n",
|
320 |
+
" \n",
|
321 |
+
" self.fc3 = nn.Linear(32, 16)\n",
|
322 |
+
" self.dropout3 = nn.Dropout(0.2)\n",
|
323 |
+
" self.bn3 = nn.BatchNorm1d(16)\n",
|
324 |
+
" \n",
|
325 |
+
" \n",
|
326 |
+
" self.fc4 = nn.Linear(16, 3)\n",
|
327 |
+
"\n",
|
328 |
+
" def forward(self, x):\n",
|
329 |
+
" x = F.relu(self.bn1(self.fc1(x)))\n",
|
330 |
+
" x = self.dropout1(x)\n",
|
331 |
+
" \n",
|
332 |
+
" x = F.relu(self.bn2(self.fc2(x)))\n",
|
333 |
+
" x = self.dropout2(x)\n",
|
334 |
+
" \n",
|
335 |
+
" x = F.relu(self.bn3(self.fc3(x)))\n",
|
336 |
+
" x = self.dropout3(x)\n",
|
337 |
+
" \n",
|
338 |
+
" x = self.fc4(x)\n",
|
339 |
+
" return x\n",
|
340 |
+
"\n",
|
341 |
+
"model = BaseModel()\n",
|
342 |
+
"print(model)\n"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "markdown",
|
347 |
+
"id": "c4e9289a-d03b-40ce-961f-07b4d5e61bce",
|
348 |
+
"metadata": {},
|
349 |
+
"source": [
|
350 |
+
"## Check model parameters"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": 14,
|
356 |
+
"id": "7142cdef-fa50-4c21-aab2-39b7d54b4e17",
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [],
|
359 |
+
"source": [
|
360 |
+
"def count_parameters(model):\n",
|
361 |
+
" return sum(p.numel() for p in model.parameters() if p.requires_grad)\n",
|
362 |
+
"\n",
|
363 |
+
"#model = EnhancedMultiLayerClassifier(1024, 3)\n",
|
364 |
+
"print(\"Number of trainable parameters:\", count_parameters(model))\n"
|
365 |
+
]
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"cell_type": "markdown",
|
369 |
+
"id": "2b9c4905-3eae-44be-8aec-968bd0ed735e",
|
370 |
+
"metadata": {
|
371 |
+
"tags": []
|
372 |
+
},
|
373 |
+
"source": [
|
374 |
+
"## L1-regularization"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"execution_count": 15,
|
380 |
+
"id": "8b6b7352-6e2b-4a74-8289-122d8d521382",
|
381 |
+
"metadata": {},
|
382 |
+
"outputs": [],
|
383 |
+
"source": [
|
384 |
+
"def l1_regularization(model, lambda_l1):\n",
|
385 |
+
" l1_penalty = torch.tensor(0., device=device) \n",
|
386 |
+
" for param in model.parameters():\n",
|
387 |
+
" l1_penalty += torch.norm(param, 1)\n",
|
388 |
+
" return lambda_l1 * l1_penalty"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "markdown",
|
393 |
+
"id": "430e52ef-e84c-4c4b-8567-2a4376bc3bf6",
|
394 |
+
"metadata": {
|
395 |
+
"tags": []
|
396 |
+
},
|
397 |
+
"source": [
|
398 |
+
"## Training loop"
|
399 |
+
]
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"cell_type": "code",
|
403 |
+
"execution_count": 542,
|
404 |
+
"id": "8bb58a7d-66d2-46e5-9281-e1476d6f9da3",
|
405 |
+
"metadata": {},
|
406 |
+
"outputs": [],
|
407 |
+
"source": [
|
408 |
+
"config = [\n",
|
409 |
+
"{\n",
|
410 |
+
"'lr': 0.00023189475417053056, 'weight_decay': 0.06013631013820486, 'lambda_l1': 7.530339626757409e-05,\n",
|
411 |
+
"'epochs': 80,\n",
|
412 |
+
"'break_margin': 2,\n",
|
413 |
+
"'loss_function': 'CrossEntropy', # or 'FocalLoss'\n",
|
414 |
+
"'alpha': 0.9186381075849595, # Only relevant if using FocalLoss\n",
|
415 |
+
"'gamma': 0.2157540954710035 # Only relevant if using FocalLoss\n",
|
416 |
+
"}]\n",
|
417 |
+
"\n",
|
418 |
+
"def run_experiment(config):\n",
|
419 |
+
" #model = EnhancedMultiLayerClassifier(1024, 3).to(device)\n",
|
420 |
+
" model = BaseModel().to(device)\n",
|
421 |
+
" \n",
|
422 |
+
" if config['loss_function'] == 'CrossEntropy':\n",
|
423 |
+
" criterion = nn.CrossEntropyLoss().to(device)\n",
|
424 |
+
" \n",
|
425 |
+
" elif config['loss_function'] == 'FocalLoss':\n",
|
426 |
+
" # Assuming FocalLoss is defined elsewhere and compatible with your requirements\n",
|
427 |
+
" criterion = FocalLoss(alpha=config['alpha'], gamma=config['gamma'], reduction='mean').to(device)\n",
|
428 |
+
" \n",
|
429 |
+
" optimizer = optim.Adam(model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])\n",
|
430 |
+
" epochs = config['epochs']\n",
|
431 |
+
" break_margin = config['break_margin']\n",
|
432 |
+
" best_f1 = 0.0\n",
|
433 |
+
" time_to_break = 0\n",
|
434 |
+
" best_loss = float('inf')\n",
|
435 |
+
" train_losses, val_losses = [], []\n",
|
436 |
+
" output_file_path = os.path.join(folder, 'training_output_base.txt')\n",
|
437 |
+
"\n",
|
438 |
+
" \n",
|
439 |
+
" with open(output_file_path, 'w') as f:\n",
|
440 |
+
" for epoch in range(epochs):\n",
|
441 |
+
" model.train()\n",
|
442 |
+
" train_loss = 0\n",
|
443 |
+
" for X_batch, y_batch in train_loader:\n",
|
444 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
445 |
+
" optimizer.zero_grad()\n",
|
446 |
+
" outputs = model(X_batch)\n",
|
447 |
+
" loss = criterion(outputs, y_batch)\n",
|
448 |
+
"\n",
|
449 |
+
" # Calculate L1 regularization penalty to prevent overfitting\n",
|
450 |
+
" l1_penalty = l1_regularization(model, config['lambda_l1'])\n",
|
451 |
+
"\n",
|
452 |
+
" # Add L1 penalty to the loss\n",
|
453 |
+
" loss += l1_penalty\n",
|
454 |
+
"\n",
|
455 |
+
" loss.backward()\n",
|
456 |
+
" optimizer.step()\n",
|
457 |
+
" train_loss += loss.item()\n",
|
458 |
+
" train_losses.append(train_loss / len(train_loader))\n",
|
459 |
+
"\n",
|
460 |
+
" model.eval()\n",
|
461 |
+
" val_loss = 0\n",
|
462 |
+
" all_preds, all_targets, all_outputs = [], [], []\n",
|
463 |
+
" with torch.no_grad():\n",
|
464 |
+
" for X_batch, y_batch in val_loader:\n",
|
465 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
466 |
+
" outputs = model(X_batch)\n",
|
467 |
+
" loss = criterion(outputs, y_batch)\n",
|
468 |
+
" val_loss += loss.item()\n",
|
469 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
470 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
471 |
+
" all_targets.extend(y_batch.cpu().numpy())\n",
|
472 |
+
" all_outputs.extend(outputs.cpu().numpy())\n",
|
473 |
+
" val_losses.append(val_loss / len(val_loader))\n",
|
474 |
+
"\n",
|
475 |
+
" #precision_0, recall_0, f1_0, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
476 |
+
" precision_0, recall_0, f1_0, _ = precision_recall_fscore_support(all_targets, all_preds, labels=[2], average='macro', zero_division=0)\n",
|
477 |
+
" accuracy = accuracy_score(all_targets, all_preds)\n",
|
478 |
+
" \n",
|
479 |
+
" \n",
|
480 |
+
" output_str = f'Epoch {epoch+1}: Train Loss: {train_losses[-1]:.4f}, Val Loss: {val_losses[-1]:.4f}, Precision: {precision_0:.4f}, Recall: {recall_0:.4f}, F1: {f1_0:.4f}, Accuracy: {accuracy:.4f}\\n'\n",
|
481 |
+
" #f.write(output_str)\n",
|
482 |
+
" print(output_str, end='')\n",
|
483 |
+
" \n",
|
484 |
+
" \n",
|
485 |
+
" # Save the model if the f1 of the current epoch is the best\n",
|
486 |
+
" if f1_0 > best_f1:\n",
|
487 |
+
" best_f1 = f1_0\n",
|
488 |
+
" best_epoch = epoch\n",
|
489 |
+
" best_model_state_dict = model.state_dict()\n",
|
490 |
+
" best_all_targets = all_targets\n",
|
491 |
+
" best_all_preds = all_preds\n",
|
492 |
+
" # Define path for saving the model\n",
|
493 |
+
" best_model_path = os.path.join(folder, 'best_model_for_class_test.pt')\n",
|
494 |
+
" \n",
|
495 |
+
" if val_loss < best_loss:\n",
|
496 |
+
" best_loss = val_loss\n",
|
497 |
+
" time_to_break = 0\n",
|
498 |
+
" else:\n",
|
499 |
+
" time_to_break += 1\n",
|
500 |
+
" if time_to_break == break_margin:\n",
|
501 |
+
" print('Break margin hit')\n",
|
502 |
+
" break\n",
|
503 |
+
"\n",
|
504 |
+
" \n",
|
505 |
+
" return best_model_state_dict, best_all_targets, best_all_preds\n",
|
506 |
+
"\n",
|
507 |
+
"for config_index, config_ in enumerate(config):\n",
|
508 |
+
" print(f'Running configuration {config_index + 1}/{len(config)}')\n",
