holylovenia commited on
Commit
6782bf9
1 Parent(s): e9fa2f7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +13 -13
README.md CHANGED
@@ -19,10 +19,10 @@ tags:
19
  Universal Dependencies (UD) is a project that is developing cross-linguistically consistent treebank annotation
20
  for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and
21
  parsing research from a language typology perspective. The annotation scheme is based on an evolution of (universal)
22
- Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags
23
- (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
24
- The general philosophy is to provide a universal inventory of categories and guidelines to facilitate consistent
25
- annotation of similar constructions across languages, while allowing language-specific extensions when necessary.
26
 
27
 
28
  ## Languages
@@ -32,25 +32,25 @@ ind, vie, tgl
32
  ## Supported Tasks
33
 
34
  Pos Tagging, Dependency Parsing, Machine Translation
35
-
36
  ## Dataset Usage
37
  ### Using `datasets` library
38
  ```
39
- from datasets import load_dataset
40
- dset = datasets.load_dataset("SEACrowd/ud", trust_remote_code=True)
41
  ```
42
  ### Using `seacrowd` library
43
  ```import seacrowd as sc
44
  # Load the dataset using the default config
45
- dset = sc.load_dataset("ud", schema="seacrowd")
46
  # Check all available subsets (config names) of the dataset
47
- print(sc.available_config_names("ud"))
48
  # Load the dataset using a specific config
49
- dset = sc.load_dataset_by_config_name(config_name="<config_name>")
50
  ```
51
-
52
- More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
53
-
54
 
55
  ## Dataset Homepage
56
 
 
19
  Universal Dependencies (UD) is a project that is developing cross-linguistically consistent treebank annotation
20
  for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and
21
  parsing research from a language typology perspective. The annotation scheme is based on an evolution of (universal)
22
+ Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags
23
+ (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
24
+ The general philosophy is to provide a universal inventory of categories and guidelines to facilitate consistent
25
+ annotation of similar constructions across languages, while allowing language-specific extensions when necessary.
26
 
27
 
28
  ## Languages
 
32
  ## Supported Tasks
33
 
34
  Pos Tagging, Dependency Parsing, Machine Translation
35
+
36
  ## Dataset Usage
37
  ### Using `datasets` library
38
  ```
39
+ from datasets import load_dataset
40
+ dset = datasets.load_dataset("SEACrowd/ud", trust_remote_code=True)
41
  ```
42
  ### Using `seacrowd` library
43
  ```import seacrowd as sc
44
  # Load the dataset using the default config
45
+ dset = sc.load_dataset("ud", schema="seacrowd")
46
  # Check all available subsets (config names) of the dataset
47
+ print(sc.available_config_names("ud"))
48
  # Load the dataset using a specific config
49
+ dset = sc.load_dataset_by_config_name(config_name="<config_name>")
50
  ```
51
+
52
+ More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
53
+
54
 
55
  ## Dataset Homepage
56