Datasets:
holylovenia
commited on
Upload openvivqa.py with huggingface_hub
Browse files- openvivqa.py +162 -0
openvivqa.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Dict, List, Tuple
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
|
9 |
+
from seacrowd.utils import schemas
|
10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{tran2021vivqa,
|
15 |
+
title={ViVQA: Vietnamese visual question answering},
|
16 |
+
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet},
|
17 |
+
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation},
|
18 |
+
pages={683--691},
|
19 |
+
year={2021}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
_DATASETNAME = "openvivqa"
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
OpenViVQA (Open-domain Vietnamese Visual Question Answering) is a dataset for VQA (Visual Question Answering) with
|
25 |
+
open-ended answers in Vietnamese. It consisted of 11199 images associated with 37914 question-answer pairs (QAs).
|
26 |
+
Images in the OpenViVQA dataset are captured in Vietnam and question-answer pairs are created manually by Vietnamese
|
27 |
+
crowd workers.
|
28 |
+
"""
|
29 |
+
_HOMEPAGE = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset"
|
30 |
+
_LANGUAGES = ["vie"]
|
31 |
+
_LICENSE = Licenses.MIT.value
|
32 |
+
_LOCAL = False
|
33 |
+
_HF_URL = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset"
|
34 |
+
_URLS = {
|
35 |
+
"dataset": {
|
36 |
+
"train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_train_data.json",
|
37 |
+
"test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_test_data.json",
|
38 |
+
"dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_dev_data.json",
|
39 |
+
},
|
40 |
+
"images": {
|
41 |
+
"train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/train-images.zip?download=true",
|
42 |
+
"test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/test-images.zip?download=true",
|
43 |
+
"dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/dev-images.zip?download=true",
|
44 |
+
},
|
45 |
+
}
|
46 |
+
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING]
|
47 |
+
_SOURCE_VERSION = "1.0.0"
|
48 |
+
_SEACROWD_VERSION = "2024.06.20"
|
49 |
+
|
50 |
+
|
51 |
+
class OpenViVQADataset(datasets.GeneratorBasedBuilder):
|
52 |
+
|
53 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
54 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
55 |
+
|
56 |
+
BUILDER_CONFIGS = [
|
57 |
+
SEACrowdConfig(
|
58 |
+
name=f"{_DATASETNAME}_source",
|
59 |
+
version=SOURCE_VERSION,
|
60 |
+
description=f"{_DATASETNAME} source schema",
|
61 |
+
schema="source",
|
62 |
+
subset_id=f"{_DATASETNAME}",
|
63 |
+
),
|
64 |
+
SEACrowdConfig(
|
65 |
+
name=f"{_DATASETNAME}_seacrowd_imqa",
|
66 |
+
version=SEACROWD_VERSION,
|
67 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
68 |
+
schema="seacrowd_imqa",
|
69 |
+
subset_id=f"{_DATASETNAME}",
|
70 |
+
),
|
71 |
+
]
|
72 |
+
|
73 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
74 |
+
|
75 |
+
def _info(self) -> datasets.DatasetInfo:
|
76 |
+
|
77 |
+
if self.config.schema == "source":
|
78 |
+
features = datasets.Features({"img_path": datasets.Value("string"),
|
79 |
+
"question": datasets.Value("string"),
|
80 |
+
"answer": datasets.Value("string"),
|
81 |
+
"id": datasets.Value("string")})
|
82 |
+
elif self.config.schema == "seacrowd_imqa":
|
83 |
+
features = schemas.imqa_features
|
84 |
+
# features["meta"] = {"image_path": datasets.Value("string")}
|
85 |
+
else:
|
86 |
+
raise ValueError(f"No schema matched for {self.config.schema}")
|
87 |
+
|
88 |
+
return datasets.DatasetInfo(
|
89 |
+
description=_DESCRIPTION,
|
90 |
+
features=features,
|
91 |
+
homepage=_HOMEPAGE,
|
92 |
+
license=_LICENSE,
|
93 |
+
citation=_CITATION,
|
94 |
+
)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
97 |
+
"""Returns SplitGenerators."""
|
98 |
+
data_dir = dl_manager.download_and_extract(_URLS["dataset"])
|
99 |
+
image_dir = dl_manager.download_and_extract(_URLS["images"])
|
100 |
+
|
101 |
+
return [
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
name=datasets.Split.TRAIN,
|
104 |
+
gen_kwargs={
|
105 |
+
"filepath": data_dir["train"],
|
106 |
+
"imagepath": os.path.join(image_dir["train"], "training-images"),
|
107 |
+
"split": "train",
|
108 |
+
},
|
109 |
+
),
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TEST,
|
112 |
+
gen_kwargs={
|
113 |
+
"filepath": data_dir["test"],
|
114 |
+
"imagepath": os.path.join(image_dir["test"], "test-images"),
|
115 |
+
"split": "test",
|
116 |
+
},
|
117 |
+
),
|
118 |
+
datasets.SplitGenerator(
|
119 |
+
name=datasets.Split.VALIDATION,
|
120 |
+
gen_kwargs={
|
121 |
+
"filepath": data_dir["dev"],
|
122 |
+
"imagepath": os.path.join(image_dir["dev"], "dev-images"),
|
123 |
+
"split": "validation",
|
124 |
+
},
|
125 |
+
),
|
126 |
+
]
|
127 |
+
|
128 |
+
def _generate_examples(self, filepath: Path, imagepath: Path, split: str) -> Tuple[int, Dict]:
|
129 |
+
"""Yields examples as (key, example) tuples."""
|
130 |
+
|
131 |
+
raw_examples = json.load(open(filepath, "r"))
|
132 |
+
images = raw_examples["images"]
|
133 |
+
data_annotations = raw_examples["annotations"]
|
134 |
+
for sample_id, q_key in enumerate(list(data_annotations.keys())):
|
135 |
+
quest_id = q_key
|
136 |
+
sample = data_annotations[q_key]
|
137 |
+
sample_img_id = sample["image_id"]
|
138 |
+
sample_img_name = images[str(sample_img_id)]
|
139 |
+
sample_img_path = os.path.join(imagepath, sample_img_name)
|
140 |
+
sample_question = sample["question"]
|
141 |
+
sample_answer = sample["answer"]
|
142 |
+
if self.config.schema == "source":
|
143 |
+
example = {
|
144 |
+
"img_path": sample_img_path,
|
145 |
+
"question": sample_question,
|
146 |
+
"answer": sample_answer,
|
147 |
+
"id": quest_id,
|
148 |
+
}
|
149 |
+
elif self.config.schema == "seacrowd_imqa":
|
150 |
+
example = {
|
151 |
+
"id": q_key,
|
152 |
+
"question_id": q_key,
|
153 |
+
"document_id": q_key,
|
154 |
+
"questions": [sample_question],
|
155 |
+
"type": None,
|
156 |
+
"choices": None,
|
157 |
+
"context": sample_img_id,
|
158 |
+
"answer": [sample_answer],
|
159 |
+
"image_paths": [sample_img_path],
|
160 |
+
"meta": {},
|
161 |
+
}
|
162 |
+
yield sample_id, example
|