holylovenia commited on
Commit
9fcd6d7
1 Parent(s): 6d6da67

Upload smsa.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. smsa.py +137 -0
smsa.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import List
3
+
4
+ import datasets
5
+ import pandas as pd
6
+
7
+ from nusacrowd.utils import schemas
8
+ from nusacrowd.utils.configs import NusantaraConfig
9
+ from nusacrowd.utils.constants import Tasks, DEFAULT_SOURCE_VIEW_NAME, DEFAULT_NUSANTARA_VIEW_NAME
10
+
11
+ _DATASETNAME = "smsa"
12
+ _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
13
+ _UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
14
+
15
+ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
16
+ _LOCAL = False
17
+
18
+ _CITATION = """\
19
+ @INPROCEEDINGS{8904199,
20
+ author={Purwarianti, Ayu and Crisdayanti, Ida Ayu Putu Ari},
21
+ booktitle={2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
22
+ title={Improving Bi-LSTM Performance for Indonesian Sentiment Analysis Using Paragraph Vector},
23
+ year={2019},
24
+ pages={1-5},
25
+ doi={10.1109/ICAICTA.2019.8904199}
26
+ }
27
+
28
+ @inproceedings{wilie2020indonlu,
29
+ title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},
30
+ author={Wilie, Bryan and Vincentio, Karissa and Winata, Genta Indra and Cahyawijaya, Samuel and Li, Xiaohong and Lim, Zhi Yuan and Soleman, Sidik and Mahendra, Rahmad and Fung, Pascale and Bahar, Syafri and others},
31
+ booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},
32
+ pages={843--857},
33
+ year={2020}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ SmSA is a sentence-level sentiment analysis dataset (Purwarianti and Crisdayanti, 2019) is a collection of comments and reviews
39
+ in Indonesian obtained from multiple online platforms. The text was crawled and then annotated by several Indonesian linguists
40
+ to construct this dataset. There are three possible sentiments on the SmSA dataset: positive, negative, and neutral
41
+ """
42
+
43
+ _HOMEPAGE = "https://github.com/IndoNLP/indonlu"
44
+
45
+ _LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
46
+
47
+ _URLs = {
48
+ "train": "https://github.com/IndoNLP/indonlu/raw/master/dataset/smsa_doc-sentiment-prosa/train_preprocess.tsv",
49
+ "validation": "https://github.com/IndoNLP/indonlu/raw/master/dataset/smsa_doc-sentiment-prosa/valid_preprocess.tsv",
50
+ "test": "https://github.com/IndoNLP/indonlu/raw/master/dataset/smsa_doc-sentiment-prosa/test_preprocess.tsv",
51
+ }
52
+
53
+ _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
54
+
55
+ _SOURCE_VERSION = "1.0.0"
56
+ _NUSANTARA_VERSION = "1.0.0"
57
+
58
+
59
+ class SMSA(datasets.GeneratorBasedBuilder):
60
+ """SMSA is a sentiment analysis dataset consisting of 3 labels (positive, neutral, and negative) which comes from comments and reviews collected from multiple online platforms."""
61
+
62
+ BUILDER_CONFIGS = [
63
+ NusantaraConfig(
64
+ name="smsa_source",
65
+ version=datasets.Version(_SOURCE_VERSION),
66
+ description="SMSA source schema",
67
+ schema="source",
68
+ subset_id="smsa",
69
+ ),
70
+ NusantaraConfig(
71
+ name="smsa_nusantara_text",
72
+ version=datasets.Version(_NUSANTARA_VERSION),
73
+ description="SMSA Nusantara schema",
74
+ schema="nusantara_text",
75
+ subset_id="smsa",
76
+ ),
77
+ ]
78
+
79
+ DEFAULT_CONFIG_NAME = "smsa_source"
80
+
81
+ def _info(self):
82
+ if self.config.schema == "source":
83
+ features = datasets.Features({"index": datasets.Value("string"), "sentence": datasets.Value("string"), "label": datasets.Value("string")})
84
+ elif self.config.schema == "nusantara_text":
85
+ features = schemas.text_features(["negative", "neutral", "positive"])
86
+
87
+ return datasets.DatasetInfo(
88
+ description=_DESCRIPTION,
89
+ features=features,
90
+ homepage=_HOMEPAGE,
91
+ license=_LICENSE,
92
+ citation=_CITATION,
93
+ )
94
+
95
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
96
+ train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
97
+ validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
98
+ test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
99
+ data_files = {
100
+ "train": train_tsv_path,
101
+ "validation": validation_tsv_path,
102
+ "test": test_tsv_path,
103
+ }
104
+
105
+ return [
106
+ datasets.SplitGenerator(
107
+ name=datasets.Split.TRAIN,
108
+ gen_kwargs={"filepath": data_files["train"]},
109
+ ),
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.VALIDATION,
112
+ gen_kwargs={"filepath": data_files["validation"]},
113
+ ),
114
+ datasets.SplitGenerator(
115
+ name=datasets.Split.TEST,
116
+ gen_kwargs={"filepath": data_files["test"]},
117
+ ),
118
+ ]
119
+
120
+ def _generate_examples(self, filepath: Path):
121
+ df = pd.read_csv(filepath, sep="\t", header=None).reset_index()
122
+ df.columns = ["id", "sentence", "label"]
123
+
124
+ if self.config.schema == "source":
125
+ for row in df.itertuples():
126
+ ex = {"index": str(row.id), "sentence": row.sentence, "label": row.label}
127
+ yield row.id, ex
128
+ elif self.config.schema == "nusantara_text":
129
+ for row in df.itertuples():
130
+ ex = {
131
+ "id": str(row.id),
132
+ "text": row.sentence,
133
+ "label": row.label
134
+ }
135
+ yield row.id, ex
136
+ else:
137
+ raise ValueError(f"Invalid config: {self.config.name}")