| import json | |
| from pathlib import Path | |
| from typing import Dict, List, Tuple | |
| import datasets | |
| from seacrowd.utils import schemas | |
| from seacrowd.utils.configs import SEACrowdConfig | |
| from seacrowd.utils.constants import Licenses, Tasks | |
| _CITATION = """\ | |
| @INPROCEEDINGS{9678187, | |
| author={Payoungkhamdee, Patomporn and Porkaew, Peerachet and Sinthunyathum, Atthasith and Songphum, Phattharaphon and Kawidam, Witsarut and Loha-Udom, Wichayut and Boonkwan, Prachya and Sutantayawalee, Vipas}, | |
| booktitle={2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)}, | |
| title={LimeSoda: Dataset for Fake News Detection in Healthcare Domain}, | |
| year={2021}, | |
| volume={}, | |
| number={}, | |
| pages={1-6}, | |
| doi={10.1109/iSAI-NLP54397.2021.9678187}} | |
| """ | |
| _DATASETNAME = "limesoda" | |
| _DESCRIPTION = """\ | |
| Thai fake news dataset in the healthcare domain consisting of curate and manually annotated 7,191 documents | |
| (only 4,141 documents contain token labels and are used as a test set of the baseline models). | |
| Each document in the dataset is classified as fact, fake, or undefined. | |
| """ | |
| _HOMEPAGE = "https://github.com/byinth/LimeSoda" | |
| _LICENSE = Licenses.CC_BY_4_0.value | |
| _LANGUAGES = ["tha"] | |
| _LOCAL = False | |
| _URLS = { | |
| "split": { | |
| "train": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/train_v1.jsonl", | |
| "val": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/val_v1.jsonl", | |
| "test": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/test_v1.jsonl", | |
| }, | |
| "raw": "https://raw.githubusercontent.com/byinth/LimeSoda/main/LimeSoda/Limesoda.jsonl", | |
| } | |
| _SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION] | |
| _SOURCE_VERSION = "1.0.0" | |
| _SEACROWD_VERSION = "2024.06.20" | |
| class LimeSodaDataset(datasets.GeneratorBasedBuilder): | |
| SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
| SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
| BUILDER_CONFIGS = [ | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_source", | |
| version=SOURCE_VERSION, | |
| description="limesoda source schema", | |
| schema="source", | |
| subset_id=_DATASETNAME, | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_split_source", | |
| version=SOURCE_VERSION, | |
| description="limesoda source schema", | |
| schema="source", | |
| subset_id=f"{_DATASETNAME}_split", | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_seacrowd_text", | |
| version=SEACROWD_VERSION, | |
| description="limesoda SEACrowd schema", | |
| schema="seacrowd_text", | |
| subset_id=_DATASETNAME, | |
| ), | |
| SEACrowdConfig( | |
| name=f"{_DATASETNAME}_split_seacrowd_text", | |
| version=SEACROWD_VERSION, | |
| description="limesoda: split SEACrowd schema", | |
| schema="seacrowd_text", | |
| subset_id=f"{_DATASETNAME}_split", | |
| ), | |
| ] | |
| DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | |
| def _info(self) -> datasets.DatasetInfo: | |
| if self.config.schema == "source": | |
| if self.config.subset_id == "limesoda": | |
| features = datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "title": datasets.Value("string"), | |
| "detail": datasets.Sequence(datasets.Value("string")), | |
| "title_token_tags": datasets.Value("string"), | |
| "detail_token_tags": datasets.Sequence(datasets.Value("string")), | |
| "document_tag": datasets.Value("string"), | |
| } | |
| ) | |
| else: | |
| features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "document_tag": datasets.Value("string")}) | |
| elif self.config.schema == "seacrowd_text": | |
| features = schemas.text_features(["Fact News", "Fake News", "Undefined"]) | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=features, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
| """Returns SplitGenerators.""" | |
| path_dict = dl_manager.download_and_extract(_URLS) | |
| if self.config.subset_id == "limesoda": | |
| raw_path = path_dict["raw"] | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": raw_path, | |
| }, | |
| ), | |
| ] | |
| elif self.config.subset_id == "limesoda_split": | |
| train_path, val_path, test_path = path_dict["split"]["train"], path_dict["split"]["val"], path_dict["split"]["test"] | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={ | |
| "filepath": train_path, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={ | |
| "filepath": test_path, | |
| }, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={ | |
| "filepath": val_path, | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: | |
| with open(filepath, "r") as f: | |
| entries = [json.loads(line) for line in f.readlines()] | |
| if self.config.schema == "source": | |
| if self.config.subset_id == "limesoda": | |
| for i, row in enumerate(entries): | |
| ex = {"id": str(i), "title": row["Title"], "detail": row["Detail"], "title_token_tags": row["Title Token Tags"], "detail_token_tags": row["Detail Token Tags"], "document_tag": row["Document Tag"]} | |
| yield i, ex | |
| else: | |
| for i, row in enumerate(entries): | |
| ex = {"id": str(i), "text": row["Text"], "document_tag": row["Document Tag"]} | |
| yield i, ex | |
| elif self.config.schema == "seacrowd_text": | |
| for i, row in enumerate(entries): | |
| ex = { | |
| "id": str(i), | |
| "text": row["Detail"] if self.config.subset_id == "limesoda" else row["Text"], | |
| "label": row["Document Tag"], | |
| } | |
| yield i, ex | |