Upload src/upload_culturax.py with huggingface_hub
Browse files- src/upload_culturax.py +228 -0
src/upload_culturax.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
from datetime import datetime
|
5 |
+
from datasets import Dataset
|
6 |
+
from huggingface_hub import HfApi, upload_file
|
7 |
+
import shutil
|
8 |
+
import math
|
9 |
+
|
10 |
+
def clean_jsonl_data(file_path):
|
11 |
+
"""Clean and validate JSONL file data."""
|
12 |
+
cleaned_data = []
|
13 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
14 |
+
for line_number, line in enumerate(f, start=1):
|
15 |
+
try:
|
16 |
+
data = json.loads(line)
|
17 |
+
|
18 |
+
# Validate 'timestamp' field
|
19 |
+
if "timestamp" in data:
|
20 |
+
if not data["timestamp"] or not isinstance(data["timestamp"], str):
|
21 |
+
data["timestamp"] = None
|
22 |
+
else:
|
23 |
+
try:
|
24 |
+
datetime_obj = datetime.fromisoformat(
|
25 |
+
data["timestamp"].replace("Z", "+00:00")
|
26 |
+
)
|
27 |
+
data["timestamp"] = datetime_obj.isoformat()
|
28 |
+
except ValueError:
|
29 |
+
data["timestamp"] = None
|
30 |
+
|
31 |
+
# Ensure 'text' is a string
|
32 |
+
if "text" in data and not isinstance(data["text"], str):
|
33 |
+
data["text"] = str(data["text"]) if data["text"] is not None else None
|
34 |
+
|
35 |
+
# Validate 'url' and 'source'
|
36 |
+
if "url" in data and not isinstance(data["url"], str):
|
37 |
+
data["url"] = str(data["url"]) if data["url"] is not None else None
|
38 |
+
|
39 |
+
if "source" in data and not isinstance(data["source"], str):
|
40 |
+
data["source"] = str(data["source"]) if data["source"] is not None else None
|
41 |
+
|
42 |
+
cleaned_data.append(data)
|
43 |
+
|
44 |
+
except json.JSONDecodeError as e:
|
45 |
+
print(f"JSON decode error at line {line_number}: {e}")
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error processing line {line_number}: {e}")
|
48 |
+
|
49 |
+
return cleaned_data
|
50 |
+
|
51 |
+
def estimate_num_shards(file_path, target_shard_size_gb=1):
|
52 |
+
"""Estimate the number of shards needed based on file size."""
|
53 |
+
file_size_gb = os.path.getsize(file_path) / (1024 ** 3) # Bytes to GB
|
54 |
+
num_shards = max(1, math.ceil(file_size_gb / target_shard_size_gb))
|
55 |
+
return num_shards
|
56 |
+
|
57 |
+
def split_jsonl_file(input_file, output_prefix, max_size_gb=45):
|
58 |
+
"""Split large JSONL files into smaller shards."""
|
59 |
+
file_size_gb = os.path.getsize(input_file) / (1024 ** 3) # Convert bytes to GB
|
60 |
+
if file_size_gb <= max_size_gb:
|
61 |
+
return [input_file] # No need to split if below limit
|
62 |
+
|
63 |
+
# Calculate lines per shard
|
64 |
+
with open(input_file, "r", encoding="utf-8") as f:
|
65 |
+
lines = f.readlines()
|
66 |
+
num_lines = len(lines)
|
67 |
+
|
68 |
+
num_shards = math.ceil(file_size_gb / max_size_gb)
|
69 |
+
lines_per_shard = math.ceil(num_lines / num_shards)
|
70 |
+
|
71 |
+
shard_files = []
|
72 |
+
for i in range(num_shards):
|
73 |
+
shard_file = f"{output_prefix}_part{i+1}.jsonl"
|
74 |
+
with open(shard_file, "w", encoding="utf-8") as f:
|
75 |
+
f.writelines(lines[i * lines_per_shard:(i + 1) * lines_per_shard])
|
76 |
+
shard_files.append(shard_file)
|
77 |
+
|
78 |
+
return shard_files
|
79 |
+
|
80 |
+
def upload_large_file(file_path, repo_id, path_in_repo, repo_type="dataset"):
|
81 |
+
"""Upload large files with multi-part upload handling."""
