wili_2018 / wili_2018.py
holylovenia's picture
Upload wili_2018.py with huggingface_hub
a7243b5 verified
from pathlib import Path
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """
@article{thoma2018wili,
title={The WiLI benchmark dataset for written language identification},
author={Thoma, Martin},
journal={arXiv preprint arXiv:1801.07779},
year={2018}
}
"""
_DATASETNAME = "wili_2018"
_DESCRIPTION = """
WiLI-2018 is a Wikipedia language identification benchmark dataset. It contains 235000 paragraphs from 235 languages.
The dataset is balanced, and a train-test split is provided.
"""
_HOMEPAGE = "https://zenodo.org/records/841984"
_LANGUAGES = ["nrm", "jav", "min", "lao", "mya", "pag", "ind", "cbk", "tet", "tha", "ceb", "tgl", "bjn", "bcl", "vie"]
_LICENSE = Licenses.ODBL.value
_LOCAL = False
_URLS = {
_DATASETNAME: {"train": "https://drive.google.com/uc?export=download&id=1ZzlIQvw1KNBG97QQCfdatvVrrbeLaM1u", "test": "https://drive.google.com/uc?export=download&id=1Xx4kFc1Xdzz8AhDasxZ0cSa-a35EQSDZ"},
}
_SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_CLASSES = [
"cdo",
"glk",
"jam",
"lug",
"san",
"rue",
"wol",
"new",
"mwl",
"bre",
"ara",
"hye",
"xmf",
"ext",
"cor",
"yor",
"div",
"asm",
"lat",
"cym",
"hif",
"ace",
"kbd",
"tgk",
"rus",
"nso",
"mya",
"msa",
"ava",
"cbk",
"urd",
"deu",
"swa",
"pus",
"bxr",
"udm",
"csb",
"yid",
"vro",
"por",
"pdc",
"eng",
"tha",
"hat",
"lmo",
"pag",
"jav",
"chv",
"nan",
"sco",
"kat",
"bho",
"bos",
"kok",
"oss",
"mri",
"fry",
"cat",
"azb",
"kin",
"hin",
"sna",
"dan",
"egl",
"mkd",
"ron",
"bul",
"hrv",
"som",
"pam",
"nav",
"ksh",
"nci",
"khm",
"sgs",
"srn",
"bar",
"cos",
"ckb",
"pfl",
"arz",
"roa-tara",
"fra",
"mai",
"zh-yue",
"guj",
"fin",
"kir",
"vol",
"hau",
"afr",
"uig",
"lao",
"swe",
"slv",
"kor",
"szl",
"srp",
"dty",
"nrm",
"dsb",
"ind",
"wln",
"pnb",
"ukr",
"bpy",
"vie",
"tur",
"aym",
"lit",
"zea",
"pol",
"est",
"scn",
"vls",
"stq",
"gag",
"grn",
"kaz",
"ben",
"pcd",
"bjn",
"krc",
"amh",
"diq",
"ltz",
"ita",
"kab",
"bel",
"ang",
"mhr",
"che",
"koi",
"glv",
"ido",
"fao",
"bak",
"isl",
"bcl",
"tet",
"jpn",
"kur",
"map-bms",
"tyv",
"olo",
"arg",
"ori",
"lim",
"tel",
"lin",
"roh",
"sqi",
"xho",
"mlg",
"fas",
"hbs",
"tam",
"aze",
"lad",
"nob",
"sin",
"gla",
"nap",
"snd",
"ast",
"mal",
"mdf",
"tsn",
"nds",
"tgl",
"nno",
"sun",
"lzh",
"jbo",
"crh",
"pap",
"oci",
"hak",
"uzb",
"zho",
"hsb",
"sme",
"mlt",
"vep",
"lez",
"nld",
"nds-nl",
"mrj",
"spa",
"ceb",
"ina",
"heb",
"hun",
"que",
"kaa",
"mar",
"vec",
"frp",
"ell",
"sah",
"eus",
"ces",
"slk",
"chr",
"lij",
"nep",
"srd",
"ilo",
"be-tarask",
"bod",
"orm",
"war",
"glg",
"mon",
"gle",
"min",
"ibo",
"ile",
"epo",
"lav",
"lrc",
"als",
"mzn",
"rup",
"fur",
"tat",
"myv",
"pan",
"ton",
"kom",
"wuu",
"tcy",
"tuk",
"kan",
"ltg",
]
class Wili2018Dataset(datasets.GeneratorBasedBuilder):
"""A benchmark dataset for language identification and contains 235000 paragraphs of 235 languages."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_text",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_text",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"sentence": datasets.Value("string"),
"label": datasets.ClassLabel(names=_CLASSES),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(_CLASSES)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_dir, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_dir, "split": "test"},
),
]
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]:
if self.config.schema == "source":
with open(filepath[split], encoding="utf-8") as f:
for i, line in enumerate(f):
text, label = line.rsplit(",", 1)
text = text.strip('"')
label = int(label.strip())
yield i, {"sentence": text, "label": _CLASSES[label - 1]}
elif self.config.schema == "seacrowd_text":
with open(filepath[split], encoding="utf-8") as f:
for i, line in enumerate(f):
text, label = line.rsplit(",", 1)
text = text.strip('"')
label = int(label.strip())
yield i, {"id": str(i), "text": text, "label": _CLASSES[label - 1]}