holylovenia
commited on
Commit
•
5daaf92
1
Parent(s):
868500a
Upload indoler.py with huggingface_hub
Browse files- indoler.py +214 -0
indoler.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
https://github.com/ir-nlp-csui/indoler/tree/main
|
18 |
+
The dataset contains 993 annotated court decission document.
|
19 |
+
The document was taken from Decision of the Supreme Court of Indonesia.
|
20 |
+
The documents have also been tokenized and cleaned
|
21 |
+
"""
|
22 |
+
import os
|
23 |
+
import json
|
24 |
+
from pathlib import Path
|
25 |
+
from typing import Dict, List, Tuple
|
26 |
+
|
27 |
+
import datasets
|
28 |
+
|
29 |
+
from seacrowd.utils import schemas
|
30 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
31 |
+
from seacrowd.utils.constants import Tasks, Licenses
|
32 |
+
|
33 |
+
_CITATION = """\
|
34 |
+
@INPROCEEDINGS{9263157,
|
35 |
+
author={Nuranti, Eka Qadri and Yulianti, Evi},
|
36 |
+
booktitle={2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS)},
|
37 |
+
title={Legal Entity Recognition in Indonesian Court Decision Documents Using Bi-LSTM and CRF Approaches},
|
38 |
+
year={2020},
|
39 |
+
volume={},
|
40 |
+
number={},
|
41 |
+
pages={429-434},
|
42 |
+
keywords={Xenon;6G mobile communication;legal processing;legal entity recognition;legal document;name entity recognition;ner;bi-lstm;lstm;crf},
|
43 |
+
doi={10.1109/ICACSIS51025.2020.9263157}}
|
44 |
+
"""
|
45 |
+
|
46 |
+
_DATASETNAME = "indoler"
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
https://github.com/ir-nlp-csui/indoler/tree/main
|
50 |
+
The data can be used for NER Task in legal documents.
|
51 |
+
The dataset contains 993 annotated court decission document.
|
52 |
+
The document was taken from Decision of the Supreme Court of Indonesia.
|
53 |
+
The documents have also been tokenized and cleaned
|
54 |
+
"""
|
55 |
+
|
56 |
+
_HOMEPAGE = "https://github.com/ir-nlp-csui/indoler/tree/main"
|
57 |
+
|
58 |
+
_LANGUAGES = ['ind'] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
59 |
+
|
60 |
+
_LICENSE = Licenses.UNKNOWN.value
|
61 |
+
|
62 |
+
_LOCAL = False
|
63 |
+
|
64 |
+
_URLS = {
|
65 |
+
_DATASETNAME: {
|
66 |
+
"test_idx": "https://raw.githubusercontent.com/ir-nlp-csui/indoler/main/test.ids.csv",
|
67 |
+
"train_idx": "https://raw.githubusercontent.com/ir-nlp-csui/indoler/main/train.ids.csv",
|
68 |
+
"valid_idx": "https://raw.githubusercontent.com/ir-nlp-csui/indoler/main/val.ids.csv",
|
69 |
+
"full_data": "https://raw.githubusercontent.com/ir-nlp-csui/indoler/main/data.json"
|
70 |
+
},
|
71 |
+
}
|
72 |
+
|
73 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
74 |
+
|
75 |
+
_SOURCE_VERSION = "2.0.0"
|
76 |
+
|
77 |
+
_SEACROWD_VERSION = "2024.06.20"
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
class IndoLer(datasets.GeneratorBasedBuilder):
|
82 |
+
"""https://github.com/ir-nlp-csui/indoler/tree/main
|
83 |
+
The data can be used for NER Task in legal documents
|
84 |
+
The dataset contains 993 annotated court decission document.
|
85 |
+
The document was taken from Decision of the Supreme Court of Indonesia.
|
86 |
+
The documents have also been tokenized and cleaned"""
|
87 |
+
|
88 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
89 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
90 |
+
|
91 |
+
BUILDER_CONFIGS = [
|
92 |
+
SEACrowdConfig(
|
93 |
+
name="indoler_source",
|
94 |
+
version=SOURCE_VERSION,
|
95 |
+
description="indoler source schema",
|
96 |
+
schema="source",
|
97 |
+
subset_id="indoler",
|
98 |
+
),
|
99 |
+
SEACrowdConfig(
|
100 |
+
name="indoler_seacrowd_seq_label",
|
101 |
+
version=SEACROWD_VERSION,
|
102 |
+
description="indoler SEACrowd schema",
|
103 |
+
schema="seacrowd_seq_label",
|
104 |
+
subset_id="indoler",
|
105 |
+
),
|
106 |
+
]
|
107 |
+
|
108 |
+
DEFAULT_CONFIG_NAME = "indoler_source"
|
109 |
+
|
110 |
+
def _info(self) -> datasets.DatasetInfo:
|
111 |
+
|
112 |
+
NAMED_ENTITIES = ['O', 'B-Jenis Amar', 'B-Jenis Dakwaan', 'B-Jenis Perkara', 'B-Melanggar UU (Dakwaan)',
|
113 |
+
'B-Melanggar UU (Pertimbangan Hukum)', 'B-Melanggar UU (Tuntutan)', 'B-Nama Hakim Anggota', 'B-Nama Hakim Ketua',
|
114 |
