|
import csv |
|
import json |
|
import os |
|
from datasets import GeneratorBasedBuilder, Features, Value, Sequence, SplitGenerator, BuilderConfig, DatasetInfo, Split, Image |
|
import logging |
|
import pandas as pd |
|
from typing import Dict |
|
|
|
CITATION = "" |
|
_DESCRIPTION = "" |
|
_HOMEPAGE = "https://huggingface.co/datasets/SarcasmNet/self-annotated_reddit_climate_comment" |
|
_LICENSE = "MIT" |
|
|
|
_URL = "https://github.com/catherine-ywang/Reddit-Climate-Environment-Sarcasm-Self-Annotated-Data/raw/main/self_annotated_comments.csv" |
|
|
|
class NewDataset(GeneratorBasedBuilder): |
|
def _info(self): |
|
return DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=Features({ |
|
"id": Value("string"), |
|
"post_title": Value("string"), |
|
"post_author": Value("string"), |
|
"post_body": Value("string"), |
|
"post_url": Value("string"), |
|
"post_pic": Image(), |
|
"subreddit": Value("string"), |
|
"post_timestamp": Value("string"), |
|
"post_upvotes": Value("int32"), |
|
"post_permalink": Value("string"), |
|
"comments": Sequence({ |
|
"CommentID": Value("string"), |
|
"CommentAuthor": Value("string"), |
|
"CommentBody": Value("string"), |
|
"CommentTimestamp": Value("string"), |
|
"CommentUpvotes": Value("int32"), |
|
"CommentPermalink": Value("string"), |
|
"Label": Value("int32") |
|
}) |
|
}), |
|
homepage=_HOMEPAGE, |
|
) |
|
def _split_generators(self, dl_manager): |
|
return [SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": dl_manager.download(_URL)})] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath) |
|
for column in df.columns: |
|
df[column] = df[column].replace({pd.NA: None}) |
|
|
|
grouped_df = df.groupby('PostID') |
|
|
|
for post_id, group in grouped_df: |
|
post_data = group.iloc[0] |
|
|
|
post_title = post_data['PostTitle'] |
|
post_author = post_data['PostAuthor'] |
|
post_body = post_data['PostBody'] |
|
post_url = post_data['PostUrl'] |
|
post_pic = post_data['PostPic'] |
|
subreddit = post_data['Subreddit'] |
|
post_timestamp = post_data['PostTimestamp'] |
|
post_upvotes = post_data['PostUpvotes'] |
|
post_permalink = post_data['PostPermalink'] |
|
|
|
comments = [] |
|
|
|
|
|
for comment_id in group['CommentID'].unique(): |
|
comment_data = group[group['CommentID'] == comment_id].iloc[0] |
|
|
|
comment_author = comment_data['CommentAuthor'] |
|
comment_body = comment_data['CommentBody'] |
|
comment_timestamp = comment_data['CommentTimestamp'] |
|
comment_upvotes = comment_data['CommentUpvotes'] |
|
comment_permalink = comment_data['CommentPermalink'] |
|
comment_label = comment_data['Label'] |
|
|
|
|
|
comment = { |
|
"CommentID": comment_id, |
|
"CommentAuthor": comment_author, |
|
"CommentBody": comment_body, |
|
"CommentTimestamp": comment_timestamp, |
|
"CommentUpvotes": comment_upvotes, |
|
"CommentPermalink": comment_permalink, |
|
"Label": comment_label |
|
} |
|
comments.append(comment) |
|
|
|
example = { |
|
"id": post_id, |
|
"post_title": post_title, |
|
"post_author": post_author, |
|
"post_body": post_body, |
|
"post_url": post_url, |
|
"post_pic": post_pic, |
|
"subreddit": subreddit, |
|
"post_timestamp": post_timestamp, |
|
"post_upvotes": post_upvotes, |
|
"post_permalink": post_permalink, |
|
"comments": comments |
|
} |
|
|
|
yield post_id, example |
|
|
|
|
|
|
|
|