qed / qed.py
holylovenia's picture
Upload qed.py with huggingface_hub
9f37da5 verified
raw
history blame
12.8 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
QED - The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform.
It's developed by Qatar Computing Research Institute, Arabic Language Technologies Group. Along with English, it covers multiple SEA languages, such as vie (Vietnamese), mya (Burnmese), jav (Javanese), id (Indonesia), tha (Thai),
tl (Tagalog),ms (Malaysia).
"""
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = """\
@inproceedings{abdelali-etal-2014-amara,
title = "The {AMARA} Corpus: Building Parallel Language Resources for the Educational Domain",
author = "Abdelali, Ahmed and
Guzman, Francisco and
Sajjad, Hassan and
Vogel, Stephan",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Declerck, Thierry and
Loftsson, Hrafn and
Maegaard, Bente and
Mariani, Joseph and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios",
booktitle = "Proceedings of the Ninth International Conference on Language Resources and Evaluation ({LREC}'14)",
month = may,
year = "2014",
address = "Reykjavik, Iceland",
publisher = "European Language Resources Association (ELRA)",
url = "http://www.lrec-conf.org/proceedings/lrec2014/pdf/877_Paper.pdf",
pages = "1856--1862",
abstract = "This paper presents the AMARA corpus of on-line educational content: a new parallel corpus of educational video subtitles, multilingually aligned for 20 languages, i.e. 20 monolingual corpora and 190 parallel corpora.
This corpus includes both resource-rich languages such as English and Arabic, and resource-poor languages such as Hindi and Thai. In this paper, we describe the gathering, validation, and preprocessing of a large collection of parallel,
community-generated subtitles. Furthermore, we describe the methodology used to prepare the data for Machine Translation tasks. Additionally, we provide a document-level, jointly aligned development and test sets for 14 language pairs,
designed for tuning and testing Machine Translation systems. We provide baseline results for these tasks, and highlight some of the challenges we face when building machine translation systems for educational content.",
}
"""
_DATASETNAME = "qed"
_DESCRIPTION = """\
QED - The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform.
It's developed by Qatar Computing Research Institute, Arabic Language Technologies Group. Along with English, it covers multiple SEA languages, such as vie (Vietnamese), mya (Burnmese), jav (Javanese), id (Indonesia), tha (Thai), tl (Tagalog),
ms (Malaysia).
"""
_HOMEPAGE = "https://opus.nlpl.eu/QED/corpus/version/QED"
_LANGUAGES = ["eng", "vie", "tha", "mya", "jav", "ind", "tgl", "zlm", "ceb", "fil", "khm", "lao", "mad", "pam"]
_LICENSE = Licenses.OTHERS.value
_LOCAL = False
_FILE = "QED.{}.{}" # E.g. QED.en-id.id
_PAIR_URL = "https://object.pouta.csc.fi/OPUS-QED/v2.0a/moses/{}.txt.zip"
_MONO_URL = "https://object.pouta.csc.fi/OPUS-QED/v2.0a/mono/{}.txt.gz"
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION, Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "2.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LANG_MAPPER = {
"eng": "en",
"vie": "vi",
"tha": "th",
"mya": "my",
"jav": "jv",
"ind": "id",
"tgl": "tl",
"zlm": "ms",
"ceb": "ceb",
"fil": "fil",
"khm": "km",
"lao": "lo",
"mad": "mad",
"pam": "pam",
}
class QEDDataset(datasets.GeneratorBasedBuilder):
"""QED - The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform.
It's developed by Qatar Computing Research Institute, Arabic Language Technologies Group. Along with English, it covers multiple SEA languages, such as vie (Vietnamese), mya (Burnmese), jav (Javanese), id (Indonesia), tha (Thai), tl (Tagalog),
ms (Malaysia)."""