|
509 |
+
" best_model_state_dict, all_targets, all_preds = run_experiment(config_)\n",
|
510 |
+
"model.load_state_dict(best_model_state_dict)"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "markdown",
|
515 |
+
"id": "fc553e10-5f2b-465d-be1f-db80c2463272",
|
516 |
+
"metadata": {},
|
517 |
+
"source": [
|
518 |
+
"## Check entropy/mutual information in features"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "code",
|
523 |
+
"execution_count": 69,
|
524 |
+
"id": "f109848e-7ec5-43f1-9c2f-74b5598aeba6",
|
525 |
+
"metadata": {},
|
526 |
+
"outputs": [],
|
527 |
+
"source": [
|
528 |
+
"from sklearn.feature_selection import mutual_info_classif\n",
|
529 |
+
"\n",
|
530 |
+
"mi_scores = mutual_info_classif(X_val.cpu(), y_val)\n",
|
531 |
+
"\n",
|
532 |
+
"\n",
|
533 |
+
"# Calculate the average mutual information per feature\n",
|
534 |
+
"average_mi = np.mean(mi_scores)\n",
|
535 |
+
"print(\"Average Mutual Information per feature:\", average_mi)\n",
|
536 |
+
"\n",
|
537 |
+
"plt.bar(range(len(mi_scores)), mi_scores, edgecolor='none')\n",
|
538 |
+
"plt.xlabel('Features')\n",
|
539 |
+
"plt.ylabel('Mutual Information Score')\n",
|
540 |
+
"plt.title('MI Scores for Zero Padded Frame Features')\n",
|
541 |
+
"#plt.savefig(\"padded_mutual_information_feature.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
542 |
+
"plt.show()"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"cell_type": "markdown",
|
547 |
+
"id": "fbb1330f-3288-43fe-9f0e-873fe9d10bae",
|
548 |
+
"metadata": {},
|
549 |
+
"source": [
|
550 |
+
"## Optuna optimalization"
|
551 |
+
]
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"cell_type": "code",
|
555 |
+
"execution_count": 36,
|
556 |
+
"id": "51110ed4-0ee8-4642-b177-0b1343c021dd",
|
557 |
+
"metadata": {},
|
558 |
+
"outputs": [],
|
559 |
+
"source": [
|
560 |
+
"import logging\n",
|
561 |
+
"import sys\n",
|
562 |
+
"import time\n",
|
563 |
+
"\n",
|
564 |
+
"SEED = 13\n",
|
565 |
+
"torch.manual_seed(SEED)\n",
|
566 |
+
"\n",
|
567 |
+
"\n",
|
568 |
+
"def objective(trial):\n",
|
569 |
+
" lr = trial.suggest_float('lr', 1e-5, 1e-1, log=True)\n",
|
570 |
+
" weight_decay = trial.suggest_float(\"weight_decay\", 0, 0.1)\n",
|
571 |
+
" lambda_l1 = trial.suggest_float('lambda_l1', 0, 1e-2)\n",
|
572 |
+
" #gamma = trial.suggest_float('gamma', 0, 2)\n",
|
573 |
+
" #alpha = trial.suggest_float('alpha', 0, 1)\n",
|
574 |
+
" \n",
|
575 |
+
" model = BaseModel().to(device)\n",
|
576 |
+
"\n",
|
577 |
+
" \n",
|
578 |
+
" criterion = nn.CrossEntropyLoss().to(device)\n",
|
579 |
+
" \n",
|
580 |
+
" optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)\n",
|
581 |
+
" epochs = 40\n",
|
582 |
+
" best_val_f1 = 0\n",
|
583 |
+
" epochs_no_improve = 0 \n",
|
584 |
+
" \n",
|
585 |
+
" # Now I do. with smaller model!\n",
|
586 |
+
" early_stop_threshold = 2\n",
|
587 |
+
" \n",
|
588 |
+
" train_losses, val_losses = [], []\n",
|
589 |
+
" #output_file_path = os.path.join(folder, 'base_training_output.txt')\n",
|
590 |
+
"\n",
|
591 |
+
" for epoch in range(epochs):\n",
|
592 |
+
" model.train()\n",
|
593 |
+
" train_loss = 0\n",
|
594 |
+
" for X_batch, y_batch in train_loader:\n",
|
595 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
596 |
+
" optimizer.zero_grad()\n",
|
597 |
+
" outputs = model(X_batch)\n",
|
598 |
+
" loss = criterion(outputs, y_batch)\n",
|
599 |
+
"\n",
|
600 |
+
" # Calculate L1 regularization penalty to prevent overfitting\n",
|
601 |
+
" l1_penalty = l1_regularization(model, lambda_l1)\n",
|
602 |
+
"\n",
|
603 |
+
" # Add L1 penalty to the loss\n",
|
604 |
+
" loss += l1_penalty\n",
|
605 |
+
"\n",
|
606 |
+
" loss.backward()\n",
|
607 |
+
" optimizer.step()\n",
|
608 |
+
" train_loss += loss.item()\n",
|
609 |
+
" train_losses.append(train_loss / len(train_loader))\n",
|
610 |
+
"\n",
|
611 |
+
" model.eval()\n",
|
612 |
+
" val_loss = 0\n",
|
613 |
+
" all_preds, all_targets, all_outputs = [], [], []\n",
|
614 |
+
" with torch.no_grad():\n",
|
615 |
+
" for X_batch, y_batch in val_loader:\n",
|
616 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
617 |
+
" outputs = model(X_batch)\n",
|
618 |
+
" loss = criterion(outputs, y_batch)\n",
|
619 |
+
" val_loss += loss.item()\n",
|
620 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
621 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
622 |
+
" all_targets.extend(y_batch.cpu().numpy())\n",
|
623 |
+
" all_outputs.extend(outputs.cpu().numpy())\n",
|
624 |
+
" val_losses.append(val_loss / len(val_loader))\n",
|
625 |
+
"\n",
|
626 |
+
" precision_0, recall_0, f1_0, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
627 |
+
" #precision_0, recall_0, f1_0, _ = precision_recall_fscore_support(all_targets, all_preds, labels=[2], average='macro', zero_division=0)\n",
|
628 |
+
" accuracy = accuracy_score(all_targets, all_preds)\n",
|
629 |
+
" \n",
|
630 |
+
" if f1_0 > best_val_f1:\n",
|
631 |
+
" best_val_f1 = f1_0\n",
|
632 |
+
" epochs_no_improve = 0\n",
|
633 |
+
" else:\n",
|
634 |
+
" epochs_no_improve += 1\n",
|
635 |
+
"\n",
|
636 |
+
" if epochs_no_improve >= early_stop_threshold:\n",
|
637 |
+
" print(\"Stopping early due to no improvement\")\n",
|
638 |
+
" break\n",
|
639 |
+
" trial.report(f1_0, epoch)\n",
|
640 |
+
" if trial.should_prune():\n",
|
641 |
+
" raise optuna.TrialPruned()\n",
|
642 |
+
" return f1_0\n",
|
643 |
+
"\n",
|
644 |
+
"\n",
|
645 |
+
"#optuna.logging.get_logger('optuna').addHandler(logging.StreamHandler(sys.stdout))\n",
|
646 |
+
"study = optuna.create_study(direction='maximize', sampler=optuna.samplers.TPESampler(seed=SEED))\n",
|
647 |
+
"\n",
|
648 |
+
"\n",
|
649 |
+
"\n",
|
650 |
+
"\n",
|
651 |
+
"\n",
|
652 |
+
"\n",
|
653 |
+
"\n",
|
654 |
+
"start_time = time.time()\n",
|
655 |
+
"study.optimize(objective, n_trials=150)\n",
|
656 |
+
"end_time = time.time()\n",
|
657 |
+
"elapsed_time = end_time - start_time\n",
|
658 |
+
"\n",
|
659 |
+
"print(f\"Optimization took {elapsed_time:.2f} seconds.\")\n"
|
660 |
+
]
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"cell_type": "markdown",
|
664 |
+
"id": "4e81ee90-ddc9-430a-b526-02ce5fc8ed49",
|
665 |
+
"metadata": {
|
666 |
+
"tags": []
|
667 |
+
},
|
668 |
+
"source": [
|
669 |
+
"### Evaluate best model on test test"
|
670 |
+
]
|
671 |
+
},
|
672 |
+
{
|
673 |
+
"cell_type": "code",
|
674 |
+
"execution_count": 202,
|
675 |
+
"id": "ece25538-1719-45b8-b53a-077b99370761",
|
676 |
+
"metadata": {},
|
677 |
+
"outputs": [],
|
678 |
+
"source": [
|
679 |
+
"#model.load_state_dict(torch.load(os.path.join(folder, 'best_model_for_class_test.pt')))\n",
|
680 |
+
"#model.to(device)\n",
|
681 |
+
"\n",
|
682 |
+
"model.eval()\n",
|
683 |
+
"test_loss = 0\n",
|
684 |
+
"all_preds = []\n",
|
685 |
+
"all_targets = []\n",
|
686 |
+
"\n",
|
687 |
+
"\n",
|
688 |
+
"with torch.no_grad(): \n",
|
689 |
+
" for X_batch, y_batch in test_loader:\n",
|
690 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
691 |
+
" outputs = model(X_batch)\n",
|
692 |
+
" loss = criterion(outputs, y_batch)\n",
|
693 |
+
" test_loss += loss.item()\n",
|
694 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
695 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
696 |
+
" all_targets.extend(y_batch.cpu().numpy())\n",
|
697 |
+
"\n",
|
698 |
+
"test_loss /= len(val_loader)\n",
|
699 |
+
"precision, recall, f1, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
700 |
+