|
82 |
+
file_size_mb = os.path.getsize(file_path) / (1024 ** 2) # Convert bytes to MB
|
83 |
+
# Use multi-part upload for files > 5MB
|
84 |
+
if file_size_mb > 5:
|
85 |
+
upload_file(
|
86 |
+
path_or_fileobj=file_path,
|
87 |
+
path_in_repo=path_in_repo,
|
88 |
+
repo_id=repo_id,
|
89 |
+
repo_type=repo_type,
|
90 |
+
use_auth_token=True,
|
91 |
+
)
|
92 |
+
print(f"Uploaded '{path_in_repo}' with multi-part upload.")
|
93 |
+
else:
|
94 |
+
# Direct upload for smaller files
|
95 |
+
with open(file_path, 'rb') as f:
|
96 |
+
api = HfApi()
|
97 |
+
api.upload_file(
|
98 |
+
path_or_fileobj=f,
|
99 |
+
path_in_repo=path_in_repo,
|
100 |
+
repo_id=repo_id,
|
101 |
+
repo_type=repo_type,
|
102 |
+
use_auth_token=True,
|
103 |
+
)
|
104 |
+
print(f"Uploaded '{path_in_repo}' with direct upload.")
|
105 |
+
|
106 |
+
def create_and_upload_dataset(language):
|
107 |
+
# Define constants
|
108 |
+
org_name = "ScandLM"
|
109 |
+
dataset_name = f"{language}_culturax"
|
110 |
+
repo_id = f"{org_name}/{dataset_name}"
|
111 |
+
jsonl_file = f"{language}_culturax.jsonl"
|
112 |
+
temp_folder = f"temp_{language}"
|
113 |
+
jsonl_folder = os.path.join(temp_folder, "jsonl")
|
114 |
+
data_folder = os.path.join(temp_folder, "data")
|
115 |
+
src_folder = os.path.join(temp_folder, "src")
|
116 |
+
|
117 |
+
# Language codes
|
118 |
+
language_codes = {"danish": "da", "swedish": "sv", "norwegian": "no", "nynorsk": "nn"}
|
119 |
+
language_code = language_codes.get(language, "unknown")
|
120 |
+
|
121 |
+
# YAML front matter
|
122 |
+
yaml_tags = (
|
123 |
+
f"---\n"
|
124 |
+
f"language: [{language_code}]\n"
|
125 |
+
f"---\n\n"
|
126 |
+
f"# {language.capitalize()} Culturax Dataset\n\n"
|
127 |
+
f"This dataset is simply a reformatting of uonlp/CulturaX. "
|
128 |
+
f"Some minor formatting errors have been corrected.\n\n"
|
129 |
+
f"## Usage\n\n"
|
130 |
+
f"```python\n"
|
131 |
+
f"from datasets import load_dataset\n\n"
|
132 |
+
f"dataset = load_dataset(\"ScandLM/{language}_culturax\")\n"
|
133 |
+
f"```\n"
|
134 |
+
)
|
135 |
+
|
136 |
+
# Verify JSONL file
|
137 |
+
if not os.path.exists(jsonl_file):
|
138 |
+
raise FileNotFoundError(f"The file '{jsonl_file}' was not found.")
