nusax_senti / nusax_senti.py
holylovenia's picture
Upload nusax_senti.py with huggingface_hub
e4849a3 verified
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_LOCAL = False
_DATASETNAME = "nusax_senti"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["ind", "ace", "ban", "bjn", "bbc", "bug", "jav", "mad", "min", "nij", "sun", "eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_CITATION = """\
@misc{winata2022nusax,
title={NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages},
author={Winata, Genta Indra and Aji, Alham Fikri and Cahyawijaya,
Samuel and Mahendra, Rahmad and Koto, Fajri and Romadhony,
Ade and Kurniawan, Kemal and Moeljadi, David and Prasojo,
Radityo Eko and Fung, Pascale and Baldwin, Timothy and Lau,
Jey Han and Sennrich, Rico and Ruder, Sebastian},
year={2022},
eprint={2205.15960},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
NusaX is a high-quality multilingual parallel corpus that covers 12 languages, Indonesian, English, and 10 Indonesian local languages, namely Acehnese, Balinese, Banjarese, Buginese, Madurese, Minangkabau, Javanese, Ngaju, Sundanese, and Toba Batak.
NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English.
"""
_HOMEPAGE = "https://github.com/IndoNLP/nusax/tree/main/datasets/sentiment"
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_URLS = {
"train": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/train.csv",
"validation": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/valid.csv",
"test": "https://raw.githubusercontent.com/IndoNLP/nusax/main/datasets/sentiment/{lang}/test.csv",
}
def seacrowd_config_constructor(lang, schema, version):
"""Construct SEACrowdConfig with nusax_senti_{lang}_{schema} as the name format"""
if schema != "source" and schema != "seacrowd_text":
raise ValueError(f"Invalid schema: {schema}")
if lang == "":
return SEACrowdConfig(
name="nusax_senti_{schema}".format(schema=schema),
version=datasets.Version(version),
description="nusax_senti with {schema} schema for all 12 languages".format(schema=schema),
schema=schema,
subset_id="nusax_senti",
)
else:
return SEACrowdConfig(
name="nusax_senti_{lang}_{schema}".format(lang=lang, schema=schema),
version=datasets.Version(version),
description="nusax_senti with {schema} schema for {lang} language".format(lang=lang, schema=schema),
schema=schema,
subset_id="nusax_senti",
)
LANGUAGES_MAP = {
"ace": "acehnese",
"ban": "balinese",
"bjn": "banjarese",
"bug": "buginese",
"eng": "english",
"ind": "indonesian",
"jav": "javanese",
"mad": "madurese",
"min": "minangkabau",
"nij": "ngaju",
"sun": "sundanese",
"bbc": "toba_batak",
}
class NusaXSenti(datasets.GeneratorBasedBuilder):
"""NusaX-Senti is a 3-labels (positive, neutral, negative) sentiment analysis dataset for 10 Indonesian local languages + Indonesian and English."""
BUILDER_CONFIGS = (
[seacrowd_config_constructor(lang, "source", _SOURCE_VERSION) for lang in LANGUAGES_MAP]
+ [seacrowd_config_constructor(lang, "seacrowd_text", _SEACROWD_VERSION) for lang in LANGUAGES_MAP]
+ [seacrowd_config_constructor("", "source", _SOURCE_VERSION), seacrowd_config_constructor("", "seacrowd_text", _SEACROWD_VERSION)]
)
DEFAULT_CONFIG_NAME = "nusax_senti_ind_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["negative", "neutral", "positive"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.name == "nusax_senti_source" or self.config.name == "nusax_senti_seacrowd_text":
# Load all 12 languages
train_csv_path = dl_manager.download_and_extract([_URLS["train"].format(lang=LANGUAGES_MAP[lang]) for lang in LANGUAGES_MAP])
validation_csv_path = dl_manager.download_and_extract([_URLS["validation"].format(lang=LANGUAGES_MAP[lang]) for lang in LANGUAGES_MAP])
test_csv_path = dl_manager.download_and_extract([_URLS["test"].format(lang=LANGUAGES_MAP[lang]) for lang in LANGUAGES_MAP])
else:
lang = self.config.name[12:15]
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"].format(lang=LANGUAGES_MAP[lang])))
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"].format(lang=LANGUAGES_MAP[lang])))
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"].format(lang=LANGUAGES_MAP[lang])))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": train_csv_path},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": validation_csv_path},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": test_csv_path},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
if self.config.schema != "source" and self.config.schema != "seacrowd_text":
raise ValueError(f"Invalid config: {self.config.name}")
if self.config.name == "nusax_senti_source" or self.config.name == "nusax_senti_seacrowd_text":
ldf = []
for fp in filepath:
ldf.append(pd.read_csv(fp))
df = pd.concat(ldf, axis=0, ignore_index=True).reset_index()
# Have to use index instead of id to avoid duplicated key
df = df.drop(columns=["id"]).rename(columns={"index": "id"})
else:
df = pd.read_csv(filepath).reset_index()
for row in df.itertuples():
ex = {"id": str(row.id), "text": row.text, "label": row.label}
yield row.id, ex