"accuracy = accuracy_score(all_targets, all_preds)\n",
|
701 |
+
"\n",
|
702 |
+
"test_output_str = f'Test Loss: {test_loss:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}, Accuracy: {accuracy:.4f}\\n'\n",
|
703 |
+
"print(test_output_str)\n",
|
704 |
+
"\n",
|
705 |
+
"\n",
|
706 |
+
"cm = showConfMatrix(all_targets, all_preds)\n",
|
707 |
+
"showClassWiseAcc(cm)"
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "markdown",
|
712 |
+
"id": "e925a5cf-4961-4f8a-b3df-5a2876a19e4f",
|
713 |
+
"metadata": {
|
714 |
+
"tags": []
|
715 |
+
},
|
716 |
+
"source": [
|
717 |
+
"# Plots and metrics"
|
718 |
+
]
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"cell_type": "markdown",
|
722 |
+
"id": "e4c8321e-674a-4328-aedd-d2b6c7b1c0cc",
|
723 |
+
"metadata": {
|
724 |
+
"tags": []
|
725 |
+
},
|
726 |
+
"source": [
|
727 |
+
"## Plot imports"
|
728 |
+
]
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"cell_type": "code",
|
732 |
+
"execution_count": 24,
|
733 |
+
"id": "cf291c8d-d70c-4daf-bd74-483a5b071897",
|
734 |
+
"metadata": {},
|
735 |
+
"outputs": [],
|
736 |
+
"source": [
|
737 |
+
"from sklearn.metrics import precision_recall_curve\n",
|
738 |
+
"from sklearn.preprocessing import label_binarize\n",
|
739 |
+
"from sklearn.metrics import roc_curve, auc\n",
|
740 |
+
"from itertools import cycle\n",
|
741 |
+
"from sklearn.metrics import classification_report"
|
742 |
+
]
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"cell_type": "markdown",
|
746 |
+
"id": "7da930eb-005d-4d22-9295-5b3f38143ccd",
|
747 |
+
"metadata": {
|
748 |
+
"tags": []
|
749 |
+
},
|
750 |
+
"source": [
|
751 |
+
"### Metric-classes"
|
752 |
+
]
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"cell_type": "code",
|
756 |
+
"execution_count": 278,
|
757 |
+
"id": "58460399-1a01-4353-9198-f142a492d19a",
|
758 |
+
"metadata": {},
|
759 |
+
"outputs": [],
|
760 |
+
"source": [
|
761 |
+
"def showConfMatrix(all_targets, all_preds):\n",
|
762 |
+
" conf_matrix = confusion_matrix(all_targets, all_preds)\n",
|
763 |
+
" # conf_matrix = confusion_matrix(all_preds, all_targets)\n",
|
764 |
+
" labels = [\"background\", \"tackle-live\", \"tackle-replay\"]\n",
|
765 |
+
" #labels = [\"background\", \"tackle-live\", \"tackle-replay\", \"tackle-live-incomplete\", \"tackle-replay-incomplete\"]\n",
|
766 |
+
"\n",
|
767 |
+
"\n",
|
768 |
+
" sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
|
769 |
+
" # plt.title('Confusion Matrix')\n",
|
770 |
+
" plt.xlabel('Predicted Label')\n",
|
771 |
+
" plt.ylabel('True Label')\n",
|
772 |
+
" #plt.savefig(f\"{folder}/confusionMatrixSmoteBalance_{epochs_ran}.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
773 |
+
" plt.show()\n",
|
774 |
+
" return conf_matrix"
|
775 |
+
]
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"cell_type": "code",
|
779 |
+
"execution_count": 279,
|
780 |
+
"id": "4f658992-815e-48e0-b2b5-f8d049b306f2",
|
781 |
+
"metadata": {},
|
782 |
+
"outputs": [],
|
783 |
+
"source": [
|
784 |
+
"def showClassWiseAcc(conf_matrix):\n",
|
785 |
+
" # Calculate accuracy per class\n",
|
786 |
+
" class_accuracies = conf_matrix.diagonal() / conf_matrix.sum(axis=1)\n",
|
787 |
+
"\n",
|
788 |
+
" # Prepare accuracy data for writing to file\n",
|
789 |
+
" accuracy_data = \"\\n\".join([f\"Accuracy for class {i}: {class_accuracies[i]:.4f}\" for i in range(len(class_accuracies))])\n",
|
790 |
+
"\n",
|
791 |
+
" # Print accuracy per class and write to a file\n",
|
792 |
+
" print(accuracy_data) # Print to console\n",
|
793 |
+
"\n",
|
794 |
+
" # Define the filename\n",
|
795 |
+
" accuracy_file_path = os.path.join(folder, \"class_accuracies.txt\")"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"cell_type": "markdown",
|
800 |
+
"id": "dcad796c-110f-49ea-8346-37f065f0da63",
|
801 |
+
"metadata": {
|
802 |
+
"tags": []
|
803 |
+
},
|
804 |
+
"source": [
|
805 |
+
"## Confusion Matrix"
|
806 |
+
]
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"cell_type": "code",
|
810 |
+
"execution_count": 40,
|
811 |
+
"id": "619c80b5-7740-48af-b12e-bff5a310475e",
|
812 |
+
"metadata": {},
|
813 |
+
"outputs": [],
|
814 |
+
"source": [
|
815 |
+
"cm = showConfMatrix(all_targets, all_preds)"
|
816 |
+
]
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"cell_type": "markdown",
|
820 |
+
"id": "45e7bf15-8100-4659-a51e-5a1b3d02f303",
|
821 |
+
"metadata": {
|
822 |
+
"tags": []
|
823 |
+
},
|
824 |
+
"source": [
|
825 |
+
"## Accuracy per class"
|
826 |
+
]
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"cell_type": "code",
|
830 |
+
"execution_count": 545,
|
831 |
+
"id": "a81ccac7-98d4-42af-ae0a-26327cdd4483",
|
832 |
+
"metadata": {},
|
833 |
+
"outputs": [],
|
834 |
+
"source": [
|
835 |
+
"cm = showConfMatrix(all_targets, all_preds)\n",
|
836 |
+
"showClassWiseAcc(cm)\n",
|
837 |
+
"labels = [\"background\", \"tackle-live\", \"tackle-replay\"]\n",
|
838 |
+
"\n",
|
839 |
+
"print(classification_report(all_targets, all_preds, target_names=labels))\n",
|
840 |
+
"#torch.save(model.state_dict(), f'{folder}/class_2_74_93_82.pt')\n"
|
841 |
+
]
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"cell_type": "markdown",
|
845 |
+
"id": "f9bd689a-50eb-45d0-b150-0cb2c2fad1c1",
|
846 |
+
"metadata": {
|
847 |
+
"jp-MarkdownHeadingCollapsed": true,
|
848 |
+
"tags": []
|
849 |
+
},
|
850 |
+
"source": [
|
851 |
+
"## ROC Curve"
|
852 |
+
]
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"cell_type": "code",
|
856 |
+
"execution_count": 74,
|
857 |
+
"id": "698d1d4c-d02a-4fd9-899b-42afabccc652",
|
858 |
+
"metadata": {},
|
859 |
+
"outputs": [],
|
860 |
+
"source": [
|
861 |
+
"y_score= np.array(all_outputs)\n",
|
862 |
+
"fpr = dict()\n",
|
863 |
+
"tpr = dict()\n",
|
864 |
+
"roc_auc = dict()\n",
|
865 |
+
"n_classes = len(labels) \n",
|
866 |
+
"\n",
|
867 |
+
"y_test_one_hot = np.eye(n_classes)[y_val.cpu()]\n",
|
868 |
+
"\n",
|
869 |
+
"for i in range(n_classes):\n",
|
870 |
+
" fpr[i], tpr[i], _ = roc_curve(y_test_one_hot[:, i], y_score[:, i])\n",
|
871 |
+
" roc_auc[i] = auc(fpr[i], tpr[i])\n",
|
872 |
+
"\n",
|
873 |
+
"# Plot all ROC curves\n",
|
874 |
+
"plt.figure()\n",
|
875 |
+
"colors = ['blue', 'red', 'green', 'darkorange', 'purple']\n",
|
876 |
+
"for i, color in zip(range(n_classes), colors):\n",
|
877 |
+
" plt.plot(fpr[i], tpr[i], color=color, lw=2,\n",
|
878 |
+
" label='ROC curve of class {0} (area = {1:0.2f})'\n",
|
879 |
+
" ''.format(labels[i], roc_auc[i]))\n",
|
880 |
+
"\n",
|
881 |
+
"plt.plot([0, 1], [0, 1], 'k--', lw=2)\n",
|
882 |
+
"plt.xlim([0.0, 1.0])\n",
|
883 |
+
"plt.ylim([0.0, 1.05])\n",
|
884 |
+
"plt.xlabel('False Positive Rate')\n",
|
885 |
+
"plt.ylabel('True Positive Rate')\n",
|
886 |
+
"print('Receiver operating characteristic for multi-class')\n",
|
887 |
+
"plt.legend(loc=\"lower right\")\n",
|
888 |
+
"plt.savefig(f\"{folder}/ROCCurveSmoteBalance_{epochs_ran}.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
889 |
+
"plt.show()"
|
890 |
+
]
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"cell_type": "markdown",
|
894 |
+
"id": "3b7c80c8-6fad-4b70-b8e3-b584639fce97",
|
895 |
+
"metadata": {
|
896 |
+
"tags": []
|
897 |
+
},
|
898 |
+
"source": [
|
899 |
+
"## Multi-Class Precision-Recall Cruve"
|
900 |
+
]
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"cell_type": "code",
|
904 |
+
"execution_count": 75,
|
905 |
+
"id": "71c9b34d-46be-4be2-b77a-f9734a6f5683",
|
906 |
+
"metadata": {},
|
907 |
+
"outputs": [],
