holylovenia
commited on
Upload tcope.py with huggingface_hub
Browse files
tcope.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict, List, Tuple
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
from seacrowd.utils import schemas
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
24 |
+
|
25 |
+
_CITATION = """
|
26 |
+
@article{gonzales_broadening_2023,
|
27 |
+
author = {Gonzales, Wilkinson Daniel Wong},
|
28 |
+
title = {Broadening horizons in the diachronic and sociolinguisstic study of
|
29 |
+
Philippine Englishes with the Twitter Corpus of Philippine Englishes (TCOPE)},
|
30 |
+
journal = {English World-Wide},
|
31 |
+
year = {2023},
|
32 |
+
url = {https://osf.io/k3qzx},
|
33 |
+
doi = {10.17605/OSF.IO/3Q5PW},
|
34 |
+
}
|
35 |
+
"""
|
36 |
+
|
37 |
+
_LOCAL = False
|
38 |
+
_LANGUAGES = ["eng", "fil"]
|
39 |
+
_DATASETNAME = "tcope"
|
40 |
+
_DESCRIPTION = """
|
41 |
+
The TCOPE dataset consists of public tweets (amounting to about 13.5 million words) collected from 13 major cities from the Philippines.
|
42 |
+
Tweets are either purely in English or involve code-switching between English and Filipino.
|
43 |
+
Tweets are tagged for part-of-speech and dependency parsing using spaCy. Tweets collected are from 2010 to 2021.
|
44 |
+
The publicly available dataset is only a random sample (10%) from the whole TCOPE dataset, which consist of roughly 27 million tweets
|
45 |
+
(amounting to about 135 million words) collected from 29 major cities during the same date range.
|
46 |
+
"""
|
47 |
+
|
48 |
+
_HOMEPAGE = "https://osf.io/3q5pw/wiki/home/"
|
49 |
+
_LICENSE = Licenses.CC0_1_0.value
|
50 |
+
_URL = "https://files.osf.io/v1/resources/3q5pw/providers/osfstorage/63737a5b0e715d3616a998f7"
|
51 |
+
|
52 |
+
_SUPPORTED_TASKS = [Tasks.POS_TAGGING, Tasks.DEPENDENCY_PARSING]
|
53 |
+
_SOURCE_VERSION = "1.0.0"
|
54 |
+
_SEACROWD_VERSION = "2024.06.20"
|
55 |
+
|
56 |
+
|
57 |
+
class TCOPEDataset(datasets.GeneratorBasedBuilder):
|
58 |
+
"""TCOPE is a dataset of Philippine English tweets by Gonzales (2023)."""
