|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
from seacrowd.utils.schemas import kb_features |
|
|
|
_CITATION = """\ |
|
@misc{chanthran2024malaysian, |
|
title={Malaysian English News Decoded: A Linguistic Resource for Named Entity and Relation Extraction}, |
|
author={Mohan Raj Chanthran and Lay-Ki Soon and Huey Fang Ong and Bhawani Selvaretnam}, |
|
year={2024}, |
|
eprint={2402.14521}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "men" |
|
|
|
_DESCRIPTION = """\ |
|
The Malaysian English News (MEN) dataset includes 200 Malaysian English news article with human annotated entities and relations (in total 6,061 entities and 3,268 relation instances). |
|
Malaysian English combines elements of standard English with Malay, Chinese, and Indian languages. Four human annotators were split into 2 groups, each group annotated 100 news articles |
|
and inter-annotator agreement was calculated between 2 or more annotators working on the same task (entity annotation; F1-score 0.82, relation annotation; F1-score 0.51). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/mohanraj-nlp/MEN-Dataset/tree/main" |
|
|
|
_LANGUAGES = ["eng"] |
|
|
|
_LICENSE = Licenses.MIT.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = "https://github.com/mohanraj-nlp/MEN-Dataset/archive/refs/heads/main.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class MENDataset(datasets.GeneratorBasedBuilder): |
|
"""The Malaysian English News dataset comprises 200 articles with 6,061 annotated entities and 3,268 relations. |
|
Inter-annotator agreement for entity annotation was high (F1-score 0.82), but lower for relation annotation (F1-score 0.51).""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_kb", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_kb", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"article": datasets.Value("string"), |
|
"entities": datasets.Sequence({"id": datasets.Value("int64"), "label": datasets.Value("string"), "position": {"start": datasets.Value("int32"), "end": datasets.Value("int32")}}), |
|
"relations": datasets.Sequence({"id": datasets.Value("string"), "head": datasets.Value("int32"), "tail": datasets.Value("int32"), "relation": datasets.Value("string"), "relation_source": datasets.Value("string")}), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
}, |
|
), |
|
] |
|
|
|
def _MEN_repo_splitter(self, filepath: Path) -> Dict: |
|
articles = {} |
|
entities = os.path.join(filepath, "MEN-Dataset-main/data/annotated_set.json") |
|
relations = os.path.join(filepath, "MEN-Dataset-main/data/rel2id.json") |
|
|
|
with open(entities, "r") as annot_json: |
|
annots = json.load(annot_json) |
|
|
|
article_ids = [i["id"] for i in annots] |
|
for article_id in article_ids: |
|
articles[article_id] = os.path.join(filepath, f"MEN-Dataset-main/data/article_text/{article_id}.txt") |
|
|
|
data_dir = {"entities": entities, "articles": articles, "relations": relations} |
|
|
|
return data_dir |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
filepath = self._MEN_repo_splitter(filepath) |
|
|
|
with open(filepath["entities"], "r") as entities_json: |
|
entities = json.load(entities_json) |
|
|
|
articles = {} |
|
for article_id in [i["id"] for i in entities]: |
|
with open(filepath["articles"][article_id], "r") as article_txt: |
|
article = article_txt.read() |
|
articles[article_id] = article |
|
|
|
i = 0 |
|
for item in entities: |
|
article_id = item["id"] |
|
entities = item["entities"] |
|
relations = item["relations"] |
|
|
|
i += 1 |
|
if self.config.schema == "source": |
|
yield i, { |
|
"article": articles[article_id], |
|
"entities": [ |
|
{ |
|
"id": entity["id"], |
|
"label": entity["label"], |
|
"position": { |
|
"start": entity["position"]["start_offset"], |
|
"end": entity["position"]["end_offset"], |
|
}, |
|
} |
|
for entity in entities |
|
], |
|
"relations": [{"id": relation["id"], "head": relation["head"], "tail": relation["tail"], "relation": relation["relation"], "relation_source": relation["relation_source"]} for relation in relations], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_kb": |
|
yield i, { |
|
"id": str(i), |
|
"passages": [{"id": article_id, "type": "text", "text": [articles[article_id]], "offsets": [[0, len(articles[article_id])]]}], |
|
"entities": [ |
|
{ |
|
"id": f"{article_id}-entity-{entity['id']}", |
|
"type": entity["label"], |
|
"text": [articles[article_id][entity["position"]["start_offset"]:entity["position"]["end_offset"]]], |
|
"offsets": [[entity["position"]["start_offset"], entity["position"]["end_offset"]]], |
|
"normalized": [], |
|
} |
|
for entity in entities |
|
], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [ |
|
{ |
|
"id": f"{article_id}-relation-{relation['id']}", |
|
"type": relation["relation"], |
|
"arg1_id": f"{article_id}-entity-{relation['head']}", |
|
"arg2_id": f"{article_id}-entity-{relation['tail']}", |
|
"normalized": [{"db_name": relation["relation_source"], "db_id": ""}], |
|
} |
|
for relation in relations |
|
], |
|
} |
|
|