|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from pandas import read_excel |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{koto-koto-2020-towards, |
|
title = "Towards Computational Linguistics in {M}inangkabau Language: |
|
Studies on Sentiment Analysis and Machine Translation", |
|
author = "Koto, Fajri and |
|
Koto, Ikhwan", |
|
editor = "Nguyen, Minh Le and |
|
Luong, Mai Chi and |
|
Song, Sanghoun", |
|
booktitle = "Proceedings of the 34th Pacific Asia Conference on Language, |
|
Information and Computation", |
|
month = oct, |
|
year = "2020", |
|
address = "Hanoi, Vietnam", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.paclic-1.17", |
|
pages = "138--148", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "minang_senti" |
|
|
|
_DESCRIPTION = """\ |
|
We release the Minangkabau corpus for sentiment analysis by manually translating |
|
5,000 sentences of Indonesian sentiment analysis corpora. In this work, we |
|
conduct a binary sentiment classification on positive and negative sentences by |
|
first manually translating the Indonesian sentiment analysis corpus to the |
|
Minangkabau language (Agam-Tanah Datar dialect) |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/fajri91/minangNLP" |
|
|
|
_LANGUAGES = ["ind", "min"] |
|
|
|
_LICENSE = Licenses.MIT.value |
|
|
|
_LOCAL = False |
|
|
|
_BASE_URL = "https://github.com/fajri91/minangNLP/raw/master/sentiment/data/folds/{split}{index}.xlsx" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MinangSentiDataset(datasets.GeneratorBasedBuilder): |
|
"""Binary sentiment classification on manually translated Minangkabau corpus.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [] |
|
for subset in _LANGUAGES: |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=subset, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=subset, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"minang": datasets.Value("string"), |
|
"indo": datasets.Value("string"), |
|
"sentiment": datasets.ClassLabel(names=["positive", "negative"]), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = schemas.text_features(label_names=["positive", "negative"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
train_urls = [_BASE_URL.format(split="train", index=i) for i in range(5)] |
|
test_urls = [_BASE_URL.format(split="test", index=i) for i in range(5)] |
|
dev_urls = [_BASE_URL.format(split="dev", index=i) for i in range(5)] |
|
|
|
train_paths = [Path(dl_manager.download(url)) for url in train_urls] |
|
test_paths = [Path(dl_manager.download(url)) for url in test_urls] |
|
dev_paths = [Path(dl_manager.download(url)) for url in dev_urls] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_paths, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_paths, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": dev_paths, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
key = 0 |
|
for file in filepath: |
|
data = read_excel(file) |
|
for _, row in data.iterrows(): |
|
if self.config.schema == "source": |
|
yield key, { |
|
"minang": row["minang"], |
|
"indo": row["indo"], |
|
"sentiment": row["sentiment"], |
|
} |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
yield key, { |
|
"id": str(key), |
|
"text": row["minang"] if self.config.subset_id == "min" else row["indo"], |
|
"label": row["sentiment"], |
|
} |
|
key += 1 |
|
|