|
import csv |
|
import os |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from nusacrowd.utils import schemas |
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, Tasks) |
|
|
|
_DATASETNAME = "jv_id_tts" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME |
|
|
|
_LANGUAGES = ["jav"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{sodimana18_sltu, |
|
author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, |
|
title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, |
|
year=2018, |
|
booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, |
|
pages={66--70}, |
|
doi={10.21437/SLTU.2018-14} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This data set contains high-quality transcribed audio data for Javanese. |
|
The data set consists of wave files, and a TSV file. |
|
The file line_index.tsv contains a filename and the transcription of audio in the file. |
|
Each filename is prepended with a speaker identification number. |
|
The data set has been manually quality checked, but there might still be errors. |
|
This dataset was collected by Google in collaboration with Gadjah Mada University in Indonesia. |
|
""" |
|
|
|
_HOMEPAGE = "http://openslr.org/41/" |
|
|
|
_LICENSE = "See https://www.openslr.org/resources/41/LICENSE file for license information. Attribution-ShareAlike 4.0 (CC BY-SA 4.0)." |
|
|
|
_URLs = { |
|
_DATASETNAME: { |
|
"female": "https://www.openslr.org/resources/41/jv_id_female.zip", |
|
"male": "https://www.openslr.org/resources/41/jv_id_male.zip", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_TO_SPEECH] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class JvIdTTS(datasets.GeneratorBasedBuilder): |
|
"""jv_id_tts contains high-quality Multi-speaker TTS data for Javanese (jv-ID).""" |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="jv_id_tts_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="JV_ID_TTS source schema", |
|
schema="source", |
|
subset_id="jv_id_tts", |
|
), |
|
NusantaraConfig( |
|
name="jv_id_tts_nusantara_sptext", |
|
version=datasets.Version(_NUSANTARA_VERSION), |
|
description="JV_ID_TTS Nusantara schema", |
|
schema="nusantara_sptext", |
|
subset_id="jv_id_tts", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "jv_id_tts_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "nusantara_sptext": |
|
features = schemas.speech_text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
male_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["male"])) |
|
female_path = Path(dl_manager.download_and_extract(_URLs[_DATASETNAME]["female"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"male_filepath": male_path, |
|
"female_filepath": female_path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, male_filepath: Path, female_filepath: Path): |
|
|
|
if self.config.schema == "source" or self.config.schema == "nusantara_sptext": |
|
tsv_file = os.path.join(male_filepath, "jv_id_male", "line_index.tsv") |
|
with open(tsv_file, "r") as file: |
|
tsv_data = csv.reader(file, delimiter="\t") |
|
|
|
for line in tsv_data: |
|
|
|
audio_id, _, transcription_text = line[0], line[1], line[2] |
|
speaker_id = audio_id.split("_")[1] |
|
wav_path = os.path.join(male_filepath, "jv_id_male", "wavs", "{}.wav".format(audio_id)) |
|
|
|
if os.path.exists(wav_path): |
|
if self.config.schema == "source": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": transcription_text, |
|
} |
|
yield audio_id, ex |
|
elif self.config.schema == "nusantara_sptext": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": transcription_text, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": "male", |
|
}, |
|
} |
|
yield audio_id, ex |
|
|
|
tsv_file = os.path.join(female_filepath, "jv_id_female", "line_index.tsv") |
|
with open(tsv_file, "r") as file: |
|
tsv_data = csv.reader(file, delimiter="\t") |
|
|
|
for line in tsv_data: |
|
audio_id, transcription_text = line[0], line[1] |
|
speaker_id = audio_id.split("_")[1] |
|
wav_path = os.path.join(female_filepath, "jv_id_female", "wavs", "{}.wav".format(audio_id)) |
|
|
|
if os.path.exists(wav_path): |
|
if self.config.schema == "source": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": transcription_text, |
|
} |
|
yield audio_id, ex |
|
elif self.config.schema == "nusantara_sptext": |
|
ex = { |
|
"id": audio_id, |
|
"speaker_id": speaker_id, |
|
"path": wav_path, |
|
"audio": wav_path, |
|
"text": transcription_text, |
|
"metadata": { |
|
"speaker_age": None, |
|
"speaker_gender": "female", |
|
}, |
|
} |
|
yield audio_id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
|