|
from pathlib import Path |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@inproceedings{10.1145/3628797.3628837, |
|
author = {Nguyen, Duc-Vu and Nguyen, Quoc-Nam}, |
|
title = {Evaluating the Symbol Binding Ability of Large Language Models for Multiple-Choice Questions in Vietnamese General Education}, |
|
year = {2023}, |
|
isbn = {9798400708916}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3628797.3628837}, |
|
doi = {10.1145/3628797.3628837}, |
|
booktitle = {Proceedings of the 12th International Symposium on Information and Communication Technology}, |
|
pages = {379–386}, |
|
numpages = {8}, |
|
keywords = {Analysis of Language Models, Multiple Choice Symbol Binding, Multiple Choice Question Answering, Language Modeling}, |
|
location = {<conf-loc>, <city>Ho Chi Minh</city>, <country>Vietnam</country>, </conf-loc>}, |
|
series = {SOICT '23} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vigetext" |
|
|
|
_DESCRIPTION = """ |
|
The high-quality dataset with structured guidelines for typing LaTeX formulas in Mathematics, Physics, Chemistry, and |
|
Biology. Objective was to cover the entire scope of the Vietnamese General Education Examination spanning from 2017 to 2023. |
|
This comprehensive approach included the challenging examinations of the years 2017 and 2018, which have been significant |
|
for nearly all Vietnamese students in recent years. It is important to highlight that the exact and unquestionably correct |
|
answers have been exclusively obtained from the Vietnamese Ministry of Education. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/uitnlp/ViGEText_17to23" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://huggingface.co/datasets/uitnlp/ViGEText_17to23/resolve/main/data/train-00000-of-00001.parquet", |
|
"validation": "https://huggingface.co/datasets/uitnlp/ViGEText_17to23/resolve/main/data/validation-00000-of-00001.parquet", |
|
"test": "https://huggingface.co/datasets/uitnlp/ViGEText_17to23/resolve/main/data/test-00000-of-00001.parquet", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class VigetextDataset(datasets.GeneratorBasedBuilder): |
|
"""Vigetext is a dataset for evaluating the Symbol Binding Ability of Large Language Models for Multiple-Choice Questions in Vietnamese General Education.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_qa", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_qa", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"input": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
} |
|
) |
|
|
|
else: |
|
features = schemas.qa_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_dir, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_dir, "split": "validation"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: |
|
df = pd.read_parquet(filepath[split]) |
|
data = df.to_dict(orient="records") |
|
for i, item in enumerate(data): |
|
if self.config.schema == "source": |
|
yield i, { |
|
"id": item["id"], |
|
"input": item["input"], |
|
"target": item["target"], |
|
} |
|
else: |
|
question_and_options = item["input"].split("\n") |
|
answer_map = {opt[0]: opt[2:].strip() for opt in question_and_options[1:]} |
|
yield i, { |
|
"id": str(i), |
|
"question_id": item["id"], |
|
"document_id": "", |
|
"question": question_and_options[0], |
|
"type": "multiple_choice", |
|
"choices": [opt[2:].strip() for opt in question_and_options[1:]], |
|
"context": "", |
|
"answer": [answer_map[item["target"]]], |
|
"meta": {} |
|
} |
|
|