language:
- ar
license: mit
size_categories:
- 100K<n<1M
task_categories:
- text-classification
pretty_name: Detect-Egyptian-Wikipedia-Articles
configs:
- config_name: balanced
data_files:
- split: train
path: balanced/train-*
- split: test
path: balanced/test-*
- config_name: unbalanced
data_files:
- split: train
path: unbalanced/train-*
- split: test
path: unbalanced/test-*
- config_name: uncategorized
data_files:
- split: train
path: uncategorized/train-*
- split: test
path: uncategorized/test-*
dataset_info:
- config_name: balanced
features:
- name: page_title
dtype: string
- name: creation_date
dtype: string
- name: creator_name
dtype: string
- name: total_edits
dtype: int64
- name: total_editors
dtype: int64
- name: top_editors
dtype: string
- name: bots_editors_percentage
dtype: float64
- name: humans_editors_percentage
dtype: float64
- name: total_bytes
dtype: int64
- name: total_chars
dtype: int64
- name: total_words
dtype: int64
- name: page_text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 32565713
num_examples: 16000
- name: test
num_bytes: 8243228
num_examples: 4000
download_size: 18217654
dataset_size: 40808941
- config_name: unbalanced
features:
- name: page_title
dtype: string
- name: creation_date
dtype: string
- name: creator_name
dtype: string
- name: total_edits
dtype: int64
- name: total_editors
dtype: int64
- name: top_editors
dtype: string
- name: bots_editors_percentage
dtype: float64
- name: humans_editors_percentage
dtype: float64
- name: total_bytes
dtype: int64
- name: total_chars
dtype: int64
- name: total_words
dtype: int64
- name: page_text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 132509046
num_examples: 133120
- name: test
num_bytes: 33292670
num_examples: 33281
download_size: 59449711
dataset_size: 165801716
- config_name: uncategorized
features:
- name: page_title
dtype: string
- name: creation_date
dtype: string
- name: creator_name
dtype: string
- name: total_edits
dtype: int64
- name: total_editors
dtype: int64
- name: top_editors
dtype: string
- name: bots_editors_percentage
dtype: float64
- name: humans_editors_percentage
dtype: float64
- name: total_bytes
dtype: int64
- name: total_chars
dtype: int64
- name: total_words
dtype: int64
- name: page_text
dtype: string
- name: label
dtype: string
splits:
- name: train
num_bytes: 607754601
num_examples: 455411
- name: test
num_bytes: 151613029
num_examples: 113853
download_size: 141377798
dataset_size: 759367630
source_datasets:
- Egyptian Wikipedia
tags:
- Wikipedia
Detect Egyptian Wikipedia Template-translated Articles
Dataset Description:
We release the heuristically filtered, manually processed, and automatically classified Egyptian Arabic Wikipedia articles dataset. This dataset was used to develop a web-based detection system to automatically identify the template-translated articles on the Egyptian Arabic Wikipedia edition. The system is called Egyptian Arabic Wikipedia Scanner and is hosted on Hugging Face Spaces, here: SaiedAlshahrani/Detect-Egyptian-Wikipedia-Articles.
This dataset is introduced in a research paper titled "Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition", which is accepted at LREC-COLING 2024: The 6th Workshop on Open-Source Arabic Corpora and Processing Tools (OSACT6), and is currently released under an MIT license.
Dataset Sources:
Dataset Features:
Dataset Subsets:
- Balanced: A balanced subset of the dataset comprised 20K (10K for each class) and was split in the ratio of 80:20 for training and testing. This subset was filtered and processed using selected heuristic rules.
- Unbalanced: An unbalanced subset of the dataset comprised 166K and was split in the ratio of 80:20 for training and testing. This subset is the rest of the filtered and processed articles using selected heuristic rules.
- Uncategorized: Another unbalanced subset of the dataset comprised 569K and was split in the ratio of 80:20 for training and testing, but this was classified automatically using the
XGBoost
classifier trained using the balanced subset.
Citations:
Please cite our paper if you have used our dataset in any way 😊
Short Citation:
Saied Alshahrani, Hesham Haroon, Ali Elfilali, Mariama Njie, and Jeanna Matthews. 2024. Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition. arXiv preprint arXiv:2404.00565.
BibTeX Citation:
@article{alshahrani2024leveraging,
title={Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition},
author={Saied Alshahrani and Hesham Haroon and Ali Elfilali and Mariama Njie and Jeanna Matthews},
year={2024},
eprint={2404.00565},
archivePrefix={arXiv},
primaryClass={cs.CL}
journal={arXiv preprint arXiv:2404.00565},
url={https://arxiv.org/abs/2404.00565}
}