|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@article{thoma2018wili, |
|
title={The WiLI benchmark dataset for written language identification}, |
|
author={Thoma, Martin}, |
|
journal={arXiv preprint arXiv:1801.07779}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "wili_2018" |
|
|
|
_DESCRIPTION = """ |
|
WiLI-2018 is a Wikipedia language identification benchmark dataset. It contains 235000 paragraphs from 235 languages. |
|
The dataset is balanced, and a train-test split is provided. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/records/841984" |
|
|
|
_LANGUAGES = ["nrm", "jav", "min", "lao", "mya", "pag", "ind", "cbk", "tet", "tha", "ceb", "tgl", "bjn", "bcl", "vie"] |
|
|
|
_LICENSE = Licenses.ODBL.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: {"train": "https://drive.google.com/uc?export=download&id=1ZzlIQvw1KNBG97QQCfdatvVrrbeLaM1u", "test": "https://drive.google.com/uc?export=download&id=1Xx4kFc1Xdzz8AhDasxZ0cSa-a35EQSDZ"}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
_CLASSES = [ |
|
"cdo", |
|
"glk", |
|
"jam", |
|
"lug", |
|
"san", |
|
"rue", |
|
"wol", |
|
"new", |
|
"mwl", |
|
"bre", |
|
"ara", |
|
"hye", |
|
"xmf", |
|
"ext", |
|
"cor", |
|
"yor", |
|
"div", |
|
"asm", |
|
"lat", |
|
"cym", |
|
"hif", |
|
"ace", |
|
"kbd", |
|
"tgk", |
|
"rus", |
|
"nso", |
|
"mya", |
|
"msa", |
|
"ava", |
|
"cbk", |
|
"urd", |
|
"deu", |
|
"swa", |
|
"pus", |
|
"bxr", |
|
"udm", |
|
"csb", |
|
"yid", |
|
"vro", |
|
"por", |
|
"pdc", |
|
"eng", |
|
"tha", |
|
"hat", |
|
"lmo", |
|
"pag", |
|
"jav", |
|
"chv", |
|
"nan", |
|
"sco", |
|
"kat", |
|
"bho", |
|
"bos", |
|
"kok", |
|
"oss", |
|
"mri", |
|
"fry", |
|
"cat", |
|
"azb", |
|
"kin", |
|
"hin", |
|
"sna", |
|
"dan", |
|
"egl", |
|
"mkd", |
|
"ron", |
|
"bul", |
|
"hrv", |
|
"som", |
|
"pam", |
|
"nav", |
|
"ksh", |
|
"nci", |
|
"khm", |
|
"sgs", |
|
"srn", |
|
"bar", |
|
"cos", |
|
"ckb", |
|
"pfl", |
|
"arz", |
|
"roa-tara", |
|
"fra", |
|
"mai", |
|
"zh-yue", |
|
"guj", |
|
"fin", |
|
"kir", |
|
"vol", |
|
"hau", |
|
"afr", |
|
"uig", |
|
"lao", |
|
"swe", |
|
"slv", |
|
"kor", |
|
"szl", |
|
"srp", |
|
"dty", |
|
"nrm", |
|
"dsb", |
|
"ind", |
|
"wln", |
|
"pnb", |
|
"ukr", |
|
"bpy", |
|
"vie", |
|
"tur", |
|
"aym", |
|
"lit", |
|
"zea", |
|
"pol", |
|
"est", |
|
"scn", |
|
"vls", |
|
"stq", |
|
"gag", |
|
"grn", |
|
"kaz", |
|
"ben", |
|
"pcd", |
|
"bjn", |
|
"krc", |
|
"amh", |
|
"diq", |
|
"ltz", |
|
"ita", |
|
"kab", |
|
"bel", |
|
"ang", |
|
"mhr", |
|
"che", |
|
"koi", |
|
"glv", |
|
"ido", |
|
"fao", |
|
"bak", |
|
"isl", |
|
"bcl", |
|
"tet", |
|
"jpn", |
|
"kur", |
|
"map-bms", |
|
"tyv", |
|
"olo", |
|
"arg", |
|
"ori", |
|
"lim", |
|
"tel", |
|
"lin", |
|
"roh", |
|
"sqi", |
|
"xho", |
|
"mlg", |
|
"fas", |
|
"hbs", |
|
"tam", |
|
"aze", |
|
"lad", |
|
"nob", |
|
"sin", |
|
"gla", |
|
"nap", |
|
"snd", |
|
"ast", |
|
"mal", |
|
"mdf", |
|
"tsn", |
|
"nds", |
|
"tgl", |
|
"nno", |
|
"sun", |
|
"lzh", |
|
"jbo", |
|
"crh", |
|
"pap", |
|
"oci", |
|
"hak", |
|
"uzb", |
|
"zho", |
|
"hsb", |
|
"sme", |
|
"mlt", |
|
"vep", |
|
"lez", |
|
"nld", |
|
"nds-nl", |
|
"mrj", |
|
"spa", |
|
"ceb", |
|
"ina", |
|
"heb", |
|
"hun", |
|
"que", |
|
"kaa", |
|
"mar", |
|
"vec", |
|
"frp", |
|
"ell", |
|
"sah", |
|
"eus", |
|
"ces", |
|
"slk", |
|
"chr", |
|
"lij", |
|
"nep", |
|
"srd", |
|
"ilo", |
|
"be-tarask", |
|
"bod", |
|
"orm", |
|
"war", |
|
"glg", |
|
"mon", |
|
"gle", |
|
"min", |
|
"ibo", |
|
"ile", |
|
"epo", |
|
"lav", |
|
"lrc", |
|
"als", |
|
"mzn", |
|
"rup", |
|
"fur", |
|
"tat", |
|
"myv", |
|
"pan", |
|
"ton", |
|
"kom", |
|
"wuu", |
|
"tcy", |
|
"tuk", |
|
"kan", |
|
"ltg", |
|
] |
|
|
|
|
|
class Wili2018Dataset(datasets.GeneratorBasedBuilder): |
|
"""A benchmark dataset for language identification and contains 235000 paragraphs of 235 languages.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_text", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=_CLASSES), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: |
|
if self.config.schema == "source": |
|
with open(filepath[split], encoding="utf-8") as f: |
|
for i, line in enumerate(f): |
|
text, label = line.rsplit(",", 1) |
|
text = text.strip('"') |
|
label = int(label.strip()) |
|
yield i, {"sentence": text, "label": _CLASSES[label - 1]} |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
with open(filepath[split], encoding="utf-8") as f: |
|
for i, line in enumerate(f): |
|
text, label = line.rsplit(",", 1) |
|
text = text.strip('"') |
|
label = int(label.strip()) |
|
yield i, {"id": str(i), "text": text, "label": _CLASSES[label - 1]} |
|
|