|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import argparse |
|
|
|
from generate import generate, generate_with_prefix_cache, generate_with_dual_cache |
|
from transformers import AutoTokenizer, AutoModel |
|
from model.modeling_llada import LLaDAModelLM |
|
|
|
def chat(args): |
|
model = LLaDAModelLM.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True, torch_dtype=torch.float16, device_map = 'auto').eval() |
|
tokenizer = AutoTokenizer.from_pretrained('GSAI-ML/LLaDA-8B-Instruct', trust_remote_code=True) |
|
device = next(iter(model.parameters())).device.type |
|
|
|
gen_length = args.gen_length |
|
steps = args.steps |
|
print('*' * 66) |
|
print(f'** Answer Length: {gen_length} | Sampling Steps: {steps} **') |
|
print('*' * 66) |
|
|
|
conversation_num = 0 |
|
|
|
|
|
user_input = args.question |
|
|
|
m = [{"role": "user", "content": user_input}] |
|
user_input = tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) |
|
input_ids = tokenizer(user_input)['input_ids'] |
|
input_ids = torch.tensor(input_ids).to(device).unsqueeze(0) |
|
|
|
if conversation_num == 0: |
|
prompt = input_ids |
|
else: |
|
prompt = torch.cat([prompt, input_ids[:, 1:]], dim=1) |
|
print(f'use cache: {args.use_cache} use cache position: {args.if_cache_position} threshold: {args.threshold} block size: {args.block_size}') |
|
if args.use_cache: |
|
if args.if_cache_position: |
|
out, nfe = generate_with_dual_cache(model, prompt, steps=steps, gen_length=gen_length, block_length=args.block_size, temperature=0., remasking='low_confidence', threshold=args.threshold) |
|
else: |
|
out, nfe = generate_with_prefix_cache(model, prompt, steps=steps, gen_length=gen_length, block_length=args.block_size, temperature=0., remasking='low_confidence', threshold=args.threshold) |
|
else: |
|
out, nfe = generate(model, prompt, steps=steps, gen_length=gen_length, block_length=args.block_size, temperature=0., remasking='low_confidence', threshold=args.threshold) |
|
|
|
answer = tokenizer.batch_decode(out[:, prompt.shape[1]:], skip_special_tokens=True)[0] |
|
print(f"Bot's reply: {answer}") |
|
print(f"Number of forward passes: {nfe}") |
|
|
|
|
|
prompt = out[out != 126081].unsqueeze(0) |
|
conversation_num += 1 |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--gen_length", type=int, default=128) |
|
parser.add_argument("--steps", type=int, default=128) |
|
parser.add_argument("--block_size", type=int, default=32) |
|
parser.add_argument("--use_cache", action="store_true") |
|
parser.add_argument("--if_cache_position", action="store_true") |
|
parser.add_argument("--threshold", type=float, default=None) |
|
parser.add_argument("--question", type=str, default='How are you ?') |
|
|
|
args = parser.parse_args() |
|
chat(args) |
|
|
|
|
|
|