holylovenia commited on
Commit
0293712
1 Parent(s): 826231c

Upload m3ls.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. m3ls.py +403 -0
m3ls.py ADDED
@@ -0,0 +1,403 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ SEACrowd Data Loader for M3LS.
3
+ """
4
+ import json
5
+ import os
6
+ from collections.abc import Iterable
7
+ from copy import deepcopy
8
+ from typing import Dict, Generator, List, Tuple, Union
9
+
10
+ try:
11
+ import PIL
12
+ except (ImportError, ModuleNotFoundError):
13
+ print("Please install `PIL` to load image-based data from M3LS dataloader.")
14
+ else:
15
+ PIL.__version__ # to avoid being marked by formatter
16
+
17
+ import datasets
18
+ from datasets.download.download_manager import DownloadManager
19
+
20
+ from seacrowd.utils import schemas
21
+ from seacrowd.utils.configs import SEACrowdConfig
22
+ from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
23
+
24
+ _CITATION = r"""
25
+ @inproceedings{verma-etal-2023-large,
26
+ title = "Large Scale Multi-Lingual Multi-Modal Summarization Dataset",
27
+ author = "Verma, Yash and
28
+ Jangra, Anubhav and
29
+ Verma, Raghvendra and
30
+ Saha, Sriparna",
31
+ editor = "Vlachos, Andreas and
32
+ Augenstein, Isabelle",
33
+ booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
34
+ month = may,
35
+ year = "2023",
36
+ address = "Dubrovnik, Croatia",
37
+ publisher = "Association for Computational Linguistics",
38
+ url = "https://aclanthology.org/2023.eacl-main.263",
39
+ doi = "10.18653/v1/2023.eacl-main.263",
40
+ pages = "3620--3632",
41
+ }
42
+ """
43
+
44
+ logger = datasets.logging.get_logger(__name__)
45
+
46
+ _LOCAL = False
47
+ _LANGUAGES = ["ind"]
48
+
49
+
50
+ _DATASETNAME = "m3ls"
51
+ _DESCRIPTION = r"""
52
+ The multilingual multimodal summarization dataset (M3LS) consists of over a million instances of document-image pairs
53
+ along with a professionally annotated multimodal summary for each pair.
54
+ It is derived from news articles published by the British Broadcasting Corporation (BBC) over a decade and spans 20 total languages,
55
+ which Indonesian is the only SEA language available on this dataset.
56
+ """
57
+
58
+ _HOMEPAGE = "https://github.com/anubhav-jangra/M3LS/tree/main"
59
+ _LICENSE = Licenses.MIT.value
60
+
61
+ _URL = "https://drive.google.com/uc?id=1Kznkw7YpRiWpdgH4_SVNwp0uGf3j-5e2"
62
+
63
+ _SUPPORTED_TASKS = [Tasks.SUMMARIZATION, Tasks.IMAGE_CAPTIONING]
64
+ _SOURCE_VERSION = "1.0.0"
65
+ _SEACROWD_VERSION = "2024.06.20"
66
+
67
+ _CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
68
+
69
+
70
+ class M3LSDataset(datasets.GeneratorBasedBuilder):
71
+ """M3LS dataset of Indonesian Language (from BBC Indonesian)"""
72
+
73
+ BUILDER_CONFIGS = [
74
+ SEACrowdConfig(
75
+ name=f"{_DATASETNAME}_source",
76
+ version=datasets.Version(_SOURCE_VERSION),
77
+ description=f"{_DATASETNAME} source schema",
78
+ schema="source",
79
+ subset_id=f"{_DATASETNAME}",
80
+ ),
81
+ *[
82
+ SEACrowdConfig(
83
+ name=f"{_DATASETNAME}_seacrowd_{cfg_sufix}",
84
+ version=datasets.Version(_SEACROWD_VERSION),
85
+ description=f"{_DATASETNAME} seacrowd schema for {task.name}",
86
+ schema=f"seacrowd_{cfg_sufix}",
87
+ subset_id=f"{_DATASETNAME}",
88
+ )
89
+ for task, cfg_sufix in zip(_SUPPORTED_TASKS, _CONFIG_SUFFIXES_FOR_TASK)
90
+ ],
91
+ ]
92
+
93
+ def _info(self) -> datasets.DatasetInfo:
94
+ _config_schema_name = self.config.schema
95
+ logger.info(f"Received schema name: {self.config.schema}")
96
+
97
+ if _config_schema_name == "source":
98
+ features = datasets.Features(
99
+ {
100
+ "id": datasets.Value("string"),
101
+ "date": datasets.Value("string"),
102
+ "url": datasets.Value("string"),
103
+ "title": datasets.Value("string"),
104
+ "summary": datasets.Value("string"),
105
+ "keyword": datasets.Sequence(datasets.Value("string")),
106
+ "related": datasets.Sequence(datasets.Value("string")),
107
