|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import struct |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import numpy as np |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{10.1145/3151509.3151510, |
|
author = {Valy, Dona and Verleysen, Michel and Chhun, Sophea and Burie, Jean-Christophe}, |
|
title = {A New Khmer Palm Leaf Manuscript Dataset for Document Analysis and Recognition: SleukRith Set}, |
|
year = {2017}, |
|
isbn = {9781450353908}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3151509.3151510}, |
|
doi = {10.1145/3151509.3151510}, |
|
booktitle = {Proceedings of the 4th International Workshop on Historical Document Imaging and Processing}, |
|
pages = {1-6}, |
|
numpages = {6}, |
|
location = {Kyoto, Japan}, |
|
series = {HIP '17} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "sleukrith_ocr" |
|
|
|
_DESCRIPTION = """\ |
|
SleukRith Set is the first dataset specifically created for Khmer palm leaf |
|
manuscripts. The dataset consists of annotated data from 657 pages of digitized |
|
palm leaf manuscripts which are selected arbitrarily from a large collection of |
|
existing and also recently digitized images. The dataset contains three types of |
|
data: isolated characters, words, and lines. Each type of data is annotated with |
|
the ground truth information which is very useful for evaluating and serving as |
|
a training set for common document analysis tasks such as character/text |
|
recognition, word/line segmentation, and word spotting. |
|
|
|
The character mapping (per label) is not explained anywhere in the dataset homepage, |
|
thus the labels are simply numbered from 0 to 110, each corresponds to a distinct character. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/donavaly/SleukRith-Set" |
|
|
|
_LANGUAGES = ["khm"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
|
|
"sleukrith-set": { |
|
"images": "https://drive.google.com/uc?export=download&id=19JIxAjjXWuJ7mEyUl5-xRr2B8uOb-GKk", |
|
"annotated-data": "https://drive.google.com/uc?export=download&id=1Xi5ucRUb1e9TUU-nv2rCUYv2ANVsXYDk", |
|
}, |
|
|
|
"isolated-characters": { |
|
"images_train": "https://drive.google.com/uc?export=download&id=1KXf5937l-Xu_sXsGPuQOgFt4zRaXlSJ5", |
|
"images_test": "https://drive.google.com/uc?export=download&id=1KSt5AiRIilRryh9GBcxyUUhnbiScdQ-9", |
|
"labels_train": "https://drive.google.com/uc?export=download&id=1IbmLg-4l-3BtRhprDWWvZjCp7lqap0Z-", |
|
"labels_test": "https://drive.google.com/uc?export=download&id=1GYcaUInkxtuuQps-qA38u-4zxK7HgrAB", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.OPTICAL_CHARACTER_RECOGNITION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class SleukRithSet(datasets.GeneratorBasedBuilder): |
|
"""Annotated OCR dataset from 657 pages of digitized Khmer palm leaf manuscripts.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"image_path": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=[i for i in range(111)]), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = schemas.image_text_features(label_names=[i for i in range(111)]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def module_exists(self, module_name): |
|
try: |
|
__import__(module_name) |
|
except ImportError: |
|
return False |
|
else: |
|
return True |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
if self.module_exists("gdown"): |
|
import gdown |
|
else: |
|
raise ImportError("Please install `gdown` to enable downloading data from google drive.") |
|
|
|
|
|
data_dir = Path.cwd() / "data" / "sleukrith_ocr" |
|
data_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
data_paths = {} |
|
for key, value in _URLS["isolated-characters"].items(): |
|
idx = value.rsplit("=", maxsplit=1)[-1] |
|
output = f"{data_dir}/{key}" |
|
data_paths[key] = Path(output) |
|
|
|
if not Path(output).exists(): |
|
gdown.download(id=idx, output=output) |
|
else: |
|
print(f"File {output} already exists, skipping download.") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"image_data": data_paths["images_train"], |
|
"label_data": data_paths["labels_train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"image_data": data_paths["images_test"], |
|
"label_data": data_paths["labels_test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, image_data: Path, label_data: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.module_exists("PIL"): |
|
from PIL import Image |
|
else: |
|
raise ImportError("Please install `pillow` to process images.") |
|
|
|
|
|
with open(image_data, "rb") as file: |
|
|
|
width, height, nb_samples = struct.unpack(">iii", file.read(12)) |
|
|
|
images = [] |
|
for _ in range(nb_samples): |
|
|
|
image_data = file.read(width * height) |
|
image = np.frombuffer(image_data, dtype=np.uint8).reshape((height, width)) |
|
images.append(image) |
|
|
|
|
|
image_paths = [] |
|
for i, image in enumerate(images): |
|
image_dir = Path.cwd() / "data" / "sleukrith_ocr" / split |
|
image_dir.mkdir(exist_ok=True) |
|
image_path = f"{image_dir}/image_{i}.png" |
|
|
|
if not Path(image_path).exists(): |
|
Image.fromarray(image).save(image_path) |
|
|
|
assert Path(image_path).exists(), f"Image {image_path} not found." |
|
image_paths.append(image_path) |
|
|
|
|
|
with open(label_data, "rb") as file: |
|
|
|
nb_classes, nb_samples = struct.unpack(">ii", file.read(8)) |
|
assert nb_samples == len(image_paths), "Number of labels do not match number of images." |
|
|
|
labels = [] |
|
for _ in range(nb_samples): |
|
(label,) = struct.unpack(">i", file.read(4)) |
|
assert 0 <= label < nb_classes, f"Label {label} out of bounds." |
|
labels.append(label) |
|
|
|
if self.config.schema == "source": |
|
for idx, example in enumerate(zip(image_paths, labels)): |
|
yield idx, { |
|
"image_path": example[0], |
|
"label": example[1], |
|
} |
|
|
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
for idx, example in enumerate(zip(image_paths, labels)): |
|
yield idx, { |
|
"id": str(idx), |
|
"image_paths": [example[0]], |
|
"texts": None, |
|
"metadata": { |
|
"context": None, |
|
"labels": [example[1]], |
|
}, |
|
} |
|
|