Datasets:

Languages:
Indonesian
ArXiv:
License:
mc4_indo / mc4_indo.py
holylovenia's picture
Upload mc4_indo.py with huggingface_hub
8ad213d verified
raw
history blame
5.52 kB
import gzip
import json
from typing import List
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_DATASETNAME = "mc4_indo"
_DESCRIPTION = """\
A thoroughly cleaned version of the Indonesia split of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4). This portion represents the Indonesian language content that has been extracted and processed from the larger mC4 dataset. The extraction and cleaning process was conducted by AllenAI and resulted in a curated collection of Indonesian language data. For more information about the original mC4 dataset and its preparation, please refer to the source hosted at the address https://huggingface.co/datasets/allenai/c4.
"""
_HOMEPAGE = "https://huggingface.co/datasets/indonesian-nlp/mc4-id"
_LICENSE = Licenses.ODC_BY.value
_LANGUAGES = ["ind"]
_CITATION = """
@inproceedings{xue-etal-2021-mt5,
title = "m{T}5: A Massively Multilingual Pre-trained Text-to-Text Transformer",
author = "Xue, Linting and
Constant, Noah and
Roberts, Adam and
Kale, Mihir and
Al-Rfou, Rami and
Siddhant, Aditya and
Barua, Aditya and
Raffel, Colin",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.41",
doi = "10.18653/v1/2021.naacl-main.41",
pages = "483--498",
}
"""
_URLS = {"raw": "https://huggingface.co/datasets/munggok/mc4-id/resolve/main/mc4-id-filter/c4-id{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"}
_CONFIGS = {"full": {"train": 1016, "validation": 8}}
# The entire dataset is 150 Gigs. You can adjust the number of "parquet" files you want to download here
# _CONFIGS = {
# "full": {"train": 1, "validation": 1}
# }
_LOCAL = False
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class MC4Indo(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description="mc4_indo source schema",
schema="source",
subset_id="mc4_indo",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_ssp",
version=SEACROWD_VERSION,
description="mc4_indo SEACrowd schema",
schema="seacrowd_ssp",
subset_id="mc4_indo",
),
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features({"text": datasets.Value("string"), "timestamp": datasets.Value("string"), "url": datasets.Value("string")})
elif self.config.schema == "seacrowd_ssp":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
data_urls = {}
for split in ["train", "validation"]:
data_urls[split] = [
_URLS["raw"].format(
split_suffix="-validation" if split == "validation" else "",
index=index,
n_shards=8 if split == "validation" else 1024,
)
for index in range(_CONFIGS["full"][split])
]
train_downloaded_files = dl_manager.download(data_urls["train"])
validation_downloaded_files = dl_manager.download(data_urls["validation"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": train_downloaded_files,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": validation_downloaded_files,
"split": "dev",
},
),
]
def _generate_examples(self, filepaths: [Path], split: str) -> Tuple[int, Dict]:
id_ = 0
for filepath in filepaths:
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
if self.config.schema == "source":
yield id_, example
elif self.config.schema == "seacrowd_ssp":
seacrowd_json = {
"id": str(id_),
"text": str(example["text"]),
}
yield id_, seacrowd_json
id_ += 1