+ "section_headers": datasets.Sequence(datasets.Value("string")),
108
+ "paragraphs": datasets.Sequence(datasets.Value("string")),
109
+ "images": datasets.Sequence(datasets.Image()),
110
+ "captions": datasets.Sequence(datasets.Value("string")),
111
+ }
112
+ )
113
+
114
+ # speech-text schema
115
+ elif _config_schema_name == "seacrowd_t2t":
116
+ features = schemas.text2text_features
117
+
118
+ elif _config_schema_name == "seacrowd_imtext":
119
+ features = schemas.image_text_features()
120
+
121
+ else:
122
+ raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
123
+
124
+ return datasets.DatasetInfo(
125
+ description=_DESCRIPTION,
126
+ features=features,
127
+ homepage=_HOMEPAGE,
128
+ license=_LICENSE,
129
+ citation=_CITATION,
130
+ )
131
+
132
+ def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
133
+ try:
134
+ import gdown
135
+ except ImportError:
136
+ raise ImportError("Please install `gdown` to enable downloading data from google drive.")
137
+
138
+ # Download from Google drive
139
+ output_dir = os.path.join(os.getcwd(), "data", "m3ls")
140
+ if not os.path.exists(output_dir):
141
+ os.makedirs(output_dir)
142
+ output_file = output_dir + "/m3ls.zip"
143
+ if not os.path.exists(output_file):
144
+ gdown.download(_URL, str(output_file), fuzzy=True)
145
+ else:
146
+ logger.info(f"File already downloaded: {str(output_file)}")
147
+
148
+ local_path = os.path.join(dl_manager.extract(output_file).title(), "bbcindonesia")
149
+
150
+ # there are two folders all containing json files, namely "processed" and "articles"
151
+ # both are having articles info with url, text, and accompanied resource scrapped (i.e image & captions, related articles)
152
+
153
+ # the "processed" contains only 244 data, which 156 of them doesn't have any title info
154
+ # whereas "articles" contains 56108 data (the same reported as the wholly data in paper), all having title info
155
+
156
+ # no intersection of links for both, nor information provided, hence we will only take "articles" due to matched info w/ their paper
157
+ # the original paper mentioned 80:10:10 splits for over, but there is no info for such splitting index on the extracted folder
158
+ article_data_dir = os.path.join(local_path, "articles")
159
+
160
+ return [
161
+ datasets.SplitGenerator(
162
+ name=datasets.Split.TRAIN,
163
+ gen_kwargs={
164
+ "article_data_dir": article_data_dir,
165
+ "image_folder": os.path.join(local_path, "imagefolder"),
166
+ },
167
+ )
168
+ ]
169
+
170
+ def _generate_examples(self, article_data_dir: str, image_folder: str) -> Generator[Tuple[int, Dict], None, None]:
171
+ _config_schema_name = self.config.schema
172
+ all_image_filename = os.listdir(image_folder)
173
+
174
+ idx = 1
175
+ im_data_idx = 1
176
+ for filename in os.listdir(article_data_dir):
177
+ root_data, content_data = self.__json_read_and_process(os.path.join(article_data_dir, filename))
178
+
179
+ # for images, it has around 6.7% missing rate (15625 out of 230163)
180
+ if _config_schema_name == "source":
181
+ content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="all")
182
+ image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename)
183
+
184
+ yield idx, {
185
+ "id": idx,
186
+ "date": root_data["date"],
187
+ "url": root_data["url"],
188
+ "title": root_data["title"],
189
+ "summary": root_data["summary"],
190
+ "keyword": root_data["keyword"],
191
+ "related": root_data["related"],
192
+ "section_headers": content_data["section_headers"],
193
+ "paragraphs": content_data["paragraphs"],
194
+ "images": image_path,
195
+ "captions": captions,
196
+ }
197
+
198
+ elif _config_schema_name == "seacrowd_t2t":
199
+ content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="text")
200
+ yield idx, {
201
+ "id": idx,
202
+ "text_1": "\n".join(content_data["paragraphs"]),
203
+ "text_2": root_data["summary"],
204
+ "text_1_name": "texts",
