|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{Astuti2023, |
|
title = {Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data}, |
|
journal = {International Journal of Advanced Computer Science and Applications}, |
|
doi = {10.14569/IJACSA.2023.0141053}, |
|
url = {http://dx.doi.org/10.14569/IJACSA.2023.0141053}, |
|
year = {2023}, |
|
publisher = {The Science and Information Organization}, |
|
volume = {14}, |
|
number = {10}, |
|
author = {Laksmita Widya Astuti and Yunita Sari and Suprapto} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "indonglish" |
|
_DESCRIPTION = """\ |
|
Indonglish-dataset was constructed based on keywords derived from the |
|
sociolinguistic phenomenon observed among teenagers in South Jakarta. The |
|
dataset was designed to tackle the semantic task of sentiment analysis, |
|
incorporating three distinct label categories: positive, negative, and |
|
neutral. The annotation of the dataset was carried out by a panel of five |
|
annotators, each possessing expertise language and data science. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/laksmitawidya/indonglish-dataset" |
|
_LANGUAGES = ["ind"] |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"skenario-orig": { |
|
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/train.csv", |
|
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/validation.csv", |
|
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario-ori/test.csv", |
|
}, |
|
"skenario1": { |
|
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/training.csv", |
|
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/validation.csv", |
|
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario1/test.csv", |
|
}, |
|
"skenario2": { |
|
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/training.csv", |
|
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/validation.csv", |
|
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario2/test.csv", |
|
}, |
|
"skenario3": { |
|
"train": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/training.csv", |
|
"validation": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/validation.csv", |
|
"test": "https://raw.githubusercontent.com/laksmitawidya/indonglish-dataset/master/skenario3/test.csv", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class Indonglish(datasets.GeneratorBasedBuilder): |
|
"""Indonglish dataset for sentiment analysis from https://github.com/laksmitawidya/indonglish-dataset.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
_LABELS = ["Positif", "Negatif", "Netral"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
for i in range(1, 4): |
|
BUILDER_CONFIGS += [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_skenario{i}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_skenario{i}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_skenario{i}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_skenario{i}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tweet": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=self._LABELS), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(self._LABELS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
if "skenario" in self.config.name: |
|
setting = self.config.name.split("_")[1] |
|
else: |
|
setting = "skenario-orig" |
|
|
|
data_paths = { |
|
setting: { |
|
"train": Path(dl_manager.download_and_extract(_URLS[setting]["train"])), |
|
"validation": Path(dl_manager.download_and_extract(_URLS[setting]["validation"])), |
|
"test": Path(dl_manager.download_and_extract(_URLS[setting]["test"])), |
|
} |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_paths[setting]["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_paths[setting]["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_paths[setting]["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
with open(filepath, "r", encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file) |
|
csv_data = [row for row in csv_reader] |
|
csv_data = csv_data[1:] |
|
|
|
num_sample = len(csv_data) |
|
|
|
for i in range(num_sample): |
|
if self.config.schema == "source": |
|
example = { |
|
"id": str(i), |
|
"tweet": csv_data[i][0], |
|
"label": csv_data[i][1], |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
example = { |
|
"id": str(i), |
|
"text": csv_data[i][0], |
|
"label": csv_data[i][1], |
|
} |
|
|
|
yield i, example |
|
|