|
139 |
+
|
140 |
+
# Clean data and create a temporary JSONL file
|
141 |
+
cleaned_data = clean_jsonl_data(jsonl_file)
|
142 |
+
os.makedirs(jsonl_folder, exist_ok=True)
|
143 |
+
cleaned_jsonl_file = os.path.join(jsonl_folder, f"cleaned_{jsonl_file}")
|
144 |
+
with open(cleaned_jsonl_file, "w", encoding="utf-8") as f:
|
145 |
+
for entry in cleaned_data:
|
146 |
+
json.dump(entry, f)
|
147 |
+
f.write("\n")
|
148 |
+
|
149 |
+
# Split JSONL if too large
|
150 |
+
jsonl_shards = split_jsonl_file(cleaned_jsonl_file, os.path.join(jsonl_folder, language), max_size_gb=45)
|
151 |
+
|
152 |
+
# Load data into Dataset
|
153 |
+
dataset = Dataset.from_json(cleaned_jsonl_file)
|
154 |
+
|
155 |
+
# Estimate and create Parquet shards
|
156 |
+
num_shards = estimate_num_shards(cleaned_jsonl_file, target_shard_size_gb=1)
|
157 |
+
print(f"Number of Parquet shards: {num_shards}")
|
158 |
+
|
159 |
+
os.makedirs(data_folder, exist_ok=True)
|
160 |
+
parquet_files = []
|
161 |
+
for shard_id in range(num_shards):
|
162 |
+
shard = dataset.shard(num_shards=num_shards, index=shard_id)
|
163 |
+
parquet_file = os.path.join(data_folder, f"train-{shard_id:05d}-of-{num_shards:05d}.parquet")
|
164 |
+
shard.to_parquet(parquet_file)
|
165 |
+
parquet_files.append(parquet_file)
|
166 |
+
print(f"Parquet file created: {parquet_file}")
|
167 |
+
|
168 |
+
# Authenticate with Hugging Face
|
169 |
+
api = HfApi()
|
170 |
+
|
171 |
+
# Create dataset repo
|
172 |
+
api.create_repo(repo_id=repo_id, repo_type="dataset", private=False, exist_ok=True)
|
173 |
+
print(f"Dataset repository '{repo_id}' created successfully.")
|
174 |
+
|
175 |
+
# Upload Parquet files
|
176 |
+
for parquet_file in parquet_files:
|
177 |
+
upload_large_file(
|
178 |
+
file_path=parquet_file,
|
179 |
+
repo_id=repo_id,
|
180 |
+
path_in_repo=f"data/{os.path.basename(parquet_file)}",
|
181 |
+
)
|
182 |
+
|
183 |
+
# Upload JSONL shards
|
184 |
+
for shard_file in jsonl_shards:
|
185 |
+
upload_large_file(
|
186 |
+
file_path=shard_file,
|
187 |
+
repo_id=repo_id,
|
188 |
+
path_in_repo=f"jsonl/{os.path.basename(shard_file)}",
|
189 |
+
)
|
190 |
+
|
191 |
+
# Upload README
|
192 |
+
readme_path = os.path.join(temp_folder, "README.md")
|
193 |
+
with open(readme_path, "w", encoding="utf-8") as f:
|
194 |
+
f.write(yaml_tags)
|
195 |
+
|
196 |
+
upload_file(
|
197 |
+
path_or_fileobj=readme_path,
|
198 |
+
path_in_repo="README.md",
|
199 |
+
repo_id=repo_id,
|
200 |
+
repo_type="dataset",
|
201 |
+
use_auth_token=True
|
202 |
+
)
|
203 |
+
print("README.md uploaded successfully.")
|
204 |
+
|
205 |
+
# Upload scripts
|
206 |
+
os.makedirs(src_folder, exist_ok=True)
|
207 |
+
for script in ["download_culturax.py", "upload_culturax.py"]:
|
208 |
+
if os.path.exists(script):
|
209 |
+
upload_large_file(
|
210 |
+
file_path=script,
|
211 |
+
repo_id=repo_id,
|
212 |
+
path_in_repo=f"src/{script}",
|
213 |
+
)
|
214 |
+
|
215 |
+
# Clean up temporary files
|
216 |
+
if os.path.exists(readme_path):
|
217 |
+
os.remove(readme_path)
|
218 |
+
|
219 |
+
# Remove directories
|
220 |
+
shutil.rmtree(temp_folder, ignore_errors=True)
|
221 |
+
|
222 |
+
print("Dataset setup complete!")
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
parser = argparse.ArgumentParser(description="Upload a cultural dataset to Hugging Face.")
|
226 |
+
parser.add_argument("language", type=str, help="The language for the dataset (e.g., danish, swedish, norwegian, nynorsk).")
|
227 |
+
args = parser.parse_args()
|
228 |
+
create_and_upload_dataset(args.language)
|