|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{guntara-etal-2020-benchmarking, |
|
title = "Benchmarking Multidomain {E}nglish-{I}ndonesian Machine Translation", |
|
author = "Guntara, Tri Wahyu and |
|
Aji, Alham Fikri and |
|
Prasojo, Radityo Eko", |
|
booktitle = "Proceedings of the 13th Workshop on Building and Using Comparable Corpora", |
|
month = may, |
|
year = "2020", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2020.bucc-1.6", |
|
pages = "35--43", |
|
language = "English", |
|
ISBN = "979-10-95546-42-9", |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indo_general_mt_en_id" |
|
_DESCRIPTION = """\ |
|
"In the context of Machine Translation (MT) from-and-to English, Bahasa Indonesia has been considered a low-resource language, |
|
and therefore applying Neural Machine Translation (NMT) which typically requires large training dataset proves to be problematic. |
|
In this paper, we show otherwise by collecting large, publicly-available datasets from the Web, which we split into several domains: news, religion, general, and |
|
conversation,to train and benchmark some variants of transformer-based NMT models across the domains. |
|
We show using BLEU that our models perform well across them , outperform the baseline Statistical Machine Translation (SMT) models, |
|
and perform comparably with Google Translate. Our datasets (with the standard split for training, validation, and testing), code, and models are available on https://github.com/gunnxx/indonesian-mt-data." |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/gunnxx/indonesian-mt-data" |
|
|
|
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/gunnxx/indonesian-mt-data/archive/refs/heads/master.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoGeneralMTEnId(datasets.GeneratorBasedBuilder): |
|
"""Indonesian General Domain MT En-Id is a machine translation dataset containing English-Indonesian parallel sentences collected from the general manuscripts.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="indo_general_mt_en_id_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="Indonesian General Domain MT En-Id source schema", |
|
schema="source", |
|
subset_id="indo_general_mt_en_id", |
|
), |
|
SEACrowdConfig( |
|
name="indo_general_mt_en_id_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="Indonesian General Domain MT Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="indo_general_mt_en_id", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indo_general_mt_en_id_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"src": datasets.Value("string"), |
|
"tgt": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = Path(dl_manager.download_and_extract(urls)) / "indonesian-mt-data-master" / "general" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": { |
|
"en": [data_dir / "train.en.0", data_dir / "train.en.1", data_dir / "train.en.2", data_dir / "train.en.3"], |
|
"id": [data_dir / "train.id.0", data_dir / "train.id.1", data_dir / "train.id.2", data_dir / "train.id.3"], |
|
} |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": { |
|
"en": [data_dir / "test.en"], |
|
"id": [data_dir / "test.id"], |
|
} |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": { |
|
"en": [data_dir / "valid.en"], |
|
"id": [data_dir / "valid.id"], |
|
} |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: dict): |
|
|
|
data_en = None |
|
for file in filepath["en"]: |
|
if data_en is None: |
|
data_en = open(file, "r").readlines() |
|
else: |
|
data_en += open(file, "r").readlines() |
|
|
|
data_id = None |
|
for file in filepath["id"]: |
|
if data_id is None: |
|
data_id = open(file, "r").readlines() |
|
else: |
|
data_id += open(file, "r").readlines() |
|
|
|
data_en = list(map(str.strip, data_en)) |
|
data_id = list(map(str.strip, data_id)) |
|
|
|
if self.config.schema == "source": |
|
for id, (src, tgt) in enumerate(zip(data_en, data_id)): |
|
row = { |
|
"id": str(id), |
|
"src": src, |
|
"tgt": tgt, |
|
} |
|
yield id, row |
|
elif self.config.schema == "seacrowd_t2t": |
|
for id, (src, tgt) in enumerate(zip(data_en, data_id)): |
|
row = { |
|
"id": str(id), |
|
"text_1": src, |
|
"text_2": tgt, |
|
"text_1_name": "eng", |
|
"text_2_name": "ind", |
|
} |
|
yield id, row |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|