|
import pandas as pd
|
|
from collections import Counter
|
|
import json
|
|
import random
|
|
|
|
df = pd.read_csv("enron_spam_data.csv")
|
|
df.fillna('', inplace=True)
|
|
print(df)
|
|
label2id = {'ham': 0, 'spam': 1}
|
|
|
|
rows = [{'message_id': row['Message ID'],
|
|
'text': (row['Subject']+" "+row['Message']).strip(),
|
|
'label': label2id[row['Spam/Ham']],
|
|
'label_text': row['Spam/Ham'],
|
|
'subject': row['Subject'],
|
|
'message': row['Message'],
|
|
'date': row['Date']
|
|
} for idx, row in df.iterrows()]
|
|
|
|
random.seed(42)
|
|
random.shuffle(rows)
|
|
|
|
num_test = 2000
|
|
splits = {'test': rows[0:num_test], 'train': rows[num_test:]}
|
|
|
|
print("Train:", len(splits['train']))
|
|
print("Test:", len(splits['test']))
|
|
|
|
num_spam = Counter()
|
|
|
|
for row in splits['test']:
|
|
num_spam[row['label']] += 1
|
|
print(num_spam)
|
|
|
|
for split in ['train', 'test']:
|
|
with open(f'{split}.jsonl', 'w') as fOut:
|
|
for row in splits[split]:
|
|
fOut.write(json.dumps(row)+"\n") |