|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{buechel-etal-2020-learning-evaluating, |
|
title = "Learning and Evaluating Emotion Lexicons for 91 Languages", |
|
author = {Buechel, Sven and |
|
R{\"u}cker, Susanna and |
|
Hahn, Udo}, |
|
editor = "Jurafsky, Dan and |
|
Chai, Joyce and |
|
Schluter, Natalie and |
|
Tetreault, Joel", |
|
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2020", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2020.acl-main.112", |
|
doi = "10.18653/v1/2020.acl-main.112", |
|
pages = "1202--1217", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "memolon" |
|
|
|
_DESCRIPTION = """\ |
|
MEmoLon is an emotion lexicons for 91 languages, each one covers eight emotional variables and comprises over 100k word entries. There are several versions of the lexicons, the difference being the choice of the expansion model. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/3756607/files/MTL_grouped.zip?download=1" |
|
|
|
_LICENSE = Licenses.MIT.value |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://zenodo.org/record/3756607/files/MTL_grouped.zip?download=1", |
|
} |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LANGUAGES = ["ceb", "tgl", "ind", "sun", "jav", "zsm", "vie", "tha", "mya"] |
|
|
|
_LANGUAGE_MAP = {"ceb": "Cebuano", "tgl": "Tagalog", "ind": "Indonesian", "sun": "Sundanese", "jav": "Javanese", "zsm": "Malay", "vie": "Vietnamese", "tha": "Thai", "mya": "Burmese"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION] |
|
|
|
_LOCAL = False |
|
|
|
|
|
def seacrowd_config_constructor(lang: str, schema: str, version: str) -> SEACrowdConfig: |
|
if lang not in _LANGUAGE_MAP: |
|
raise ValueError(f"Invalid lang {lang}") |
|
|
|
if schema != "source" and schema != "seacrowd_text_multi": |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
return SEACrowdConfig( |
|
name="memolon_{lang}_{schema}".format(lang=lang, schema=schema), |
|
version=datasets.Version(version), |
|
description="MEmoLon {schema} schema for {lang} language".format(lang=_LANGUAGE_MAP[lang], schema=schema), |
|
schema=schema, |
|
subset_id="memolon", |
|
) |
|
|
|
|
|
class Memolon(datasets.GeneratorBasedBuilder): |
|
"""MEmoLon is an emotion lexicons for 91 languages, each one covers eight emotional variables and comprises over 100k word entries.""" |
|
|
|
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"MEmoLon source schema for {lang} language", schema="source", subset_id="memolon") for lang in _LANGUAGE_MAP] |
|
|
|
DEFAULT_CONFIG_NAME = None |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"word": datasets.Value("string"), |
|
"valence": datasets.Value("float32"), |
|
"arousal": datasets.Value("float32"), |
|
"dominance": datasets.Value("float32"), |
|
"joy": datasets.Value("float32"), |
|
"anger": datasets.Value("float32"), |
|
"sadness": datasets.Value("float32"), |
|
"fear": datasets.Value("float32"), |
|
"disgust": datasets.Value("float32"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
base_path = Path(dl_manager.download_and_extract(urls)) |
|
lang = self.config.name.split("_")[1] |
|
train_data_path = base_path / f"{lang}.tsv" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_data_path, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
rows = [] |
|
with open(filepath, encoding='utf-8') as file: |
|
for line in file: |
|
rows.append(line.split("\t")) |
|
|
|
if self.config.schema == "source": |
|
for key, row in enumerate(rows[1:]): |
|
example = {"word": row[0], "valence": row[1], "arousal": row[2], "dominance": row[3], "joy": row[4], "anger": row[5], "sadness": row[6], "fear": row[7], "disgust": row[8]} |
|
yield key, example |
|
|