Dataing / app (Copy).py
Shiro2's picture
Upload app (Copy).py
9470e61 verified
# coding=utf-8
import os
import re
import argparse
import utils
import commons
import json
import torch
import gradio as gr
from models import SynthesizerTrn
from text import text_to_sequence, _clean_text
from torch import no_grad, LongTensor
from gradio_client import utils as client_utils
import logging
from transformers import pipeline, AutoTokenizer, Gemma3ForCausalLM
logging.getLogger('numba').setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
hps_ms = utils.get_hparams_from_file(r'config/config.json')
audio_postprocess_ori = gr.Audio.postprocess
def audio_postprocess(self, y):
data = audio_postprocess_ori(self, y)
if data is None:
return None
return client_utils.encode_url_or_file_to_base64(data["name"])
gr.Audio.postprocess = audio_postprocess
def get_text(text, hps, is_symbol):
text_norm, clean_text = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm, clean_text
def create_tts_fn(net_g_ms, speaker_id):
def tts_fn(text, language, noise_scale, noise_scale_w, length_scale, is_symbol):
english, japanese = generate_response(llm, text)
text = japanese.replace('\n', ' ').replace('\r', '').replace(" ", "")
if limitation:
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
max_len = 100
if is_symbol:
max_len *= 3
if text_len > max_len:
return "Error: Text is too long", None
if not is_symbol:
if language == 0:
text = f"[ZH]{text}[ZH]"
elif language == 1:
text = f"[JA]{text}[JA]"
else:
text = f"{text}"
stn_tst, clean_text = get_text(text, hps_ms, is_symbol)
with no_grad():
x_tst = stn_tst.unsqueeze(0).to(device)
x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device)
sid = LongTensor([speaker_id]).to(device)
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
length_scale=length_scale)[0][0, 0].data.cpu().float().numpy()
#return "Success", (22050, audio)
return english, japanese, (22050, audio)
return tts_fn
def create_to_symbol_fn(hps):
def to_symbol_fn(is_symbol_input, input_text, temp_lang):
if temp_lang == 0:
clean_text = f'[ZH]{input_text}[ZH]'
elif temp_lang == 1:
clean_text = f'[JA]{input_text}[JA]'
else:
clean_text = input_text
return _clean_text(clean_text, hps.data.text_cleaners) if is_symbol_input else ''
return to_symbol_fn
def change_lang(language):
if language == 0:
return 0.6, 0.668, 1.2
elif language == 1:
return 0.6, 0.668, 1
else:
return 0.6, 0.668, 1
download_audio_js = """
() =>{{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let audio = root.querySelector("#tts-audio-{audio_id}").querySelector("audio");
let text = root.querySelector("#input-text-{audio_id}").querySelector("textarea");
if (audio == undefined)
return;
text = text.value;
if (text == undefined)
text = Math.floor(Math.random()*100000000);
audio = audio.src;
let oA = document.createElement("a");
oA.download = text.substr(0, 20)+'.wav';
oA.href = audio;
document.body.appendChild(oA);
oA.click();
oA.remove();
}}
"""
SYSTEM_PROMPT_TEMPLATE = """
You are an AI chatbot roleplaying as {character_name}.
Your personality traits are:
{personality}
Stay in character at all times.
Do not break character or mention that you are an AI.
Always respond in a way consistent with {character_name}'s personality, tone, and background.
Here are examples of how {character_name} responds in 2 versions format:
English version <split> Japanese version
{example}
Follow this style and tone in every response.
Answer in 'English version <split> Japanese version' format also.
"""
def init_character(character_name, personality, example):
"""Initialize global system message for the character."""
system_prompt = SYSTEM_PROMPT_TEMPLATE.format(
character_name=character_name,
personality=personality,
example=example,
)
return [
{
"role": "system",
"content": [{"type": "text", "text": system_prompt}],
}
]
messages = init_character(
character_name='Misono Mika from Blue Archive',
personality =
"""
She is a very talkative person, rarely particularly paying much mind to the current mood or flow of the conversation. She likes to interject her own, unfiltered thoughts into the current conversation.
She is not particularly bright and can be viewed as a happy-go-lucky type of person. Even in serious situations, she often acts in a carefree manner, though it sometimes devolves into a mockery.
""",
example =
"""
Don't worry, I, Misono Mika, have finally arrived! Oh, we're already well acquainted, so let's skip the formalities, okay? I'm looking forward to working with you, Sensei. <split> 聖園ミカ、ついに登場~☆ って感じかな? あっ、私と先生の仲だしアイスブレイクとかは いらないよね?これからよろしくね、先生。
Hmm, it's a bit tight...but I think it'll be okay anyway! <split> ふーん。 ちょっと狭いけど… これはこれで 良いんじゃない?
Hahaha! What's this? So silly! <split> あははっ! 何これ、 おもしろーい☆
You know, I used to have something like this before... <split> 私も昔、 これと似たようなの 持ってたなぁ…。
Well, I don't think I'll be bored around here. <split> ここは 退屈しなさそう。
Hm, I guess Sensei isn't around... <split> 先生は 居ないのかぁ…。
Oh, Sensei! You're back! You kept me waiting, you know! <split> 先生、おかえり! 待ってたよ!
