|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{le-etal-2022-vimqa, |
|
title = "{VIMQA}: A {V}ietnamese Dataset for Advanced Reasoning and Explainable Multi-hop Question Answering", |
|
author = "Le, Khang and |
|
Nguyen, Hien and |
|
Le Thanh, Tung and |
|
Nguyen, Minh", |
|
editor = "Calzolari, Nicoletta and |
|
B{\'e}chet, Fr{\'e}d{\'e}ric and |
|
Blache, Philippe and |
|
Choukri, Khalid and |
|
Cieri, Christopher and |
|
Declerck, Thierry and |
|
Goggi, Sara and |
|
Isahara, Hitoshi and |
|
Maegaard, Bente and |
|
Mariani, Joseph and |
|
Mazo, H{\'e}l{\'e}ne and |
|
Odijk, Jan and |
|
Piperidis, Stelios", |
|
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", |
|
month = jun, |
|
year = "2022", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2022.lrec-1.700", |
|
pages = "6521--6529", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vimqa" |
|
|
|
_DESCRIPTION = """ |
|
VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs. The dataset is human-generated and has four main features: |
|
The questions require advanced reasoning over multiple paragraphs. |
|
Sentence-level supporting facts are provided, enabling the QA model to reason and explain the answer. |
|
The dataset offers various types of reasoning to test the model's ability to reason and extract relevant proof. |
|
The dataset is in Vietnamese, a low-resource language |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/vimqa/vimqa" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = f"""{Licenses.OTHERS.value} | \ |
|
The licence terms for VimQA follows this EULA docs on their repo. |
|
Please refer to the following doc of EULA (to review the permissions and request for access) |
|
VIMQA EULA -- https://github.com/vimqa/vimqa/blob/main/VIMQA_EULA.pdf |
|
""" |
|
|
|
_LOCAL = True |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class VimqaDataset(datasets.GeneratorBasedBuilder): |
|
"""VIMQA, a new Vietnamese dataset with over 10,000 Wikipedia-based multi-hop question-answer pairs.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"supporting_facts": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"sent_id": datasets.Value("int32"), |
|
} |
|
), |
|
"context": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"sentences": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
} |
|
) |
|
else: |
|
features = schemas.qa_features |
|
features["meta"] = { |
|
"supporting_facts": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"sent_id": datasets.Value("int32"), |
|
} |
|
), |
|
"context": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"sentences": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_train.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_dev.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "vimqa_test.json")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> tuple[int, dict]: |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
for i, item in enumerate(data): |
|
if self.config.schema == "source": |
|
yield i, { |
|
"id": item["_id"], |
|
"question": item["question"], |
|
"answer": item["answer"], |
|
"type": item["type"], |
|
"supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]], |
|
"context": [{"title": f[0], "sentences": f[1]} for f in item["context"]], |
|
} |
|
else: |
|
yield i, { |
|
"id": str(i), |
|
"question_id": item["_id"], |
|
"document_id": "", |
|
"question": item["question"], |
|
"type": item["type"], |
|
"choices": [], |
|
"context": "", |
|
"answer": [item["answer"]], |
|
"meta": { |
|
"supporting_facts": [{"title": f[0], "sent_id": f[1]} for f in item["supporting_facts"]], |
|
"context": [{"title": f[0], "sentences": f[1]} for f in item["context"]], |
|
}, |
|
} |
|
|