holylovenia
commited on
Commit
•
b07b100
1
Parent(s):
a4117f9
Upload yunshan_cup_2020.py with huggingface_hub
Browse files- yunshan_cup_2020.py +167 -0
yunshan_cup_2020.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
from seacrowd.utils import schemas
|
7 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
8 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
9 |
+
|
10 |
+
_CITATION = """\
|
11 |
+
@article{DBLP:journals/corr/abs-2204-02658,
|
12 |
+
author = {Yingwen Fu and
|
13 |
+
Jinyi Chen and
|
14 |
+
Nankai Lin and
|
15 |
+
Xixuan Huang and
|
16 |
+
Xin Ying Qiu and
|
17 |
+
Shengyi Jiang},
|
18 |
+
title = {Yunshan Cup 2020: Overview of the Part-of-Speech Tagging Task for
|
19 |
+
Low-resourced Languages},
|
20 |
+
journal = {CoRR},
|
21 |
+
volume = {abs/2204.02658},
|
22 |
+
year = {2022},
|
23 |
+
url = {https://doi.org/10.48550/arXiv.2204.02658},
|
24 |
+
doi = {10.48550/arXiv.2204.02658},
|
25 |
+
eprinttype = {arXiv},
|
26 |
+
eprint = {2204.02658},
|
27 |
+
timestamp = {Tue, 12 Apr 2022 18:42:14 +0200},
|
28 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2204-02658.bib},
|
29 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
30 |
+
}
|
31 |
+
"""
|
32 |
+
|
33 |
+
_DATASETNAME = "yunshan_cup_2020"
|
34 |
+
|
35 |
+
_DESCRIPTION = """\
|
36 |
+
Lao POS dataset containing 11,000 sentences was released as part of Yunshan-Cup-2020 evaluation track.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_HOMEPAGE = "https://github.com/GKLMIP/Yunshan-Cup-2020"
|
40 |
+
|
41 |
+
_LOCAL = False
|
42 |
+
_LANGUAGES = ["lao"]
|
43 |
+
|
44 |
+
_LICENSE = Licenses.UNKNOWN.value # example: Licenses.MIT.value, Licenses.CC_BY_NC_SA_4_0.value, Licenses.UNLICENSE.value, Licenses.UNKNOWN.value
|
45 |
+
|
46 |
+
_URLS = {
|
47 |
+
"train": "https://raw.githubusercontent.com/GKLMIP/Yunshan-Cup-2020/main/train.txt",
|
48 |
+
"val": "https://raw.githubusercontent.com/GKLMIP/Yunshan-Cup-2020/main/dev.txt",
|
49 |
+
"test": "https://raw.githubusercontent.com/GKLMIP/Yunshan-Cup-2020/main/test.txt",
|
50 |
+
}
|
51 |
+
_SUPPORTED_TASKS = [Tasks.POS_TAGGING] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
52 |
+
_SOURCE_VERSION = "1.0.0"
|
53 |
+
|
54 |
+
_SEACROWD_VERSION = "2024.06.20"
|
55 |
+
|
56 |
+
|
57 |
+
class YunshanCup2020Dataset(datasets.GeneratorBasedBuilder):
|
58 |
+
"""Lao POS dataset containing 11,000 sentences was released as part of Yunshan-Cup-2020 evaluation track."""