|
908 |
+
"source": [
|
909 |
+
"y_test_bin = label_binarize(y_val.cpu(), classes=range(n_classes))\n",
|
910 |
+
"\n",
|
911 |
+
"precision_recall = {}\n",
|
912 |
+
"\n",
|
913 |
+
"for i in range(n_classes):\n",
|
914 |
+
" precision, recall, _ = precision_recall_curve(y_test_bin[:, i], y_score[:, i])\n",
|
915 |
+
" precision_recall[i] = (precision, recall)\n",
|
916 |
+
"\n",
|
917 |
+
"colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal'])\n",
|
918 |
+
"\n",
|
919 |
+
"plt.figure(figsize=(6, 4))\n",
|
920 |
+
"\n",
|
921 |
+
"for i, color in zip(range(n_classes), colors):\n",
|
922 |
+
" precision, recall = precision_recall[i]\n",
|
923 |
+
" plt.plot(recall, precision, color=color, lw=2, label=f'{labels[i]}')\n",
|
924 |
+
"\n",
|
925 |
+
"plt.xlabel('Recall')\n",
|
926 |
+
"plt.ylabel('Precision')\n",
|
927 |
+
"print('Multi-Class Precision-Recall Curve')\n",
|
928 |
+
"plt.legend(loc='best')\n",
|
929 |
+
"plt.savefig(f\"{folder}/MultiClassPRCurveSmoteBalance_{epochs_ran}.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
930 |
+
"plt.show()"
|
931 |
+
]
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"cell_type": "markdown",
|
935 |
+
"id": "bbf3db37-57cd-4e32-80ba-0a29047d2015",
|
936 |
+
"metadata": {
|
937 |
+
"tags": []
|
938 |
+
},
|
939 |
+
"source": [
|
940 |
+
"# Meta Learner"
|
941 |
+
]
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"cell_type": "markdown",
|
945 |
+
"id": "6e9d5d36-1a7d-4b8e-8c16-04aa416ff1a0",
|
946 |
+
"metadata": {},
|
947 |
+
"source": [
|
948 |
+
"By stacking outputs from 3 models, all with one speciality, we train a meta-model/meta-learner by feeding it all 3 models input and the correct label, so it is able to learn where there are strenghts and weaknesses of the other three models. This is done by stacking the base-models outputs to later use as input data for training the meta-learner."
|
949 |
+
]
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"cell_type": "code",
|
953 |
+
"execution_count": 16,
|
954 |
+
"id": "51db8fbd-067f-4f67-8871-591338657714",
|
955 |
+
"metadata": {},
|
956 |
+
"outputs": [],
|
957 |
+
"source": [
|
958 |
+
"folder1 = '/home/evan/D1/project/code/smaller_model/raw_training/'"
|
959 |
+
]
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"cell_type": "markdown",
|
963 |
+
"id": "ee8bb02e-fb57-416d-b056-021e6e53a843",
|
964 |
+
"metadata": {},
|
965 |
+
"source": [
|
966 |
+
"## Generate base-model outputs"
|
967 |
+
]
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"cell_type": "code",
|
971 |
+
"execution_count": 18,
|
972 |
+
"id": "6f766c76-c779-4007-b299-324106fae0ce",
|
973 |
+
"metadata": {},
|
974 |
+
"outputs": [],
|
975 |
+
"source": [
|
976 |
+
"model0 = BaseModel().to(device)\n",
|
977 |
+
"model1 = BaseModel().to(device)\n",
|
978 |
+
"model2 = BaseModel().to(device)\n",
|
979 |
+
"\n",
|
980 |
+
"\n",
|
981 |
+
" \n",
|
982 |
+
"model0.load_state_dict(torch.load(os.path.join(f'{folder1}', 'class_0/class_0_65_79_71.pt')))\n",
|
983 |
+
"model0.to(device)\n",
|
984 |
+
"\n",
|
985 |
+
"model1.load_state_dict(torch.load(os.path.join(f'{folder1}', 'class_1/class_1_74_93_83.pt')))\n",
|
986 |
+
"model1.to(device)\n",
|
987 |
+
"\n",
|
988 |
+
"model2.load_state_dict(torch.load(os.path.join(f'{folder1}', 'class_2/class_2_84_90_87.pt')))\n",
|
989 |
+
"model2.to(device)\n",
|
990 |
+
"\n",
|
991 |
+
"base_model_outputs = []\n",
|
992 |
+
"\n",
|
993 |
+
"with torch.no_grad():\n",
|
994 |
+
" for X_batch, _ in val_loader:\n",
|
995 |
+
" X_batch = X_batch.to(device)\n",
|
996 |
+
" # Store the probabilities, not the class predictions\n",
|
997 |
+
" probs0 = torch.softmax(model0(X_batch), dim=1)\n",
|
998 |
+
" probs1 = torch.softmax(model1(X_batch), dim=1)\n",
|
999 |
+
" probs2 = torch.softmax(model2(X_batch), dim=1)\n",
|
1000 |
+
" \n",
|
1001 |
+
" # Concatenate the model outputs along feature dimension\n",
|
1002 |
+
" model_output = torch.cat((probs0, probs1, probs2), dim=1)\n",
|
1003 |
+
" \n",
|
1004 |
+
" base_model_outputs.append(model_output)\n",
|
1005 |
+
"\n",
|
1006 |
+
"# Stack all batches to form the complete set of base model outputs\n",
|
1007 |
+
"base_model_outputs = torch.cat(base_model_outputs, dim=0)\n"
|
1008 |
+
]
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"cell_type": "markdown",
|
1012 |
+
"id": "342dd954-803b-4d4d-bcec-56bdd2fd3166",
|
1013 |
+
"metadata": {},
|
1014 |
+
"source": [
|
1015 |
+
"### Meta-Learner class"
|
1016 |
+
]
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"cell_type": "code",
|
1020 |
+
"execution_count": 19,
|
1021 |
+
"id": "6ec860ca-ff28-402b-b1c2-263283057b27",
|
1022 |
+
"metadata": {},
|
1023 |
+
"outputs": [],
|
1024 |
+
"source": [
|
1025 |
+
"import torch.nn as nn\n",
|
1026 |
+
"import torch.nn.init as init\n",
|
1027 |
+
"\n",
|
1028 |
+
"class MetaModel(nn.Module):\n",
|
1029 |
+
" def __init__(self, input_size, num_classes=3):\n",
|
1030 |
+
" super(MetaModel, self).__init__()\n",
|
1031 |
+
" \n",
|
1032 |
+
" self.network = nn.Sequential(\n",
|
1033 |
+
" nn.Linear(input_size, 32),\n",
|
1034 |
+
" nn.BatchNorm1d(32), \n",
|
1035 |
+
" nn.ReLU(),\n",
|
1036 |
+
" nn.Dropout(0.3),\n",
|
1037 |
+
" \n",
|
1038 |
+
" nn.Linear(32, num_classes),\n",
|
1039 |
+
" nn.LogSoftmax(dim=1)\n",
|
1040 |
+
" )\n",
|
1041 |
+
" \n",
|
1042 |
+
" # Apply kaiming initialization to all linear layers\n",
|
1043 |
+
" self.apply(self.initialize_weights)\n",
|
1044 |
+
"\n",
|
1045 |
+
" def forward(self, x):\n",
|
1046 |
+
" x = self.network(x)\n",
|
1047 |
+
" return x\n",
|
1048 |
+
"\n",
|
1049 |
+
" def initialize_weights(self, m):\n",
|
1050 |
+
" if isinstance(m, nn.Linear):\n",
|
1051 |
+
" init.kaiming_uniform_(m.weight, nonlinearity='relu')\n",
|
1052 |
+
" if m.bias is not None:\n",
|
1053 |
+
" init.constant_(m.bias, 0)\n"
|
1054 |
+
]
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"cell_type": "markdown",
|
1058 |
+
"id": "580ad04e-8ad0-40a9-b8ce-94006dd7d114",
|
1059 |
+
"metadata": {},
|
1060 |
+
"source": [
|
1061 |
+
"## Split basemodel-outputs to train, val"
|
1062 |
+
]
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"cell_type": "code",
|
1066 |
+
"execution_count": 20,
|
1067 |
+
"id": "7c935eb9-daba-45e4-807d-17b7e47d57ed",
|
1068 |
+
"metadata": {},
|
1069 |
+
"outputs": [],
|
1070 |
+
"source": [
|
1071 |
+
"y_val = torch.cat([y for _, y in val_loader], dim=0) # Just to make sure y_val is y_val, extract from val_loader\n",
|
1072 |
+
"\n",
|
1073 |
+
"print(np.unique(y_val.cpu().numpy(), return_counts=True))\n",
|
1074 |
+
"\n",
|
1075 |
+
"X_meta_train, X_meta_val, y_meta_train, y_meta_val = train_test_split(\n",
|
1076 |
+
" base_model_outputs.cpu().numpy(), \n",
|
1077 |
+
" y_val.cpu().numpy(), \n",
|
1078 |
+
" test_size=0.2, \n",
|
1079 |
+
" random_state=42\n",
|
1080 |
+
")\n",
|
1081 |
+
"\n",
|
1082 |
+
"input_size = base_model_outputs.size(1) # Will be 3*num_classes (3 models now) so 9"
|
1083 |
+
]
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"cell_type": "markdown",
|
1087 |
+
"id": "79008d19-0814-4b21-beaf-b2851d6d5616",
|
1088 |
+
"metadata": {},
|
1089 |
+
"source": [
|
1090 |
+
"## Create dataloaders"
|
1091 |
+
]
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"cell_type": "code",
|
1095 |
+
"execution_count": 21,
|
1096 |
+
"id": "772650c2-90ba-40d6-b0e5-1be0c60b664e",
|
1097 |
+
"metadata": {},
|
1098 |
+
"outputs": [],
|
1099 |
+
"source": [
|
1100 |
+
"\n",
|
1101 |