+
'B-Nama Jaksa', 'B-Nama Panitera', 'B-Nama Pengacara', 'B-Nama Pengadilan',
|
115 |
+
'B-Nama Saksi', 'B-Nama Terdakwa', 'B-Nomor Putusan', 'B-Putusan Hukuman',
|
116 |
+
'B-Tanggal Kejadian', 'B-Tanggal Putusan', 'B-Tingkat Kasus', 'B-Tuntutan Hukuman',
|
117 |
+
'I-Jenis Amar', 'I-Jenis Dakwaan', 'I-Jenis Perkara', 'I-Melanggar UU (Dakwaan)',
|
118 |
+
'I-Melanggar UU (Pertimbangan Hukum)', 'I-Melanggar UU (Tuntutan)', 'I-Nama Hakim Anggota', 'I-Nama Hakim Ketua',
|
119 |
+
'I-Nama Jaksa', 'I-Nama Panitera', 'I-Nama Pengacara', 'I-Nama Pengadilan',
|
120 |
+
'I-Nama Saksi', 'I-Nama Terdakwa', 'I-Nomor Putusan', 'I-Putusan Hukuman',
|
121 |
+
'I-Tanggal Kejadian', 'I-Tanggal Putusan', 'I-Tingkat Kasus', 'I-Tuntutan Hukuman']
|
122 |
+
|
123 |
+
if self.config.schema == "source":
|
124 |
+
features = datasets.Features({
|
125 |
+
"id": datasets.Value("string"),
|
126 |
+
"owner": datasets.Value("string"),
|
127 |
+
"lawyer": datasets.ClassLabel(names=[False, True]),
|
128 |
+
"verdict": datasets.ClassLabel(names=["guilty", "bebas", "lepas"]),
|
129 |
+
"indictment": datasets.ClassLabel(names=["NA", "tunggal", "subsider", "komul", "alternatif", "kombinasi", "gabungan"]),
|
130 |
+
"text-tags": datasets.Sequence(datasets.ClassLabel(names=NAMED_ENTITIES)),
|
131 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
132 |
+
})
|
133 |
+
elif self.config.schema == "seacrowd_seq_label":
|
134 |
+
features = schemas.seq_label.features(NAMED_ENTITIES)
|
135 |
+
return datasets.DatasetInfo(
|
136 |
+
description=_DESCRIPTION,
|
137 |
+
features=features,
|
138 |
+
homepage=_HOMEPAGE,
|
139 |
+
license=_LICENSE,
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
144 |
+
"""Returns SplitGenerators."""
|
145 |
+
urls = _URLS[_DATASETNAME]
|
146 |
+
test_path = dl_manager.download_and_extract(urls['test_idx'])
|
147 |
+
train_path = dl_manager.download_and_extract(urls['train_idx'])
|
148 |
+
valid_path = dl_manager.download_and_extract(urls['valid_idx'])
|
149 |
+
data_path = dl_manager.download_and_extract(urls['full_data'])
|
150 |
+
|
151 |
+
return [
|
152 |
+
datasets.SplitGenerator(
|
153 |
+
name=datasets.Split.TRAIN,
|
154 |
+
gen_kwargs={
|
155 |
+
"filepath": data_path,
|
156 |
+
"idx_path": train_path,
|
157 |
+
"split": "train",
|
158 |
+
},
|
159 |
+
),
|
160 |
+
datasets.SplitGenerator(
|
161 |
+
name=datasets.Split.TEST,
|
162 |
+
gen_kwargs={
|
163 |
+
"filepath": data_path,
|
164 |
+
"idx_path": test_path,
|
165 |
+
"split": "test",
|
166 |
+
},
|
167 |
+
),
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=datasets.Split.VALIDATION,
|
170 |
+
gen_kwargs={
|
171 |
+
"filepath": data_path,
|
172 |
+
"idx_path": valid_path,
|
173 |
+
"split": "validation",
|
174 |
+
},
|
175 |
+
),
|
176 |
+
]
|
177 |
+
|
178 |
+
def _generate_examples(self, filepath: Path, idx_path: Path, split: str) -> Tuple[int, Dict]:
|
179 |
+
"""Yields examples as (key, example) tuples."""
|
180 |
+
split_idxs = []
|
181 |
+
with open(idx_path, 'r', encoding="utf-8") as indexes:
|
182 |
+
for index in indexes.readlines():
|
183 |
+
split_idxs.append(int(index))
|
184 |
+
with open(filepath, 'r', encoding="utf-8") as file:
|
185 |
+
contents = json.load(file)
|
186 |
+
counter = 0
|
187 |
+
for content in contents:
|
188 |
+
if int(content['id']) in split_idxs:
|
189 |
+
if self.config.schema == "source":
|
190 |
+
if content['indictment'] not in ["NA", "tunggal", "subsider", "komul", "alternatif", "kombinasi", "gabungan"]:
|
191 |
+
content['indictment'] = "NA"
|
192 |
+
yield(
|
193 |
+
counter,
|
194 |
+
{
|
195 |
+
"id" : content['id'],
|
196 |
+
"owner" : content['owner'],
|
197 |
+
"lawyer" : content['lawyer'],
|
198 |
+
"verdict" : content['verdict'],
|
199 |
+
"indictment": content['indictment'],
|
200 |
+
"text-tags" : content['text-tags'],
|
201 |
+
"text" : content['text'],
|
202 |
+
}
|
203 |
+
)
|
204 |
+
counter += 1
|
205 |
+
elif self.config.schema == "seacrowd_seq_label":
|
206 |
+
yield(
|
207 |
+
counter,
|
208 |
+
{
|
209 |
+
"id": content['id'],
|
210 |
+
"tokens": content['text'],
|
211 |
+
"labels": content['text-tags'],
|
212 |
+
}
|
213 |
+
)
|
214 |
+
counter += 1
|