|
59 |
+
|
60 |
+
class_labels = ["IAC", "COJ", "ONM", "PRE", "PRS", "V", "DBQ", "IBQ", "FIX", "N", "ADJ", "DMN", "IAQ", "CLF", "PRA", "DAN", "NEG", "NTR", "REL", "PVA", "TTL", "DAQ", "PRN", "ADV", "PUNCT", "CNM"]
|
61 |
+
|
62 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
63 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
64 |
+
BUILDER_CONFIGS = [
|
65 |
+
SEACrowdConfig(
|
66 |
+
name=f"{_DATASETNAME}_source",
|
67 |
+
version=SOURCE_VERSION,
|
68 |
+
description="yunshan_cup_2020 source schema",
|
69 |
+
schema="source",
|
70 |
+
subset_id="yunshan_cup_2020",
|
71 |
+
),
|
72 |
+
SEACrowdConfig(
|
73 |
+
name=f"{_DATASETNAME}_seacrowd_seq_label",
|
74 |
+
version=SEACROWD_VERSION,
|
75 |
+
description="yunshan_cup_2020 SEACrowd schema",
|
76 |
+
schema="seacrowd_seq_label",
|
77 |
+
subset_id="yunshan_cup_2020",
|
78 |
+
),
|
79 |
+
]
|
80 |
+
|
81 |
+
DEFAULT_CONFIG_NAME = "yunshan_cup_2020_source"
|
82 |
+
|
83 |
+
def _info(self) -> datasets.DatasetInfo:
|
84 |
+
if self.config.schema == "source":
|
85 |
+
features = datasets.Features(
|
86 |
+
{
|
87 |
+
"index": datasets.Value("string"),
|
88 |
+
"tokens": [datasets.Value("string")],
|
89 |
+
"pos_tags": [datasets.Value("string")],
|
90 |
+
}
|
91 |
+
)
|
92 |
+
elif self.config.schema == "seacrowd_seq_label":
|
93 |
+
features = schemas.seq_label_features(self.class_labels)
|
94 |
+
|
95 |
+
return datasets.DatasetInfo(
|
96 |
+
description=_DESCRIPTION,
|
97 |
+
features=features,
|
98 |
+
homepage=_HOMEPAGE,
|
99 |
+
license=_LICENSE,
|
100 |
+
citation=_CITATION,
|
101 |
+
)
|
102 |
+
|
103 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
104 |
+
"""Returns SplitGenerators."""
|
105 |
+
path_dict = dl_manager.download_and_extract(_URLS)
|
106 |
+
train_path, val_path, test_path = path_dict["train"], path_dict["val"], path_dict["test"]
|
107 |
+
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TRAIN,
|
111 |
+
gen_kwargs={
|
112 |
+
"filepath": train_path,
|
113 |
+
},
|
114 |
+
),
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TEST,
|
117 |
+
gen_kwargs={
|
118 |
+
"filepath": test_path
|
119 |
+
},
|
120 |
+
),
|
121 |
+
datasets.SplitGenerator(
|
122 |
+
name=datasets.Split.VALIDATION,
|
123 |
+
gen_kwargs={
|
124 |
+
"filepath": val_path,
|
125 |
+
},
|
126 |
+
),
|
127 |
+
]
|
128 |
+
|
129 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
130 |
+
df = load_postagging_data(filepath)
|
131 |
+
if self.config.schema == "source":
|
132 |
+
for i, row in enumerate(df):
|
133 |
+
ex = {
|
134 |
+
"index": str(i),
|
135 |
+
"tokens": row["sentence"],
|
136 |
+
"pos_tags": row["label"],
|
137 |
+
}
|
138 |
+
yield i, ex
|
139 |
+
|
140 |
+
elif self.config.schema == "seacrowd_seq_label":
|
141 |
+
for i, row in enumerate(df):
|
142 |
+
ex = {
|
143 |
+
"id": str(i),
|
144 |
+
"tokens": row["sentence"],
|
145 |
+
"labels": row["label"],
|
146 |
+
}
|
147 |
+
yield i, ex
|
148 |
+
|
149 |
+
|
150 |
+
def load_postagging_data(file_path):
|
151 |
+
data = open(file_path, "r").readlines()
|
152 |
+
dataset = []
|
153 |
+
sentence, seq_label = [], []
|
154 |
+
for line in data:
|
155 |
+
if len(line.strip()) > 0:
|
156 |
+
token, label = " ", ""
|
157 |
+
if len(line.strip().split(" ")) < 2:
|
158 |
+
label = line.strip()
|
159 |
+
else:
|
160 |
+
token, label = line[:-1].split(" ")
|
161 |
+
sentence.append(token)
|
162 |
+
seq_label.append(label)
|
163 |
+
else:
|
164 |
+
dataset.append({"sentence": sentence, "label": seq_label})
|
165 |
+
sentence = []
|
166 |
+
seq_label = []
|
167 |
+
return dataset
|