+
"# Convert numpy arrays back to tensors for training\n",
|
1102 |
+
"X_meta_train = torch.tensor(X_meta_train, dtype=torch.float).to(device)\n",
|
1103 |
+
"y_meta_train = torch.tensor(y_meta_train, dtype=torch.long).to(device)\n",
|
1104 |
+
"X_meta_val = torch.tensor(X_meta_val, dtype=torch.float).to(device)\n",
|
1105 |
+
"y_meta_val = torch.tensor(y_meta_val, dtype=torch.long).to(device)\n",
|
1106 |
+
"\n",
|
1107 |
+
"train_meta_dataset = TensorDataset(X_meta_train, y_meta_train)\n",
|
1108 |
+
"train_meta_loader = DataLoader(train_meta_dataset, batch_size=64, shuffle=True)\n",
|
1109 |
+
"\n",
|
1110 |
+
"val_meta_dataset = TensorDataset(X_meta_val, y_meta_val)\n",
|
1111 |
+
"val_meta_loader = DataLoader(val_meta_dataset, batch_size=64, shuffle=False)\n"
|
1112 |
+
]
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"cell_type": "markdown",
|
1116 |
+
"id": "7341faac-bfb6-4aff-be2b-2b98a398d55e",
|
1117 |
+
"metadata": {},
|
1118 |
+
"source": [
|
1119 |
+
"## Optimize meta-learner"
|
1120 |
+
]
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"cell_type": "code",
|
1124 |
+
"execution_count": 181,
|
1125 |
+
"id": "bbb99bb4-875f-4df2-8173-70ad2679f9a8",
|
1126 |
+
"metadata": {},
|
1127 |
+
"outputs": [],
|
1128 |
+
"source": [
|
1129 |
+
"import logging\n",
|
1130 |
+
"import sys\n",
|
1131 |
+
"\n",
|
1132 |
+
"SEED = 13\n",
|
1133 |
+
"torch.manual_seed(SEED)\n",
|
1134 |
+
"\n",
|
1135 |
+
"#criterion = FocalLoss(alpha=1, gamma=2, reduction='mean')\n",
|
1136 |
+
"\n",
|
1137 |
+
"# Convert numpy arrays back to tensors for training\n",
|
1138 |
+
"X_meta_train = torch.tensor(X_meta_train, dtype=torch.float).to(device)\n",
|
1139 |
+
"y_meta_train = torch.tensor(y_meta_train, dtype=torch.long).to(device)\n",
|
1140 |
+
"X_meta_val = torch.tensor(X_meta_val, dtype=torch.float).to(device)\n",
|
1141 |
+
"y_meta_val = torch.tensor(y_meta_val, dtype=torch.long).to(device)\n",
|
1142 |
+
"\n",
|
1143 |
+
"train_meta_dataset = TensorDataset(X_meta_train, y_meta_train)\n",
|
1144 |
+
"train_meta_loader = DataLoader(train_meta_dataset, batch_size=64, shuffle=True)\n",
|
1145 |
+
"\n",
|
1146 |
+
"val_meta_dataset = TensorDataset(X_meta_val, y_meta_val)\n",
|
1147 |
+
"val_meta_loader = DataLoader(val_meta_dataset, batch_size=64, shuffle=False)\n",
|
1148 |
+
"\n",
|
1149 |
+
"\n",
|
1150 |
+
"\n",
|
1151 |
+
"def objective(trial):\n",
|
1152 |
+
" lr = trial.suggest_float('lr', 1e-5, 1e-1, log=True)\n",
|
1153 |
+
" weight_decay = trial.suggest_float(\"weight_decay\", 0, 0.1)\n",
|
1154 |
+
" lambda_l1 = trial.suggest_float('lambda_l1', 0, 1e-2)\n",
|
1155 |
+
" #gamma = trial.suggest_float('gamma', 0, 2)\n",
|
1156 |
+
" #alpha = trial.suggest_float('alpha', 0, 1)\n",
|
1157 |
+
" \n",
|
1158 |
+
" meta_model = MetaModel(input_size=input_size).to(device) \n",
|
1159 |
+
" optimizer = torch.optim.Adam(meta_model.parameters(), lr=lr, weight_decay=weight_decay)\n",
|
1160 |
+
" criterion = nn.CrossEntropyLoss()\n",
|
1161 |
+
"\n",
|
1162 |
+
" #model0, model1, model2 = get_models()\n",
|
1163 |
+
"\n",
|
1164 |
+
" \n",
|
1165 |
+
" \n",
|
1166 |
+
" epochs = 400\n",
|
1167 |
+
" best_val_f1 = 0\n",
|
1168 |
+
" epochs_no_improve = 0\n",
|
1169 |
+
" early_stop_threshold = 2\n",
|
1170 |
+
" \n",
|
1171 |
+
" train_losses, val_losses = [], []\n",
|
1172 |
+
" #output_file_path = os.path.join(folder, 'training_output.txt')\n",
|
1173 |
+
"\n",
|
1174 |
+
" for epoch in range(epochs):\n",
|
1175 |
+
" model.train()\n",
|
1176 |
+
" train_loss = 0\n",
|
1177 |
+
" for X_batch, y_batch in train_meta_loader:\n",
|
1178 |
+
" \n",
|
1179 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
1180 |
+
" optimizer.zero_grad()\n",
|
1181 |
+
" \n",
|
1182 |
+
" outputs = meta_model(X_batch)\n",
|
1183 |
+
" loss = criterion(outputs, y_batch)\n",
|
1184 |
+
"\n",
|
1185 |
+
" # Calculate L1 regularization penalty to prevent overfitting\n",
|
1186 |
+
" l1_penalty = l1_regularization(model, lambda_l1)\n",
|
1187 |
+
"\n",
|
1188 |
+
" # Add L1 penalty to the loss\n",
|
1189 |
+
" loss += l1_penalty\n",
|
1190 |
+
"\n",
|
1191 |
+
" loss.backward()\n",
|
1192 |
+
" optimizer.step()\n",
|
1193 |
+
" train_loss += loss.item()\n",
|
1194 |
+
" train_losses.append(train_loss / len(train_loader))\n",
|
1195 |
+
"\n",
|
1196 |
+
" model.eval()\n",
|
1197 |
+
" val_loss = 0\n",
|
1198 |
+
" all_preds, all_targets, all_outputs = [], [], []\n",
|
1199 |
+
" with torch.no_grad():\n",
|
1200 |
+
" for X_batch, y_batch in val_meta_loader:\n",
|
1201 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
1202 |
+
" outputs = meta_model(X_batch)\n",
|
1203 |
+
" loss = criterion(outputs, y_batch)\n",
|
1204 |
+
" val_loss += loss.item()\n",
|
1205 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
1206 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
1207 |
+
" all_targets.extend(y_batch.cpu().numpy())\n",
|
1208 |
+
" all_outputs.extend(outputs.cpu().numpy())\n",
|
1209 |
+
" val_losses.append(val_loss / len(val_loader))\n",
|
1210 |
+
"\n",
|
1211 |
+
" precision_0, recall_0, f1_0, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
1212 |
+
" accuracy = accuracy_score(all_targets, all_preds)\n",
|
1213 |
+
" \n",
|
1214 |
+
" if f1_0 > best_val_f1:\n",
|
1215 |
+
" best_val_f1 = f1_0\n",
|
1216 |
+
" epochs_no_improve = 0\n",
|
1217 |
+
" else:\n",
|
1218 |
+
" epochs_no_improve += 1\n",
|
1219 |
+
"\n",
|
1220 |
+
" if epochs_no_improve >= early_stop_threshold:\n",
|
1221 |
+
" print(\"Stopping early due to no improvement\")\n",
|
1222 |
+
" break\n",
|
1223 |
+
" trial.report(f1_0, epoch)\n",
|
1224 |
+
" if trial.should_prune():\n",
|
1225 |
+
" raise optuna.TrialPruned()\n",
|
1226 |
+
" return f1_0\n",
|
1227 |
+
"\n",
|
1228 |
+
"#optuna.logging.get_logger('optuna').addHandler(logging.StreamHandler(sys.stdout))\n",
|
1229 |
+
"study = optuna.create_study(direction='maximize', sampler=optuna.samplers.TPESampler(seed=SEED))\n",
|
1230 |
+
"study.optimize(objective, n_trials=150)"
|
1231 |
+
]
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"cell_type": "markdown",
|
1235 |
+
"id": "c8bd0c66-1a1f-41aa-80d1-b921f8dfb4c1",
|
1236 |
+
"metadata": {},
|
1237 |
+
"source": [
|
1238 |
+
"## Print optuna-stats"
|
1239 |
+
]
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"cell_type": "code",
|
1243 |
+
"execution_count": 182,
|
1244 |
+
"id": "0b0a7fd5-d1e0-4466-8a57-f435ba68e1d2",
|
1245 |
+
"metadata": {},
|
1246 |
+
"outputs": [],
|
1247 |
+
"source": [
|
1248 |
+
"\n",
|
1249 |
+
"# Get the best parameters\n",
|
1250 |
+
"best_params = study.best_params\n",
|
1251 |
+
"\n",
|
1252 |
+
"# Print the best parameters\n",
|
1253 |
+
"print(\"Best parameters:\", best_params)\n",
|
1254 |
+
"\n",
|
1255 |
+
"# Get the best parameters\n",
|
1256 |
+
"best_trial = study.best_trial\n",
|
1257 |
+
"\n",
|
1258 |
+
"# Print the best parameters\n",
|
1259 |
+
"print(\"Best parameters:\", best_trial)\n"
|
1260 |
+
]
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"cell_type": "markdown",
|
1264 |
+
"id": "c9b28dbc-4266-4485-a814-548ed9e01c3c",
|
1265 |
+
"metadata": {},
|
1266 |
+
"source": [
|
1267 |
+
"### Meta-learner training"
|
1268 |
+
]
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"cell_type": "markdown",
|
1272 |
+
"id": "2ad3c476-178b-4ad6-9eba-19a5727ad48b",
|
1273 |
+
"metadata": {},
|
1274 |
+
"source": [
|
1275 |
+
"Found out that cross entropy gives more stable accuracies across classes."
