|
import io |
|
|
|
import conllu |
|
import datasets |
|
|
|
from seacrowd.utils.common_parser import load_ud_data_as_seacrowd_kb |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Licenses, Tasks |
|
|
|
_DATASETNAME = "stb_ext" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["eng"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{wang2019genesis, |
|
title={From genesis to creole language: Transfer learning for singlish universal dependencies parsing and POS tagging}, |
|
author={Wang, Hongmin and Yang, Jie and Zhang, Yue}, |
|
journal={ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP)}, |
|
volume={19}, |
|
number={1}, |
|
pages={1--29}, |
|
year={2019}, |
|
publisher={ACM New York, NY, USA} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We adopt the Universal Dependencies protocol for constructing the Singlish dependency treebank, both as a new resource |
|
for the low-resource languages and to facilitate knowledge transfer from English. Briefly, the STB-EXT dataset offers |
|
a 3-times larger training set, while keeping the same dev and test sets from STB-ACL. We provide treebanks with both |
|
gold-standard as well as automatically generated POS tags. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/wanghm92/Sing_Par/tree/master/TALLIP19_dataset/treebank" |
|
|
|
_LICENSE = Licenses.MIT.value |
|
|
|
_PREFIX = "https://raw.githubusercontent.com/wanghm92/Sing_Par/master/TALLIP19_dataset/treebank/" |
|
_URLS = { |
|
"gold_pos": { |
|
"train": _PREFIX + "gold_pos/train.ext.conll", |
|
}, |
|
"en_ud_autopos": {"train": _PREFIX + "en-ud-autopos/en-ud-train.conllu.autoupos", "validation": _PREFIX + "en-ud-autopos/en-ud-dev.conllu.ann.auto.epoch24.upos", "test": _PREFIX + "en-ud-autopos/en-ud-test.conllu.ann.auto.epoch24.upos"}, |
|
"auto_pos_multiview": { |
|
"train": _PREFIX + "auto_pos/multiview/train.autopos.multiview.conll", |
|
"validation": _PREFIX + "auto_pos/multiview/dev.autopos.multiview.conll", |
|
"test": _PREFIX + "auto_pos/multiview/test.autopos.multiview.conll", |
|
}, |
|
"auto_pos_stack": { |
|
"train": _PREFIX + "auto_pos/stack/train.autopos.stack.conll", |
|
"validation": _PREFIX + "auto_pos/stack/dev.autopos.stack.conll", |
|
"test": _PREFIX + "auto_pos/stack/test.autopos.stack.conll", |
|
}, |
|
} |
|
_POSTAGS = ["ADJ", "ADP", "ADV", "AUX", "CONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", "root"] |
|
_SUPPORTED_TASKS = [Tasks.POS_TAGGING, Tasks.DEPENDENCY_PARSING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def config_constructor(subset_id, schema, version): |
|
return SEACrowdConfig(name=f"{_DATASETNAME}_{subset_id}_{schema}", |
|
version=datasets.Version(version), description=_DESCRIPTION, |
|
schema=schema, subset_id=subset_id) |
|
|
|
|
|
class StbExtDataset(datasets.GeneratorBasedBuilder): |
|
"""This is a seacrowd dataloader for the STB-EXT dataset, which offers a 3-times larger training set, while keeping |
|
the same dev and test sets from STB-ACL. It provides treebanks with both gold-standard and automatically generated POS tags.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
|
|
config_constructor(subset_id="auto_pos_stack", schema="source", version=_SOURCE_VERSION), |
|
config_constructor(subset_id="auto_pos_multiview", schema="source", version=_SOURCE_VERSION), |
|
config_constructor(subset_id="en_ud_autopos", schema="source", version=_SOURCE_VERSION), |
|
config_constructor(subset_id="gold_pos", schema="source", version=_SOURCE_VERSION), |
|
|
|
config_constructor(subset_id="auto_pos_stack", schema="seacrowd_seq_label", version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_seq_label", version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="en_ud_autopos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="gold_pos", schema="seacrowd_seq_label", version=_SEACROWD_VERSION), |
|
|
|
config_constructor(subset_id="auto_pos_stack", schema="seacrowd_kb", version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="auto_pos_multiview", schema="seacrowd_kb", version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="en_ud_autopos", schema="seacrowd_kb", version=_SEACROWD_VERSION), |
|
config_constructor(subset_id="gold_pos", schema="seacrowd_kb", version=_SEACROWD_VERSION), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_gold_pos_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
|
|
"sent_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_en": datasets.Value("string"), |
|
|
|
"id": [datasets.Value("string")], |
|
"form": [datasets.Value("string")], |
|
"lemma": [datasets.Value("string")], |
|
"upos": [datasets.Value("string")], |
|
"xpos": [datasets.Value("string")], |
|
"feats": [datasets.Value("string")], |
|
"head": [datasets.Value("string")], |
|
"deprel": [datasets.Value("string")], |
|
"deps": [datasets.Value("string")], |
|
"misc": [datasets.Value("string")], |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(label_names=_POSTAGS) |
|
elif self.config.schema == "seacrowd_kb": |
|
features = schemas.kb_features |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" "return splitGenerators""" |
|
urls = _URLS[self.config.subset_id] |
|
downloaded_files = dl_manager.download_and_extract(urls) |
|
splits = [] |
|
if "train" in downloaded_files: |
|
splits.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})) |
|
if "validation" in downloaded_files: |
|
splits.append(datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation"]})) |
|
if "test" in downloaded_files: |
|
splits.append(datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})) |
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
def process_buffer(TextIO): |
|
BOM = "\ufeff" |
|
buffer = io.StringIO() |
|
for line in TextIO: |
|
line = line.replace(BOM, "") if BOM in line else line |
|
buffer.write(line) |
|
buffer.seek(0) |
|
return buffer |
|
|
|
with open(filepath, "r", encoding="utf-8") as data_file: |
|
tokenlist = list(conllu.parse_incr(process_buffer(data_file))) |
|
data_instances = [] |
|
for idx, sent in enumerate(tokenlist): |
|
idx = sent.metadata["sent_id"] if "sent_id" in sent.metadata else idx |
|
tokens = [token["form"] for token in sent] |
|
txt = sent.metadata["text"] if "text" in sent.metadata else " ".join(tokens) |
|
example = { |
|
|
|
"sent_id": str(idx), |
|
"text": txt, |
|
"text_en": txt, |
|
|
|
"id": [token["id"] for token in sent], |
|
"form": [token["form"] for token in sent], |
|
"lemma": [token["lemma"] for token in sent], |
|
"upos": [token["upos"] for token in sent], |
|
"xpos": [token["xpos"] for token in sent], |
|
"feats": [str(token["feats"]) for token in sent], |
|
"head": [str(token["head"]) for token in sent], |
|
"deprel": [str(token["deprel"]) for token in sent], |
|
"deps": [str(token["deps"]) for token in sent], |
|
"misc": [str(token["misc"]) for token in sent] |
|
} |
|
data_instances.append(example) |
|
|
|
if self.config.schema == "source": |
|
pass |
|
if self.config.schema == "seacrowd_seq_label": |
|
data_instances = list( |
|
map( |
|
lambda d: { |
|
"id": d["sent_id"], |
|
"tokens": d["form"], |
|
"labels": d["upos"], |
|
}, |
|
data_instances, |
|
) |
|
) |
|
if self.config.schema == "seacrowd_kb": |
|
data_instances = load_ud_data_as_seacrowd_kb(filepath, data_instances) |
|
for key, exam in enumerate(data_instances): |
|
yield key, exam |
|
|