|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{9678187, |
|
author={Payoungkhamdee, Patomporn and Porkaew, Peerachet and Sinthunyathum, Atthasith and Songphum, Phattharaphon and Kawidam, Witsarut and Loha-Udom, Wichayut and Boonkwan, Prachya and Sutantayawalee, Vipas}, |
|
booktitle={2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)}, |
|
title={LimeSoda: Dataset for Fake News Detection in Healthcare Domain}, |
|
year={2021}, |
|
volume={}, |
|
number={}, |
|
pages={1-6}, |
|
doi={10.1109/iSAI-NLP54397.2021.9678187}} |
|
""" |
|
|
|
_DATASETNAME = "limesoda" |
|
|
|
_DESCRIPTION = """\ |
|
Thai fake news dataset in the healthcare domain consisting of curate and manually annotated 7,191 documents |
|
(only 4,141 documents contain token labels and are used as a test set of the baseline models). |
|
Each document in the dataset is classified as fact, fake, or undefined. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/byinth/LimeSoda" |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LANGUAGES = ["tha"] |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"split": { |
|
"train": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/train_v1.jsonl", |
|
"val": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/val_v1.jsonl", |
|
"test": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/test_v1.jsonl", |
|
}, |
|
"raw": "https://raw.githubusercontent.com/byinth/LimeSoda/main/LimeSoda/Limesoda.jsonl", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class LimeSodaDataset(datasets.GeneratorBasedBuilder): |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description="limesoda source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_split_source", |
|
version=SOURCE_VERSION, |
|
description="limesoda source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_split", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="limesoda SEACrowd schema", |
|
schema="seacrowd_text", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_split_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="limesoda: split SEACrowd schema", |
|
schema="seacrowd_text", |
|
subset_id=f"{_DATASETNAME}_split", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
if self.config.subset_id == "limesoda": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"detail": datasets.Sequence(datasets.Value("string")), |
|
"title_token_tags": datasets.Value("string"), |
|
"detail_token_tags": datasets.Sequence(datasets.Value("string")), |
|
"document_tag": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "document_tag": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(["Fact News", "Fake News", "Undefined"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
path_dict = dl_manager.download_and_extract(_URLS) |
|
if self.config.subset_id == "limesoda": |
|
raw_path = path_dict["raw"] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": raw_path, |
|
}, |
|
), |
|
] |
|
elif self.config.subset_id == "limesoda_split": |
|
train_path, val_path, test_path = path_dict["split"]["train"], path_dict["split"]["val"], path_dict["split"]["test"] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": val_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
with open(filepath, "r") as f: |
|
entries = [json.loads(line) for line in f.readlines()] |
|
if self.config.schema == "source": |
|
if self.config.subset_id == "limesoda": |
|
for i, row in enumerate(entries): |
|
ex = {"id": str(i), "title": row["Title"], "detail": row["Detail"], "title_token_tags": row["Title Token Tags"], "detail_token_tags": row["Detail Token Tags"], "document_tag": row["Document Tag"]} |
|
yield i, ex |
|
else: |
|
for i, row in enumerate(entries): |
|
ex = {"id": str(i), "text": row["Text"], "document_tag": row["Document Tag"]} |
|
yield i, ex |
|
elif self.config.schema == "seacrowd_text": |
|
for i, row in enumerate(entries): |
|
ex = { |
|
"id": str(i), |
|
"text": row["Detail"] if self.config.subset_id == "limesoda" else row["Text"], |
|
"label": row["Document Tag"], |
|
} |
|
yield i, ex |
|
|