205
+ "text_2_name": "summary",
206
+ }
207
+
208
+ elif _config_schema_name == "seacrowd_imtext":
209
+ content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="image")
210
+ image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename, both_exists=True)
211
+
212
+ if image_path == []:
213
+ continue
214
+
215
+ for path_idx in range(len(image_path)):
216
+ yield im_data_idx, {
217
+ "id": im_data_idx,
218
+ "image_paths": [image_path[path_idx]],
219
+ "texts": captions[path_idx],
220
+ "metadata": {
221
+ "context": root_data["url"],
222
+ "labels": None,
223
+ },
224
+ }
225
+ im_data_idx += 1
226
+
227
+ else:
228
+ raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
229
+
230
+ idx += 1
231
+
232
+ @staticmethod
233
+ def __check_only_1level_iterables(iter_obj):
234
+ return all([not isinstance(data, Iterable) or isinstance(data, str) for data in iter_obj])
235
+
236
+ @classmethod
237
+ def __json_read_and_process(cls, path: str) -> Dict:
238
+
239
+ # to check (for compulsory keys) and reconstruct (for optional keys) the json data
240
+ def base_data_reconstructor(json_data: dict, return_split: bool = True) -> Union[Dict, Tuple[Dict, Dict]]:
241
+
242
+ # for detecting content-based dict-keys (it's denoted by int-based keys in string type)
243
+ def parse_or_check_int(val: Union[int, str, float], is_parse: bool = True):
244
+ try:
245
+ int(val)
246
+ except (ValueError, TypeError):
247
+ return val if is_parse else False
248
+ else:
249
+ return int(val) if is_parse else True
250
+
251
+ compulsory_keys = ["summary", "url", "title"]
252
+ optional_keys = ["date", "keyword", "related"]
253
+ optional_key_mapper = list(zip(optional_keys, ["Not available", [], []]))
254
+
255
+ if any(key not in json_data.keys() for key in compulsory_keys):
256
+ raise KeyError(f"Missing keys of {list(set(compulsory_keys).difference(json_data.keys()))}")
257
+
258
+ for key, default_val in optional_key_mapper:
259
+ _existing_val = json_data.get(key)
260
+ new_data = {key: json_data.get(key) if _existing_val is not None else default_val}
261
+ json_data.update(new_data)
262
+
263
+ all_content_keys = [key for key in json_data.keys() if parse_or_check_int(key, is_parse=False)]
264
+
265
+ if sorted(compulsory_keys + optional_keys + all_content_keys) != sorted(json_data.keys()):
266
+ raise KeyError("Some keys are unexpectedly missing or present!")
267
+
268
+ content_data = {key: json_data[key] for key in all_content_keys}
269
+
270
+ if not return_split:
271
+ json_data.update(content_data)
272
+ return json_data
273
+ else:
274
+ root_data = {key: val for key, val in json_data.items() if key not in all_content_keys}
275
+ return root_data, content_data
276
+
277
+ def non_content_data_validator(json_data: dict):
278
+ non_content_dtypes = [("url", str), ("title", str), ("date", str), ("summary", str), ("keyword", list), ("related", list)]
279
+
280
+ for key, _type in non_content_dtypes:
281
+ if not isinstance(json_data[key], _type):
282
+ raise TypeError(f"The dict has key {key} that doesn't match with expected type {_type}!")
283
+
284
+ # assert only 1-level for list types
285
+ if _type == list:
286
+ if not cls.__check_only_1level_iterables(json_data[key]):
287
+ raise ValueError(f"Found iterables in {key} for val {json_data[key]}")
288
+
289
+ with open(path, "r") as f:
290
+ json_input = json.load(f)
291
+
292
+ base_data, content_data = base_data_reconstructor(json_input)
293
+
294
+ non_content_data_validator(base_data)
295
+
296
+ return base_data, content_data
297
+
298
+ @classmethod
299
+ def __m3ls_content_data_reconstructor_and_validator(cls, json_content_data: Dict, mode: str = "all") -> Dict:
300
+ # `mode` variable scope will be shared to all subfunctions under this fn
301
+ if mode not in ("all", "image", "text"):
302
+ raise ValueError("Unexpected `mode`! Accepted: 'all', 'image', or 'text'.")
