holylovenia
commited on
Commit
•
d3e282d
1
Parent(s):
561886a
Upload uit_victsd.py with huggingface_hub
Browse files- uit_victsd.py +132 -0
uit_victsd.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from typing import Dict, List, Tuple
|
16 |
+
|
17 |
+
import datasets
|
18 |
+
|
19 |
+
from seacrowd.utils import schemas
|
20 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
21 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
22 |
+
|
23 |
+
_CITATION = """
|
24 |
+
@inproceedings{,
|
25 |
+
author = {Nguyen, Luan Thanh and Van Nguyen, Kiet and Nguyen, Ngan Luu-Thuy},
|
26 |
+
title = {Constructive and Toxic Speech Detection for Open-domain Social Media Comments in Vietnamese},
|
27 |
+
booktitle = {Advances and Trends in Artificial Intelligence. Artificial Intelligence Practices},
|
28 |
+
year = {2021},
|
29 |
+
publisher = {Springer International Publishing},
|
30 |
+
address = {Kuala Lumpur, Malaysia},
|
31 |
+
pages = {572--583},
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
_LOCAL = False
|
36 |
+
_LANGUAGES = ["vie"]
|
37 |
+
_DATASETNAME = "uit_victsd"
|
38 |
+
_DESCRIPTION = """
|
39 |
+
The UIT-ViCTSD (Vietnamese Constructive and Toxic Speech Detection dataset) is a compilation of 10,000 human-annotated
|
40 |
+
comments intended for constructive and toxic comments detection. The dataset spans 10 domains, reflecting the diverse topics
|
41 |
+
and expressions found in social media interactions among Vietnamese users.
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = "https://github.com/tarudesu/ViCTSD"
|
45 |
+
_LICENSE = Licenses.UNKNOWN.value
|
46 |
+
_URL = "https://huggingface.co/datasets/tarudesu/ViCTSD"
|
47 |
+
|
48 |
+
|
49 |
+
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION, Tasks.ABUSIVE_LANGUAGE_PREDICTION]
|
50 |
+
_SOURCE_VERSION = "1.0.0"
|
51 |
+
_SEACROWD_VERSION = "2024.06.20"
|
52 |
+
|
53 |
+
|
54 |
+
class UiTViCTSDDataset(datasets.GeneratorBasedBuilder):
|
55 |
+
"""
|
56 |
+
Dataset of Vietnamese social media comments annotated
|
57 |
+
for constructiveness and toxicity.
|
58 |
+
"""
|
59 |
+
|
60 |
+
SUBSETS = ["constructiveness", "toxicity"]
|
61 |
+
CLASS_LABELS = [0, 1]
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [
|
64 |
+
SEACrowdConfig(
|
65 |
+
name=f"{_DATASETNAME}_{subset}_source",
|
66 |
+
version=datasets.Version(_SOURCE_VERSION),
|
67 |
+
description=f"{_DATASETNAME} source schema for {subset} subset",
|
68 |
+
schema="source",
|
69 |
+
subset_id=f"{_DATASETNAME}_{subset}",
|
70 |
+
)
|
71 |
+
for subset in SUBSETS
|
72 |
+
] + [
|
73 |
+
SEACrowdConfig(
|
74 |
+
name=f"{_DATASETNAME}_{subset}_seacrowd_text",
|
75 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
76 |
+
description=f"{_DATASETNAME} SEACrowd schema for {subset} subset",
|
77 |
+
schema="seacrowd_text",
|
78 |
+
subset_id=f"{_DATASETNAME}_{subset}",
|
79 |
+
)
|
80 |
+
for subset in SUBSETS
|
81 |
+
]
|
82 |
+
|
83 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_constructiveness_source"
|
84 |
+
|
85 |
+
def _info(self) -> datasets.DatasetInfo:
|
86 |
+
if self.config.schema == "source":
|
87 |
+
features = datasets.Features(
|
88 |
+
{
|
89 |
+
"Unnamed: 0": datasets.Value("int64"), # Column name missing in original dataset
|
90 |
+
"Comment": datasets.Value("string"),
|
91 |
+
"Constructiveness": datasets.ClassLabel(names=self.CLASS_LABELS),
|
92 |
+
"Toxicity": datasets.ClassLabel(names=self.CLASS_LABELS),
|
93 |
+
"Title": datasets.Value("string"),
|
94 |
+
"Topic": datasets.Value("string"),
|
95 |
+
}
|
96 |
+
)
|
97 |
+
|
98 |
+
elif self.config.schema == "seacrowd_text":
|
99 |
+
features = schemas.text_features(label_names=self.CLASS_LABELS)
|
100 |
+
|
101 |
+
return datasets.DatasetInfo(
|
102 |
+
description=_DESCRIPTION,
|
103 |
+
features=features,
|
104 |
+
homepage=_HOMEPAGE,
|
105 |
+
license=_LICENSE,
|
106 |
+
citation=_CITATION,
|
107 |
+
)
|
108 |
+
|
109 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
110 |
+
# dl_manager not used since dataloader uses HF 'load_dataset'
|
111 |
+
return [datasets.SplitGenerator(name=split, gen_kwargs={"split": split._name}) for split in (datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST)]
|
112 |
+
|
113 |
+
def _load_hf_data_from_remote(self, split: str) -> datasets.DatasetDict:
|
114 |
+
"""Load dataset from HuggingFace."""
|
115 |
+
HF_REMOTE_REF = "/".join(_URL.split("/")[-2:])
|
116 |
+
_hf_dataset_source = datasets.load_dataset(HF_REMOTE_REF, split=split)
|
117 |
+
return _hf_dataset_source
|
118 |
+
|
119 |
+
def _generate_examples(self, split: str) -> Tuple[int, Dict]:
|
120 |
+
"""Yields examples as (key, example) tuples."""
|
121 |
+
data = self._load_hf_data_from_remote(split=split)
|
122 |
+
for index, row in enumerate(data):
|
123 |
+
if self.config.schema == "source":
|
124 |
+
example = row
|
125 |
+
|
126 |
+
elif self.config.schema == "seacrowd_text":
|
127 |
+
if "constructiveness" in self.config.name:
|
128 |
+
label = row["Constructiveness"]
|
129 |
+
elif "toxicity" in self.config.name:
|
130 |
+
label = row["Toxicity"]
|
131 |
+
example = {"id": str(index), "text": row["Comment"], "label": label}
|
132 |
+
yield index, example
|