Datasets:

Languages:
Thai
ArXiv:
License:
limesoda / limesoda.py
holylovenia's picture
Upload limesoda.py with huggingface_hub
90d1157 verified
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{9678187,
author={Payoungkhamdee, Patomporn and Porkaew, Peerachet and Sinthunyathum, Atthasith and Songphum, Phattharaphon and Kawidam, Witsarut and Loha-Udom, Wichayut and Boonkwan, Prachya and Sutantayawalee, Vipas},
booktitle={2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)},
title={LimeSoda: Dataset for Fake News Detection in Healthcare Domain},
year={2021},
volume={},
number={},
pages={1-6},
doi={10.1109/iSAI-NLP54397.2021.9678187}}
"""
_DATASETNAME = "limesoda"
_DESCRIPTION = """\
Thai fake news dataset in the healthcare domain consisting of curate and manually annotated 7,191 documents
(only 4,141 documents contain token labels and are used as a test set of the baseline models).
Each document in the dataset is classified as fact, fake, or undefined.
"""
_HOMEPAGE = "https://github.com/byinth/LimeSoda"
_LICENSE = Licenses.CC_BY_4_0.value
_LANGUAGES = ["tha"]
_LOCAL = False
_URLS = {
"split": {
"train": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/train_v1.jsonl",
"val": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/val_v1.jsonl",
"test": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/test_v1.jsonl",
},
"raw": "https://raw.githubusercontent.com/byinth/LimeSoda/main/LimeSoda/Limesoda.jsonl",
}
_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class LimeSodaDataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description="limesoda source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_split_source",
version=SOURCE_VERSION,
description="limesoda source schema",
schema="source",
subset_id=f"{_DATASETNAME}_split",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_text",
version=SEACROWD_VERSION,
description="limesoda SEACrowd schema",
schema="seacrowd_text",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_split_seacrowd_text",
version=SEACROWD_VERSION,
description="limesoda: split SEACrowd schema",
schema="seacrowd_text",
subset_id=f"{_DATASETNAME}_split",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
if self.config.subset_id == "limesoda":
features = datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"detail": datasets.Sequence(datasets.Value("string")),
"title_token_tags": datasets.Value("string"),
"detail_token_tags": datasets.Sequence(datasets.Value("string")),
"document_tag": datasets.Value("string"),
}
)
else:
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "document_tag": datasets.Value("string")})
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["Fact News", "Fake News", "Undefined"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
path_dict = dl_manager.download_and_extract(_URLS)
if self.config.subset_id == "limesoda":
raw_path = path_dict["raw"]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": raw_path,
},
),
]
elif self.config.subset_id == "limesoda_split":
train_path, val_path, test_path = path_dict["split"]["train"], path_dict["split"]["val"], path_dict["split"]["test"]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": val_path,
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
with open(filepath, "r") as f:
entries = [json.loads(line) for line in f.readlines()]
if self.config.schema == "source":
if self.config.subset_id == "limesoda":
for i, row in enumerate(entries):
ex = {"id": str(i), "title": row["Title"], "detail": row["Detail"], "title_token_tags": row["Title Token Tags"], "detail_token_tags": row["Detail Token Tags"], "document_tag": row["Document Tag"]}
yield i, ex
else:
for i, row in enumerate(entries):
ex = {"id": str(i), "text": row["Text"], "document_tag": row["Document Tag"]}
yield i, ex
elif self.config.schema == "seacrowd_text":
for i, row in enumerate(entries):
ex = {
"id": str(i),
"text": row["Detail"] if self.config.subset_id == "limesoda" else row["Text"],
"label": row["Document Tag"],
}
yield i, ex