|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{Chrismanto2022, |
|
title = {SPAMID-PAIR: A Novel Indonesian Post–Comment Pairs Dataset Containing Emoji}, |
|
journal = {International Journal of Advanced Computer Science and Applications}, |
|
doi = {10.14569/IJACSA.2022.0131110}, |
|
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131110}, |
|
year = {2022}, |
|
publisher = {The Science and Information Organization}, |
|
volume = {13}, |
|
number = {11}, |
|
author = {Antonius Rachmat Chrismanto and Anny Kartika Sari and Yohanes Suyanto} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "spamid_pair" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
SPAMID-PAIR is data post-comment pairs collected from 13 selected Indonesian public figures (artists) / public accounts |
|
with more than 15 million followers and categorized as famous artists. |
|
It was collected from Instagram using an online tool and Selenium. |
|
Two persons labeled all pair data as an expert in a total of 72874 data. |
|
The data contains Unicode text (UTF-8) and emojis scrapped in posts and comments without account profile information. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/fj5pbdf95t/1" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
|
|
_URLS = { |
|
_DATASETNAME: "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/fj5pbdf95t-1.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.INTENT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SpamidPairDataset(datasets.GeneratorBasedBuilder): |
|
"""SPAMID-PAIR is data post-comment pairs collected from 13 selected Indonesian public figures (artists) / public accounts with more than 15 million followers and categorized as famous artists.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
LABEL_CLASSES = [1, 0] |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"igid": datasets.Value("string"), |
|
"comment": datasets.Value("string"), |
|
"posting": datasets.Value("string"), |
|
"spam": datasets.ClassLabel(names=self.LABEL_CLASSES), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(self.LABEL_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) |
|
data_dir = os.path.join(os.path.join(os.path.join(data_dir, "SPAMID-PAIR"), "Raw"), "dataset-raw.xlsx") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
data = pd.read_excel(filepath) |
|
|
|
if self.config.schema == "source": |
|
for i, row in data.iterrows(): |
|
yield i, { |
|
"igid": str(row["igid"]), |
|
"comment": str(row["comment"]), |
|
"posting": str(row["posting"]), |
|
"spam": row["spam"], |
|
} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in data.iterrows(): |
|
yield i, { |
|
"id": str(i), |
|
"text": str(row["comment"]) + "\n" + str(row["posting"]), |
|
"label": int(row["spam"]), |
|
} |
|
|