|
1276 |
+
]
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"cell_type": "code",
|
1280 |
+
"execution_count": 26,
|
1281 |
+
"id": "4eb430e4-1dee-455f-9279-7e71ac9005cb",
|
1282 |
+
"metadata": {},
|
1283 |
+
"outputs": [],
|
1284 |
+
"source": [
|
1285 |
+
"y_val = torch.cat([y for _, y in val_loader], dim=0) # Just to make sure y_val is y_val, extract from val_loader\n",
|
1286 |
+
"\n",
|
1287 |
+
"print(np.unique(y_val.cpu().numpy(), return_counts=True))\n",
|
1288 |
+
"# Split the data into train, validation, and test sets\n",
|
1289 |
+
"X_meta_train, X_meta_temp, y_meta_train, y_meta_temp = train_test_split(\n",
|
1290 |
+
" base_model_outputs.cpu().numpy(), \n",
|
1291 |
+
" y_val.cpu().numpy(), \n",
|
1292 |
+
" test_size=0.4, \n",
|
1293 |
+
" random_state=42\n",
|
1294 |
+
")\n",
|
1295 |
+
"\n",
|
1296 |
+
"X_meta_val, X_meta_test, y_meta_val, y_meta_test = train_test_split(\n",
|
1297 |
+
" X_meta_temp, \n",
|
1298 |
+
" y_meta_temp, \n",
|
1299 |
+
" test_size=0.5, \n",
|
1300 |
+
" random_state=42\n",
|
1301 |
+
")\n",
|
1302 |
+
"\n",
|
1303 |
+
"input_size = base_model_outputs.size(1) # Will be 3*num_classes (3 models now) so 9\n",
|
1304 |
+
"\n",
|
1305 |
+
"config = {\n",
|
1306 |
+
" 'lr': 0.007728103291008411, \n",
|
1307 |
+
" 'weight_decay': 0.003503652410143732, \n",
|
1308 |
+
" 'lambda_l1': 0.002984494708891794\n",
|
1309 |
+
"}\n",
|
1310 |
+
"\n",
|
1311 |
+
"meta_model = MetaModel(input_size=input_size).to(device) \n",
|
1312 |
+
"optimizer = torch.optim.Adam(meta_model.parameters(), lr=config['lr'], weight_decay=config['weight_decay'])\n",
|
1313 |
+
"lambda_l1 = config['lambda_l1']\n",
|
1314 |
+
"\n",
|
1315 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
1316 |
+
"\n",
|
1317 |
+
"# Convert numpy arrays back to tensors for training\n",
|
1318 |
+
"X_meta_train = torch.tensor(X_meta_train, dtype=torch.float).to(device)\n",
|
1319 |
+
"y_meta_train = torch.tensor(y_meta_train, dtype=torch.long).to(device)\n",
|
1320 |
+
"X_meta_val = torch.tensor(X_meta_val, dtype=torch.float).to(device)\n",
|
1321 |
+
"y_meta_val = torch.tensor(y_meta_val, dtype=torch.long).to(device)\n",
|
1322 |
+
"X_meta_test = torch.tensor(X_meta_test, dtype=torch.float).to(device)\n",
|
1323 |
+
"y_meta_test = torch.tensor(y_meta_test, dtype=torch.long).to(device)\n",
|
1324 |
+
"\n",
|
1325 |
+
"all_preds, all_targets, all_outputs = [], [], []\n",
|
1326 |
+
"train_losses, val_losses = [], []\n",
|
1327 |
+
"\n",
|
1328 |
+
"best_val_f1 = 0\n",
|
1329 |
+
"epochs_no_improve = 0\n",
|
1330 |
+
"early_stop_threshold = 2\n",
|
1331 |
+
"\n",
|
1332 |
+
"best_f1 = 0.0\n",
|
1333 |
+
"\n",
|
1334 |
+
"# Training loop for the meta-model\n",
|
1335 |
+
"epochs = 80\n",
|
1336 |
+
"\n",
|
1337 |
+
"for epoch in range(epochs):\n",
|
1338 |
+
" meta_model.train()\n",
|
1339 |
+
" train_loss = 0\n",
|
1340 |
+
" for X_batch, y_batch in train_meta_loader:\n",
|
1341 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
1342 |
+
" optimizer.zero_grad()\n",
|
1343 |
+
" outputs = meta_model(X_batch)\n",
|
1344 |
+
" loss = criterion(outputs, y_batch)\n",
|
1345 |
+
" l1_penalty = l1_regularization(meta_model, lambda_l1)\n",
|
1346 |
+
" loss += l1_penalty\n",
|
1347 |
+
" loss.backward()\n",
|
1348 |
+
" optimizer.step()\n",
|
1349 |
+
" train_loss += loss.item()\n",
|
1350 |
+
" train_losses.append(train_loss / len(train_meta_loader))\n",
|
1351 |
+
"\n",
|
1352 |
+
" meta_model.eval()\n",
|
1353 |
+
" val_loss = 0\n",
|
1354 |
+
" all_preds, all_targets, all_outputs = [], [], []\n",
|
1355 |
+
" with torch.no_grad():\n",
|
1356 |
+
" for X_batch, y_batch in val_meta_loader:\n",
|
1357 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
1358 |
+
" outputs = meta_model(X_batch)\n",
|
1359 |
+
" loss = criterion(outputs, y_batch)\n",
|
1360 |
+
" val_loss += loss.item()\n",
|
1361 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
1362 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
1363 |
+
" all_targets.extend(y_batch.cpu().numpy())\n",
|
1364 |
+
" all_outputs.extend(outputs.cpu().numpy())\n",
|
1365 |
+
" val_losses.append(val_loss / len(val_meta_loader))\n",
|
1366 |
+
"\n",
|
1367 |
+
" precision_0, recall_0, f1_0, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
1368 |
+
" accuracy = accuracy_score(all_targets, all_preds)\n",
|
1369 |
+
"\n",
|
1370 |
+
" output_str = f'Epoch {epoch+1}: Train Loss: {train_losses[-1]:.4f}, Val Loss: {val_losses[-1]:.4f}, Precision: {precision_0:.4f}, Recall: {recall_0:.4f}, F1: {f1_0:.4f}, Accuracy: {accuracy:.4f}\\n'\n",
|
1371 |
+
" print(output_str)\n",
|
1372 |
+
"\n",
|
1373 |
+
" if f1_0 > best_f1:\n",
|
1374 |
+
" best_f1 = f1_0\n",
|
1375 |
+
" best_epoch = epoch\n",
|
1376 |
+
" best_model_state_dict = meta_model.state_dict()\n",
|
1377 |
+
" best_all_targets = all_targets\n",
|
1378 |
+
" best_all_preds = all_preds\n",
|
1379 |
+
" epochs_no_improve = 0\n",
|
1380 |
+
" else:\n",
|
1381 |
+
" epochs_no_improve += 1\n",
|
1382 |
+
"\n",
|
1383 |
+
" if epochs_no_improve >= early_stop_threshold:\n",
|
1384 |
+
" print(\"Stopping early due to no improvement\")\n",
|
1385 |
+
" break\n",
|
1386 |
+
"\n",
|
1387 |
+
"meta_model.load_state_dict(best_model_state_dict)\n"
|
1388 |
+
]
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"cell_type": "markdown",
|
1392 |
+
"id": "041c315b-068b-4ebb-94d7-629b75450d71",
|
1393 |
+
"metadata": {},
|
1394 |
+
"source": [
|
1395 |
+
"## Inference on test set"
|
1396 |
+
]
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"cell_type": "code",
|
1400 |
+
"execution_count": null,
|
1401 |
+
"id": "6384288c-63d7-4bca-88fb-5bca1df47d7c",
|
1402 |
+
"metadata": {},
|
1403 |
+
"outputs": [],
|
1404 |
+
"source": [
|
1405 |
+
"# Evaluate on the test set\n",
|
1406 |
+
"meta_model.eval()\n",
|
1407 |
+
"test_loss = 0\n",
|
1408 |
+
"all_test_preds, all_test_targets = [], []\n",
|
1409 |
+
"with torch.no_grad():\n",
|
1410 |
+
" for X_batch, y_batch in test_meta_loader:\n",
|
1411 |
+
" X_batch, y_batch = X_batch.to(device), y_batch.to(device)\n",
|
1412 |
+
" outputs = meta_model(X_batch)\n",
|
1413 |
+
" loss = criterion(outputs, y_batch)\n",
|
1414 |
+
" test_loss += loss.item()\n",
|
1415 |
+
