holylovenia
commited on
Commit
•
4734189
1
Parent(s):
01d7004
Upload indonesia_chinese_mtrobusteval.py with huggingface_hub
Browse files
indonesia_chinese_mtrobusteval.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import jsonlines
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@article{,
|
14 |
+
author = {supryzhu},
|
15 |
+
title = {Indonesia-Chinese-MTRobustEval},
|
16 |
+
journal = {None},
|
17 |
+
volume = {None},
|
18 |
+
year = {2023},
|
19 |
+
url = {https://github.com/supryzhu/Indonesia-Chinese-MTRobustEval},
|
20 |
+
doi = {None},
|
21 |
+
biburl = {None},
|
22 |
+
bibsource = {None}
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
_DATASETNAME = "indonesia_chinese_mtrobusteval"
|
28 |
+
|
29 |
+
_DESCRIPTION = """\
|
30 |
+
The dataset is curated for the purpose of evaluating the robustness of Neural Machine Translation (NMT) towards natural occuring noise
|
31 |
+
(typo, slang, code switching, etc.). The dataset is crawled from Twitter, then pre-processed to obtain sentences with noise.
|
32 |
+
The dataset consists of a thousand noisy sentences. The dataset is translated into Chinese manually as the benchmark for evaluating the robustness of NMT.
|
33 |
+
"""
|
34 |
+
|
35 |
+
_HOMEPAGE = "https://github.com/supryzhu/Indonesia-Chinese-MTRobustEval"
|
36 |
+
|
37 |
+
_LANGUAGES = ["ind", "cmn"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
38 |
+
|
39 |
+
|
40 |
+
_LICENSE = Licenses.MIT.value # example: Licenses.MIT.value, Licenses.CC_BY_NC_SA_4_0.value, Licenses.UNLICENSE.value, Licenses.UNKNOWN.value
|
41 |
+
|
42 |
+
_LOCAL = False
|
43 |
+
|
44 |
+
_URLS = {
|
45 |
+
_DATASETNAME: "https://github.com/supryzhu/Indonesia-Chinese-MTRobustEval/raw/main/data/Indonesia-Chinese.xlsx",
|
46 |
+
}
|
47 |
+
|
48 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
49 |
+
|
50 |
+
_SOURCE_VERSION = "1.0.0"
|
51 |
+
|
52 |
+
_SEACROWD_VERSION = "2024.06.20"
|
53 |
+
|
54 |
+
|
55 |
+
class IndonesiaChineseMtRobustEval(datasets.GeneratorBasedBuilder):
|
56 |
+
"""The dataset consists of a thousand noisy sentences. The dataset is translated into Chinese manually as the benchmark for evaluating the robustness of NMT."""
|
57 |
+
|
58 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
59 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
60 |
+
|
61 |
+
BUILDER_CONFIGS = [
|
62 |
+
SEACrowdConfig(
|
63 |
+
name=f"{_DATASETNAME}_source",
|
64 |
+
version=SOURCE_VERSION,
|
65 |
+
description="indonesia_chinese_mtrobusteval source schema",
|
66 |
+
schema="source",
|
67 |
+
subset_id=f"{_DATASETNAME}",
|
68 |
+
),
|
69 |
+
SEACrowdConfig(
|
70 |
+
name=f"{_DATASETNAME}_seacrowd_t2t",
|
71 |
+
version=SEACROWD_VERSION,
|
72 |
+
description="indonesia_chinese_mtrobusteval SEACrowd schema",
|
73 |
+
schema="seacrowd_t2t",
|
74 |
+
subset_id=f"{_DATASETNAME}",
|
75 |
+
),
|
76 |
+
]
|
77 |
+
|
78 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
79 |
+
|
80 |
+
def _info(self) -> datasets.DatasetInfo:
|
81 |
+
|
82 |
+
if self.config.schema == "source":
|
83 |
+
features = datasets.Features(
|
84 |
+
{
|
85 |
+
"id": datasets.Value("string"),
|
86 |
+
"src": datasets.Value("string"),
|
87 |
+
"tgt": datasets.Value("string"),
|
88 |
+
}
|
89 |
+
)
|
90 |
+
|
91 |
+
elif self.config.schema == "seacrowd_t2t":
|
92 |
+
features = schemas.text2text_features
|
93 |
+
|
94 |
+
return datasets.DatasetInfo(
|
95 |
+
description=_DESCRIPTION,
|
96 |
+
features=features,
|
97 |
+
homepage=_HOMEPAGE,
|
98 |
+
license=_LICENSE,
|
99 |
+
citation=_CITATION,
|
100 |
+
)
|
101 |
+
|
102 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
103 |
+
"""Returns SplitGenerators."""
|
104 |
+
urls = _URLS[_DATASETNAME]
|
105 |
+
file_path = dl_manager.download(urls)
|
106 |
+
df = pd.read_excel(file_path)
|
107 |
+
src = df["Indonesia"].tolist()
|
108 |
+
tgt = df["Chinese"].tolist()
|
109 |
+
results = []
|
110 |
+
for i, item in enumerate(src):
|
111 |
+
results.append({"id": str(i), "src": item, "tgt": tgt[i]})
|
112 |
+
self._write_jsonl(file_path + ".jsonl", results)
|
113 |
+
|
114 |
+
return [
|
115 |
+
datasets.SplitGenerator(
|
116 |
+
name=datasets.Split.TRAIN,
|
117 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
118 |
+
gen_kwargs={
|
119 |
+
"filepath": file_path + ".jsonl",
|
120 |
+
"split": "train",
|
121 |
+
},
|
122 |
+
)
|
123 |
+
]
|
124 |
+
|
125 |
+
|
126 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
127 |
+
if self.config.schema == "source":
|
128 |
+
i = 0
|
129 |
+
with jsonlines.open(filepath) as f:
|
130 |
+
for each_data in f.iter():
|
131 |
+
ex = {
|
132 |
+
"id": each_data["id"],
|
133 |
+
"src": each_data["src"],
|
134 |
+
"tgt": each_data["tgt"],
|
135 |
+
}
|
136 |
+
yield i, ex
|
137 |
+
i += 1
|
138 |
+
|
139 |
+
elif self.config.schema == "seacrowd_t2t":
|
140 |
+
i = 0
|
141 |
+
with jsonlines.open(filepath) as f:
|
142 |
+
for each_data in f.iter():
|
143 |
+
ex = {"id": each_data["id"], "text_1": each_data["src"], "text_2": each_data["tgt"], "text_1_name": "ind", "text_2_name": "cmn"}
|
144 |
+
yield i, ex
|
145 |
+
i += 1
|
146 |
+
|
147 |
+
def _write_jsonl(self, filepath, values):
|
148 |
+
with jsonlines.open(filepath, "w") as writer:
|
149 |
+
for line in values:
|
150 |
+
writer.write(line)
|
151 |
+
|