|
59 |
+
|
60 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
61 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
62 |
+
|
63 |
+
# Actual data has invalid "labels" likely due to coding errors,
|
64 |
+
# such as "BODY", "BIRTHDAY", "HAVAIANAS", etc. Only valid
|
65 |
+
# POS tags are included here and in loaded data.
|
66 |
+
POS_LABELS = ["NOUN", "PUNCT", "PROPN", "VERB", "PRON", "ADP", "ADJ", "ADV", "DET", "AUX", "PART", "CCONJ", "INTJ", "SPACE", "SCONJ", "NUM", "X", "SYM"]
|
67 |
+
|
68 |
+
BUILDER_CONFIGS = [
|
69 |
+
SEACrowdConfig(
|
70 |
+
name=f"{_DATASETNAME}_source",
|
71 |
+
version=SOURCE_VERSION,
|
72 |
+
description=f"{_DATASETNAME} source schema",
|
73 |
+
schema="source",
|
74 |
+
subset_id=_DATASETNAME,
|
75 |
+
),
|
76 |
+
SEACrowdConfig(
|
77 |
+
name=f"{_DATASETNAME}_seacrowd_seq_label",
|
78 |
+
version=SEACROWD_VERSION,
|
79 |
+
description=f"{_DATASETNAME} SEACrowd sequence labeling schema",
|
80 |
+
schema="seacrowd_seq_label",
|
81 |
+
subset_id=_DATASETNAME,
|
82 |
+
),
|
83 |
+
]
|
84 |
+
|
85 |
+
DEFAULT_CONFIG_NAME = "tcope_source"
|
86 |
+
|
87 |
+
def _info(self) -> datasets.DatasetInfo:
|
88 |
+
if self.config.schema == "source":
|
89 |
+
features = datasets.Features(
|
90 |
+
{
|
91 |
+
"copeid": datasets.Value("string"),
|
92 |
+
"userid": datasets.Value("int64"),
|
93 |
+
"divided_tweet": datasets.Value("string"),
|
94 |
+
"postag": datasets.Value("string"),
|
95 |
+
"deptag": datasets.Value("string"),
|
96 |
+
"citycode": datasets.Value("string"),
|
97 |
+
"year": datasets.Value("int64"),
|
98 |
+
"extendedcope": datasets.Value("string"),
|
99 |
+
}
|
100 |
+
)
|
101 |
+
|
102 |
+
elif self.config.schema == "seacrowd_seq_label":
|
103 |
+
features = schemas.seq_label_features(label_names=self.POS_LABELS)
|
104 |
+
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
features=features,
|
108 |
+
homepage=_HOMEPAGE,
|
109 |
+
license=_LICENSE,
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
114 |
+
"""Returns SplitGenerators."""
|
115 |
+
# First ZIP contains second ZIP
|
116 |
+
# Second ZIP has spreadsheet data
|
117 |
+
folder_zip_dir = dl_manager.download_and_extract(_URL)
|
118 |
+
spreadsheet_zip_dir = dl_manager.extract(f"{folder_zip_dir}/public_v1/spreadsheet_format.zip")
|
119 |
+
spreadsheet_fp = f"{spreadsheet_zip_dir}/spreadsheet_format/tcope_v1_public_sample.csv"
|
120 |
+
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
gen_kwargs={
|
125 |
+
"filepath": spreadsheet_fp,
|
126 |
+
"split": "train",
|
127 |
+
},
|
128 |
+
),
|
129 |
+
]
|
130 |
+
|
131 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
132 |
+
"""Yields examples as (key, example) tuples."""
|
133 |
+
if self.config.schema not in ("source", "seacrowd_seq_label"):
|
134 |
+
raise ValueError(f"Received unexpected config schema {self.config.schema}")
|
135 |
+
|
136 |
+
df = pd.read_csv(filepath, index_col=None)
|
137 |
+
df = df.rename(columns={"divided.tweet": "divided_tweet"}).query("divided_tweet.notna()")
|
138 |
+
|
139 |
+
for index, row in df.iterrows():
|
140 |
+
if self.config.schema == "source":
|
141 |
+
example = row.to_dict()
|
142 |
+
elif self.config.schema == "seacrowd_seq_label":
|
143 |
+
tokens, tags = self.split_token_and_tag(row["postag"], valid_tags=self.POS_LABELS)
|
144 |
+
example = {
|
145 |
+
"id": str(index),
|
146 |
+
"tokens": tokens,
|
147 |
+
"labels": tags,
|
148 |
+
}
|
149 |
+
yield index, example
|
150 |
+
|
151 |
+
def split_token_and_tag(self, tweet: str, valid_tags: List[str]) -> Tuple[List[str], List[str]]:
|
152 |
+
"""Split tweet into two separate lists of tokens and tags."""
|
153 |
+
tokens_with_tags = tweet.split()
|
154 |
+
tokens = []
|
155 |
+
tags = []
|
156 |
+
for indiv_token_with_tag in tokens_with_tags:
|
157 |
+
token, tag = indiv_token_with_tag.rsplit("_", 1)
|
158 |
+
tokens.append(token)
|
159 |
+
if tag in valid_tags:
|
160 |
+
tags.append(tag)
|
161 |
+
else: # Use "X"/other spaCy tag for invalid POS tags
|
162 |
+
tags.append("X")
|
163 |
+
return tokens, tags
|