" _, predicted = torch.max(outputs.data, 1)\n",
|
1416 |
+
" all_test_preds.extend(predicted.cpu().numpy())\n",
|
1417 |
+
" all_test_targets.extend(y_batch.cpu().numpy())\n",
|
1418 |
+
"\n",
|
1419 |
+
"test_loss /= len(test_meta_loader)\n",
|
1420 |
+
"precision_test, recall_test, f1_test, _ = precision_recall_fscore_support(all_test_targets, all_test_preds, average='weighted', zero_division=0)\n",
|
1421 |
+
"accuracy_test = accuracy_score(all_test_targets, all_test_preds)\n",
|
1422 |
+
"\n",
|
1423 |
+
"print(f'Test Loss: {test_loss:.4f}, Test Precision: {precision_test:.4f}, Test Recall: {recall_test:.4f}, Test F1: {f1_test:.4f}, Test Accuracy: {accuracy_test:.4f}')"
|
1424 |
+
]
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"cell_type": "markdown",
|
1428 |
+
"id": "a17da765-d795-49f3-abbb-06850b7f9264",
|
1429 |
+
"metadata": {
|
1430 |
+
"tags": []
|
1431 |
+
},
|
1432 |
+
"source": [
|
1433 |
+
"### Conf-matrix and class-wise acc for meta-learner"
|
1434 |
+
]
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"cell_type": "code",
|
1438 |
+
"execution_count": 27,
|
1439 |
+
"id": "eb41e5f6-d038-4696-ae55-3d2e3ebe7c2e",
|
1440 |
+
"metadata": {},
|
1441 |
+
"outputs": [],
|
1442 |
+
"source": [
|
1443 |
+
"conf_matrix = confusion_matrix(all_targets, all_preds)\n",
|
1444 |
+
"# conf_matrix = confusion_matrix(all_preds, all_targets)\n",
|
1445 |
+
"labels = [\"background\", \"tackle-live\", \"tackle-replay\"]\n",
|
1446 |
+
"#labels = [\"background\", \"tackle-live\", \"tackle-replay\", \"tackle-live-incomplete\", \"tackle-replay-incomplete\"]\n",
|
1447 |
+
"\n",
|
1448 |
+
"\n",
|
1449 |
+
"sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)\n",
|
1450 |
+
"# plt.title('Confusion Matrix')\n",
|
1451 |
+
"plt.xlabel('Predicted Label')\n",
|
1452 |
+
"plt.ylabel('True Label')\n",
|
1453 |
+
"#plt.savefig(f\"{folder1}/meta/MetaModel_stretched.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
1454 |
+
"plt.show()\n",
|
1455 |
+
"\n",
|
1456 |
+
"# Calculate accuracy per class\n",
|
1457 |
+
"class_accuracies = conf_matrix.diagonal() / conf_matrix.sum(axis=1)\n",
|
1458 |
+
"\n",
|
1459 |
+
"# Prepare accuracy data for writing to file\n",
|
1460 |
+
"accuracy_data = \"\\n\".join([f\"Accuracy for class {i}: {class_accuracies[i]:.4f}\" for i in range(len(class_accuracies))])\n",
|
1461 |
+
"print(classification_report(all_targets, all_preds, target_names=labels))\n",
|
1462 |
+
"\n",
|
1463 |
+
"\n",
|
1464 |
+
"# Print accuracy per class and write to a file\n",
|
1465 |
+
"print(accuracy_data) # Print to console\n",
|
1466 |
+
"\n",
|
1467 |
+
"#torch.save(meta_model.state_dict(), f'{folder1}/meta/meta_model.pt')\n",
|
1468 |
+
"\n",
|
1469 |
+
"# Define the filename\n",
|
1470 |
+
"#accuracy_file_path = os.path.join(folder, \"class_accuracies.txt\")\n",
|
1471 |
+
"\n",
|
1472 |
+
"# Write accuracies to a file in the specified folder\n",
|
1473 |
+
"#with open(accuracy_file_path, 'w') as f:\n",
|
1474 |
+
"# f.write(f\"Samples: {len(all_preds)}\\n\") # Write the number of samples\n",
|
1475 |
+
"# f.write(accuracy_data) # Write the accuracy data"
|
1476 |
+
]
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"cell_type": "markdown",
|
1480 |
+
"id": "67a4e623-b813-4d1c-bcc5-45cca41140f9",
|
1481 |
+
"metadata": {},
|
1482 |
+
"source": [
|
1483 |
+
"## Roc curve"
|
1484 |
+
]
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"cell_type": "code",
|
1488 |
+
"execution_count": 64,
|
1489 |
+
"id": "894c35a1-a52f-438b-93ce-044429bdaf2f",
|
1490 |
+
"metadata": {},
|
1491 |
+
"outputs": [],
|
1492 |
+
"source": [
|
1493 |
+
"import numpy as np\n",
|
1494 |
+
"from sklearn.metrics import roc_curve, auc\n",
|
1495 |
+
"from sklearn.preprocessing import label_binarize\n",
|
1496 |
+
"import matplotlib.pyplot as plt\n",
|
1497 |
+
"\n",
|
1498 |
+
"# Class names and count\n",
|
1499 |
+
"class_names = ['background', 'tackle-live', 'tackle-replay']\n",
|
1500 |
+
"n_classes = len(class_names)\n",
|
1501 |
+
"\n",
|
1502 |
+
"# Binarize the targets and predictions for ROC curve computation\n",
|
1503 |
+
"test_targets_bin = label_binarize(targets, classes=[0, 1, 2])\n",
|
1504 |
+
"test_predictions_bin = label_binarize(predictions, classes=[0, 1, 2])\n",
|
1505 |
+
"\n",
|
1506 |
+
"# ROC curve and AUC for each class\n",
|
1507 |
+
"fpr = {}\n",
|
1508 |
+
"tpr = {}\n",
|
1509 |
+
"roc_auc = {}\n",
|
1510 |
+
"\n",
|
1511 |
+
"for i in range(n_classes):\n",
|
1512 |
+
" fpr[i], tpr[i], _ = roc_curve(test_targets_bin[:, i], test_predictions_bin[:, i])\n",
|
1513 |
+
" roc_auc[i] = auc(fpr[i], tpr[i])\n",
|
1514 |
+
"\n",
|
1515 |
+
"# Plot ROC curves for each class\n",
|
1516 |
+
"plt.figure(figsize=(8, 6))\n",
|
1517 |
+
"for i in range(n_classes):\n",
|
1518 |
+
" plt.plot(fpr[i], tpr[i], label=f'{class_names[i]} (AUC = {roc_auc[i]:.2f})')\n",
|
1519 |
+
"plt.plot([0, 1], [0, 1], 'k--')\n",
|
1520 |
+
"plt.xlim([0.0, 1.0])\n",
|
1521 |
+
"plt.grid(visible=True)\n",
|
1522 |
+
"plt.ylim([0.0, 1.05])\n",
|
1523 |
+
"plt.xlabel('False Positive Rate')\n",
|
1524 |
+
"plt.ylabel('True Positive Rate')\n",
|
1525 |
+
"plt.title('Multi-class ROC Curve')\n",
|
1526 |
+
"plt.legend(loc='lower right')\n",
|
1527 |
+
"plt.savefig(\"baseline-roc.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n",
|
1528 |
+
"plt.show()"
|
1529 |
+
]
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"cell_type": "markdown",
|
1533 |
+
"id": "580a616d-5b01-4725-9b5b-71c71537bf22",
|
1534 |
+
"metadata": {},
|
1535 |
+
"source": [
|
1536 |
+
"## Check model agreement"
|
1537 |
+
]
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"cell_type": "code",
|
1541 |
+
"execution_count": 241,
|
1542 |
+
"id": "bbe695f7-458d-4559-bc58-0b14dba6785d",
|
1543 |
+
"metadata": {},
|
1544 |
+
"outputs": [],
|
1545 |
+
"source": [
|
1546 |
+
"import torch\n",
|
1547 |
+
"from sklearn.metrics import precision_recall_fscore_support, accuracy_score\n",
|
1548 |
+
"\n",
|
1549 |
+
"def evaluate_model_agreement(meta_model, base_models, val_loader, device, criterion):\n",
|
1550 |
+
" meta_model.eval()\n",
|
1551 |
+
" agreement_counts = [0] * len(base_models) # Agreement count for each base model\n",
|
1552 |
+