Welcome! Don't worry, I was perfectly well-behaved while you were gone. <split> おかえり、先生! ちゃーんといい子で お留守番してたよ。
It's a beautiful day, isn't it? <split> ん~! 今日も良い天気だね!
It seems like a shame to spend it cooped up inside. <split> こんな日に仕事ばかりなんて、 勿体なくない?
...If it's all right with you, let's go for a walk after work? <split> …良かったら、仕事終わりに お散歩とかどうかな?
Is this how student duty is supposed to be? <split> あのさ…当番って、 こういうのなの?
I mean, I didn't really know what to expect, but... <split> べ、別に何か 期待してるわけじゃ…。
"""
)
def generate_response(model, human_prompt, tokenizer = None):
# Add user message
messages.append({
"role": "user",
"content": [{"type": "text", "text": human_prompt}],
})
response = model.create_chat_completion(messages = messages)['choices'][0]['message']['content']
# Save assistant reply to history
#print(response)
english, japanese = response.split(" <split> ")
messages.pop()
return english, japanese
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="google/gemma-3-4b-it-qat-q4_0-gguf",
filename='gemma-3-4b-it-q4_0.gguf',
local_dir='/kaggle/working/model',
n_ctx = 2048
)
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument('--api', action="store_true", default=False)
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
args = parser.parse_args()
if False:
english, japanese = generate_response(pipe, "How are you?")
print(english)
print(japanese)
exit()
models = []
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
models_info = json.load(f)
for i, info in models_info.items():
if not info['enable']:
continue
sid = info['sid']
name_en = info['name_en']
name_zh = info['name_zh']
title = info['title']
if title != 'Blue Archive-聖園ミカ':
continue
cover = f"pretrained_models/{i}/{info['cover']}"
example = info['example']
language = info['language']
net_g_ms = SynthesizerTrn(
len(hps_ms.symbols),
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=hps_ms.data.n_speakers if info['type'] == "multi" else 0,
**hps_ms.model)
utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None)
_ = net_g_ms.eval().to(device)
models.append((sid, name_en, name_zh, title, cover, example, language, net_g_ms, create_tts_fn(net_g_ms, sid), create_to_symbol_fn(hps_ms)))
with gr.Blocks() as app:
gr.Markdown(
"# <center> vits-models\n"
"## <center> Please do not generate content that could infringe upon the rights or cause harm to individuals or organizations.\n"
"## <center> ·请不要生成会对个人以及组织造成侵害的内容\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.vits-models)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/drive/10QOk9NPgoKZUXkIhhuVaZ7SYra1MPMKH?usp=share_link)"
" without queue and length limitation.(无需等待队列,并且没有长度限制)\n\n"
"[Finetune your own model](https://github.com/SayaSS/vits-finetuning)"
)
with gr.Tabs():
with gr.TabItem("EN"):
for (sid, name_en, name_zh, title, cover, example, language, net_g_ms, tts_fn, to_symbol_fn) in models:
with gr.TabItem(name_en):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
'</div>'
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Text (100 words limitation)" if limitation else "Text", lines=5, value=example, elem_id=f"input-text-en-{name_en.replace(' ','')}")
lang = gr.Dropdown(label="Language", choices=["Chinese", "Japanese", "Mix(wrap the Chinese text with [ZH][ZH], wrap the Japanese text with [JA][JA])"],
type="index", value=language)
with gr.Accordion(label="Advanced Options", open=False):
symbol_input = gr.Checkbox(value=False, label="Symbol input")
symbol_list = gr.Dataset(label="Symbol list", components=[input_text],
samples=[[x] for x in hps_ms.symbols])
symbol_list_json = gr.Json(value=hps_ms.symbols, visible=False)
btn = gr.Button(value="Generate", variant="primary")
with gr.Row():
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1.2 if language=="Chinese" else 1, interactive=True)
with gr.Column():
o1 = gr.Textbox(label="Output Message(English)")
o3 = gr.Textbox(label="Output Message(Japanese)")
o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio-en-{name_en.replace(' ','')}")
download = gr.Button("Download Audio")
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls, symbol_input], outputs=[o1, o3, o2], api_name=f"tts-{name_en}")
download.click(None, [], [], _js=download_audio_js.format(audio_id=f"en-{name_en.replace(' ', '')}"))
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
symbol_input.change(
to_symbol_fn,
[symbol_input, input_text, lang],
[input_text]
)
symbol_list.click(None, [symbol_list, symbol_list_json], [input_text],
_js=f"""
(i,symbols) => {{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let text_input = root.querySelector("#input-text-en-{name_en.replace(' ', '')}").querySelector("textarea");
let startPos = text_input.selectionStart;
let endPos = text_input.selectionEnd;
let oldTxt = text_input.value;
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
text_input.value = result;
let x = window.scrollX, y = window.scrollY;
text_input.focus();
text_input.selectionStart = startPos + symbols[i].length;
text_input.selectionEnd = startPos + symbols[i].length;
text_input.blur();
window.scrollTo(x, y);
return text_input.value;
}}""")
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)