303
+
304
+ all_content_ftrs = ("images", "para", "subheading")
305
+ expected_dtypes = (list, list, str)
306
+ default_values = ([["", ""]], [], "")
307
+
308
+ _all_ftr_validation_info = {all_content_ftrs[_idx]: {"dtype": expected_dtypes[_idx], "default_val": default_values[_idx]} for _idx in range(len(all_content_ftrs))}
309
+
310
+ if mode == "all":
311
+ ftr_idx = list(range(3))
312
+ elif mode == "image":
313
+ ftr_idx = list(range(1))
314
+ elif mode == "text":
315
+ ftr_idx = list(range(1, 3))
316
+
317
+ ftr_validation_info = {all_content_ftrs[_idx]: _all_ftr_validation_info[all_content_ftrs[_idx]] for _idx in ftr_idx}
318
+
319
+ def content_data_reconstructor(json_data: dict):
320
+ json_data = deepcopy(json_data)
321
+
322
+ for key, content_dict in json_data.items():
323
+ for ftr, ftr_info in ftr_validation_info.items():
324
+ if content_dict.get(ftr) is None:
325
+ json_data[key][ftr] = ftr_info["default_val"]
326
+
327
+ return json_data
328
+
329
+ def content_data_validator(content_data: dict):
330
+ for content_dict in content_data.values():
331
+ if not isinstance(content_dict, dict):
332
+ raise TypeError("Unexpected type found on content data!")
333
+
334
+ for ftr_name, ftr_info in ftr_validation_info.items():
335
+ _type = ftr_info["dtype"]
336
+ if not isinstance(content_dict[ftr_name], _type):
337
+ raise TypeError(f"Unexpected type found on content {ftr_name} data! Expected {_type}, got {type(content_dict[ftr_name])}")
338
+
339
+ if "para" in ftr_validation_info.keys() and not cls.__check_only_1level_iterables(content_dict["para"]):
340
+ raise ValueError("Found iterable in the 'paragraph' data!")
341
+
342
+ if "images" in ftr_validation_info.keys() and not all([isinstance(image_data, list) for image_data in content_dict["images"]]):
343
+ raise ValueError("Found non-list in the 'images' data!")
344
+
345
+ if "images" in ftr_validation_info.keys() and not all([len(image_data) == 2 for image_data in content_dict["images"]]):
346
+ raise ValueError("Found non-paired tuples in the 'images' data!")
347
+
348
+ if "images" in ftr_validation_info.keys() and not all([cls.__check_only_1level_iterables(image_data) for image_data in content_dict["images"]]):
349
+ raise ValueError("Found iterable in the 'images' individual data!")
350
+
351
+ def m3ls_content_data_post_process(content_data: dict) -> Dict:
352
+ output_json = {}
353
+ for _ftr in ftr_validation_info.keys():
354
+ output_data = []
355
+ for value in content_data.values():
356
+ output_data.append(value[_ftr])
357
+ output_json[_ftr] = output_data
358
+
359
+ # post process each features
360
+ if "para" in ftr_validation_info.keys():
361
+ paragraphs = []
362
+ for section_data in output_json.pop("para"):
363
+ paragraphs.append("".join([val for val in section_data if val.strip() != ""]))
364
+ output_json["paragraphs"] = paragraphs
365
+
366
+ if "images" in ftr_validation_info.keys():
367
+ list_image_paths = []
368
+ list_captions = []
369
+ for sectioned_data in output_json.pop("images"):
370
+ for val in sectioned_data:
371
+ list_image_paths.append(val[0])
372
+ list_captions.append("" if val[1] is None else val[1].strip())
373
+ output_json["image_paths"] = list_image_paths
374
+ output_json["captions"] = list_captions
375
+
376
+ if "subheading" in ftr_validation_info.keys():
377
+ output_json["section_headers"] = output_json.pop("subheading")
378
+
379
+ return output_json
380
+
381
+ content_data = content_data_reconstructor(json_content_data)
382
+
383
+ content_data_validator(content_data)
384
+
385
+ content_data = m3ls_content_data_post_process(content_data)
386
+
387
+ return content_data
388
+
389
+ @staticmethod
390
+ def __m3ls_filter_image_and_captions_data(image_data: list, captions_data: list, base_image_folder: str, all_images: list, both_exists: bool = False) -> Tuple[List, List]:
391
+ image_path, captions = [], []
392
+
393
+ if len(captions_data) != len(image_data):
394
+ raise ValueError("Not a 1-1 mapping of image-captions!")
395
+
396
+ for idx, img_path in enumerate(image_data):
397
+ if img_path in all_images:
398
+ if both_exists and captions_data[idx] == "":
399
+ continue
400
+ image_path.append(os.path.join(base_image_folder, img_path))
401
+ captions.append(captions_data[idx])
402
+
403
+ return image_path, captions