" total_predictions = 0 # Total predictions made\n",
|
1553 |
+
"\n",
|
1554 |
+
" all_preds = []\n",
|
1555 |
+
" all_targets = []\n",
|
1556 |
+
"\n",
|
1557 |
+
" with torch.no_grad():\n",
|
1558 |
+
" for X_batch, y_meta_val in val_loader:\n",
|
1559 |
+
" X_batch = X_batch.to(device)\n",
|
1560 |
+
" y_meta_val = y_meta_val.to(device)\n",
|
1561 |
+
"\n",
|
1562 |
+
" # Get predictions from each base model and the MetaModel\n",
|
1563 |
+
" base_probs = [torch.softmax(model(X_batch), dim=1) for model in base_models]\n",
|
1564 |
+
" base_predictions = [torch.max(probs, 1)[1] for probs in base_probs]\n",
|
1565 |
+
"\n",
|
1566 |
+
" # Concatenate the model outputs along feature dimension for MetaModel input\n",
|
1567 |
+
" meta_input = torch.cat(base_probs, dim=1)\n",
|
1568 |
+
" meta_outputs = meta_model(meta_input)\n",
|
1569 |
+
" meta_predictions = torch.max(meta_outputs, 1)[1]\n",
|
1570 |
+
"\n",
|
1571 |
+
" # Compare MetaModel predictions with each base model's predictions\n",
|
1572 |
+
" for i, base_preds in enumerate(base_predictions):\n",
|
1573 |
+
" agreement_counts[i] += (base_preds == meta_predictions).sum().item()\n",
|
1574 |
+
"\n",
|
1575 |
+
" total_predictions += y_meta_val.size(0)\n",
|
1576 |
+
" \n",
|
1577 |
+
" # Collect predictions for evaluation\n",
|
1578 |
+
" all_preds.extend(meta_predictions.cpu().numpy())\n",
|
1579 |
+
" all_targets.extend(y_meta_val.cpu().numpy())\n",
|
1580 |
+
"\n",
|
1581 |
+
" # Compute loss (optional)\n",
|
1582 |
+
" val_loss = criterion(meta_outputs, y_meta_val)\n",
|
1583 |
+
"\n",
|
1584 |
+
" # Calculate precision, recall, f1-score, and accuracy\n",
|
1585 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
1586 |
+
" accuracy = accuracy_score(all_targets, all_preds)\n",
|
1587 |
+
"\n",
|
1588 |
+
" # Calculate agreement percentages\n",
|
1589 |
+
" agreement_percentages = [count / total_predictions * 100 for count in agreement_counts]\n",
|
1590 |
+
"\n",
|
1591 |
+
" print(f\"Loss: {val_loss.item()}\")\n",
|
1592 |
+
" print(f'Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}, Accuracy: {accuracy:.4f}')\n",
|
1593 |
+
" return agreement_percentages\n",
|
1594 |
+
"\n",
|
1595 |
+
"# Usage\n",
|
1596 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1597 |
+
"#meta_model = best_meta_model # Your loaded MetaModel\n",
|
1598 |
+
"base_models = [model0, model1, model2] # List of your base models\n",
|
1599 |
+
"criterion = torch.nn.CrossEntropyLoss() # Your loss function\n",
|
1600 |
+
"\n",
|
1601 |
+
"agreement_percentages = evaluate_model_agreement(meta_model, base_models, val_loader, device, criterion)\n",
|
1602 |
+
"for i, pct in enumerate(agreement_percentages):\n",
|
1603 |
+
" print(f\"Model {i} Agreement Percentage: {pct:.2f}%\")\n",
|
1604 |
+
"\n",
|
1605 |
+
" \n",
|
1606 |
+
"print(classification_report(all_targets, all_preds, target_names=labels))\n",
|
1607 |
+
" "
|
1608 |
+
]
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"cell_type": "markdown",
|
1612 |
+
"id": "b4a9897e-6a1c-4f13-8789-435ba42308c9",
|
1613 |
+
"metadata": {},
|
1614 |
+
"source": [
|
1615 |
+
"## Inference"
|
1616 |
+
]
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"cell_type": "code",
|
1620 |
+
"execution_count": 28,
|
1621 |
+
"id": "80e2b209-0a62-45dd-a7c5-a655d3653648",
|
1622 |
+
"metadata": {},
|
1623 |
+
"outputs": [],
|
1624 |
+
"source": [
|
1625 |
+
"all_preds, all_targets, all_outputs = [], [], []\n",
|
1626 |
+
"import time\n",
|
1627 |
+
"\n",
|
1628 |
+
"batch_times = []\n",
|
1629 |
+
"\n",
|
1630 |
+
"with torch.no_grad():\n",
|
1631 |
+
" start_time = time.time()\n",
|
1632 |
+
" \n",
|
1633 |
+
" for batch_idx, (X_batch, y_meta_val) in enumerate(test_loader):\n",
|
1634 |
+
" X_batch = X_batch.to(device)\n",
|
1635 |
+
" # Store the probabilities, not the class predictions\n",
|
1636 |
+
" probs0 = torch.softmax(model0(X_batch), dim=1)\n",
|
1637 |
+
" probs1 = torch.softmax(model1(X_batch), dim=1)\n",
|
1638 |
+
" probs2 = torch.softmax(model2(X_batch), dim=1)\n",
|
1639 |
+
" \n",
|
1640 |
+
" # Concatenate the model outputs along feature dimension\n",
|
1641 |
+
" model_output = torch.cat((probs0, probs1, probs2), dim=1)\n",
|
1642 |
+
" \n",
|
1643 |
+
" val_outputs = meta_model(model_output)\n",
|
1644 |
+
" \n",
|
1645 |
+
"\n",
|
1646 |
+
" val_loss = criterion(val_outputs, y_meta_val)\n",
|
1647 |
+
"\n",
|
1648 |
+
" _, predicted = torch.max(val_outputs.data, 1)\n",
|
1649 |
+
" all_preds.extend(predicted.cpu().numpy())\n",
|
1650 |
+
" all_targets.extend(y_meta_val.cpu().numpy())\n",
|
1651 |
+
" all_outputs.extend(val_outputs.cpu().numpy())\n",
|
1652 |
+
" batch_time = time.time() - start_time\n",
|
1653 |
+
" batch_times.append(batch_time)\n",
|
1654 |
+
" print(f\"Batch {batch_idx + 1}: Time = {batch_time:.7f} seconds\")\n",
|
1655 |
+
"\n",
|
1656 |
+
" precision, recall, f1, _ = precision_recall_fscore_support(all_targets, all_preds, average='weighted', zero_division=0)\n",
|
1657 |
+
" accuracy = accuracy_score(all_targets, all_preds)\n",
|
1658 |
+
" \n",
|
1659 |
+
" print(f\"Loss: {loss.item()}, Val Loss: {val_loss.item()}\")\n",
|
1660 |
+
" \n",
|
1661 |
+
" print(f'Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}, Accuracy: {accuracy:.4f}')\n",
|
1662 |
+
"\n",
|
1663 |
+
"average_batch_time = sum(batch_times) / len(batch_times)\n",
|
1664 |
+
"\n",
|
1665 |
+
"print(f\"Average Batch Time: {average_batch_time:.7f} seconds\")\n",
|
1666 |
+
"\n",
|
1667 |
+
"#torch.save(meta_model.state_dict(), '/home/evan/D1/project/code/meta_model/meta_model_3')"
|
1668 |
+
]
|
1669 |
+
}
|
1670 |
+
],
|
1671 |
+
"metadata": {
|
1672 |
+
"kernelspec": {
|
1673 |
+
"display_name": "Python (evan31818)",
|
1674 |
+
"language": "python",
|
1675 |
+
"name": "evan31818"
|
1676 |
+
},
|
1677 |
+
"language_info": {
|
1678 |
+
"codemirror_mode": {
|
1679 |
+
"name": "ipython",
|
1680 |
+
"version": 3
|
1681 |
+
},
|
1682 |
+
"file_extension": ".py",
|
1683 |
+
"mimetype": "text/x-python",
|
1684 |
+
"name": "python",
|
1685 |
+
"nbconvert_exporter": "python",
|
1686 |
+
"pygments_lexer": "ipython3",
|
1687 |
+
"version": "3.8.19"
|
1688 |
+
}
|
1689 |
+
},
|
1690 |
+
"nbformat": 4,
|
1691 |
+
"nbformat_minor": 5
|
1692 |
+
}
|