SEACROWD_SCHEMA = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()
LANG_PAIRS = [
("eng", "vie"),
("eng", "tha"),
("eng", "mya"),
("eng", "jav"),
("eng", "ind"),
("eng", "tgl"),
("eng", "zlm"),
("eng", "fil"),
("eng", "khm"),
("eng", "lao"),
("eng", "mad"),
("eng", "pam"),
("fil", "vie"),
("khm", "vie"),
("lao", "vie"),
("pam", "vie"),
("fil", "tha"),
("khm", "tha"),
("lao", "tha"),
("pam", "tha"),
("fil", "mya"),
("khm", "mya"),
("lao", "mya"),
("fil", "jav"),
("jav", "lao"),
("fil", "ind"),
("ind", "khm"),
("ind", "lao"),
("fil", "tgl"),
("khm", "tgl"),
("lao", "tgl"),
("fil", "zlm"),
("khm", "zlm"),
("lao", "zlm"),
("tha", "vie"),
("tha", "mya"),
("tha", "jav"),
("tha", "tgl"),
("mya", "tgl"),
("mya", "vie"),
("jav", "vie"),
("jav", "mya"),
("jav", "tgl"),
("jav", "zlm"),
("ind", "jav"),
("ind", "tha"),
("ind", "vie"),
("ind", "mya"),
("ind", "tgl"),
("ind", "zlm"),
("tgl", "vie"),
("zlm", "tgl"),
("zlm", "tha"),
("zlm", "vie"),
("zlm", "mya"),
("ceb", "eng"),
("ceb", "vie"),
("ceb", "tha"),
("ceb", "mya"),
("ceb", "jav"),
("ceb", "ind"),
("ceb", "tgl"),
("ceb", "zlm"),
("ceb", "fil"),
("ceb", "khm"),
("ceb", "lao"),
("ceb", "pam"),
("fil", "khm"),
("fil", "lao"),
("khm", "lao"),
]
MONO_LANGS = ["eng", "vie", "tha", "mya", "jav", "ind", "tgl", "zlm", "ceb", "fil", "khm", "lao", "mad", "pam"]
BUILDER_CONFIGS = (
[
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang1}-{lang2}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema for translation from {lang1} to {lang2}",
schema="source",
subset_id=f"{_DATASETNAME}_{lang1}-{lang2}",
)
for lang1, lang2 in LANG_PAIRS
]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_source",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} source {lang} schema for Self-supervised Pretraining task",
schema="source",
subset_id=f"{_DATASETNAME}_{lang}",
)
for lang in MONO_LANGS
]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang1}-{lang2}_seacrowd_t2t",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema for translation from {lang1} to {lang2} for Machine Translation task",
schema="seacrowd_t2t",
subset_id=f"{_DATASETNAME}_{lang1}-{lang2}",
)
for lang1, lang2 in LANG_PAIRS
]
+ [
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}_seacrowd_ssp",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd {lang} schema for Self-supervised Pretraining task",
schema="seacrowd_ssp",
subset_id=f"{_DATASETNAME}_{lang}",
)
for lang in MONO_LANGS
]
)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_eng-ind_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
if len(self.config.subset_id.split("_")[-1].split("-")) == 2: # MT TASK
lang1, lang2 = self.config.subset_id.split("_")[-1].split("-")
features = datasets.Features(
{
"id": datasets.Value("int32"),
"translation": datasets.Translation(languages=(lang1, lang2)),
}
)
elif len(self.config.subset_id.split("_")[-1].split("-")) == 1: # ssp task
features = datasets.Features(
{
"id": datasets.Value("int32"),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
elif self.config.schema == "seacrowd_ssp":
features = schemas.ssp_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
lang_pair = self.config.subset_id.split("_")[-1]
lang_info = "-".join([_LANG_MAPPER[lang] for lang in lang_pair.split("-")])
if len(self.config.subset_id.split("_")[-1].split("-")) == 1: # SSP Task
url = _MONO_URL.format(lang_info)
elif len(self.config.subset_id.split("_")[-1].split("-")) == 2: # MT Task
url = _PAIR_URL.format(lang_info)
data_dir = dl_manager.download_and_extract(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
},
)
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if len(self.config.subset_id.split("_")[-1].split("-")) == 2: # MT Task
lang_pair = self.config.subset_id.split("_")[-1]
lang1, lang2 = lang_pair.split("-")
l1_path = os.path.join(filepath, _FILE.format("-".join([_LANG_MAPPER[lang1], _LANG_MAPPER[lang2]]), _LANG_MAPPER[lang1]))
l2_path = os.path.join(filepath, _FILE.format("-".join([_LANG_MAPPER[lang1], _LANG_MAPPER[lang2]]), _LANG_MAPPER[lang2]))
if self.config.schema == "source":
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
for i, (x, y) in enumerate(zip(f1, f2)):
yield i, {
"id": i,
"translation": {
lang1: x.strip(),
lang2: y.strip(),
},
}
elif self.config.schema == "seacrowd_t2t":
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
for i, (x, y) in enumerate(zip(f1, f2)):
yield i, {
"id": str(i),
"text_1": x.strip(),
"text_2": y.strip(),
"text_1_name": lang1,
"text_2_name": lang2,
},
elif len(self.config.subset_id.split("_")[-1].split("-")) == 1: # SSP Task
with open(filepath, "r", encoding="utf-8") as f:
for i, x in enumerate(f.readlines()):
yield i, {
"id": str(i),
"text": x.strip(),
}