imdb_jv / imdb_jv.py
holylovenia's picture
Upload imdb_jv.py with huggingface_hub
2f3264a verified
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import pandas as pd
_CITATION = """\
@inproceedings{wongso2021causal,
title={Causal and masked language modeling of Javanese language using transformer-based architectures},
author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin},
booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)},
pages={1--7},
year={2021},
organization={IEEE}
}
"""
_DATASETNAME = "imdb_jv"
_DESCRIPTION = """\
Javanese Imdb Movie Reviews Dataset is a Javanese version of the IMDb Movie Reviews dataset by translating the original English dataset to Javanese.
"""
_HOMEPAGE = "https://huggingface.co/datasets/w11wo/imdb-javanese"
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: "https://huggingface.co/datasets/w11wo/imdb-javanese/resolve/main/javanese_imdb_csv.zip",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IMDbJv(datasets.GeneratorBasedBuilder):
"""Javanese Imdb Movie Reviews Dataset is a Javanese version of the IMDb Movie Reviews dataset by translating the original English dataset to Javanese."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="imdb_jv_source",
version=datasets.Version(_SOURCE_VERSION),
description="imdb_jv source schema",
schema="source",
subset_id="imdb_jv",
),
SEACrowdConfig(
name="imdb_jv_seacrowd_text",
version=datasets.Version(_SEACROWD_VERSION),
description="imdb_jv Nusantara schema",
schema="seacrowd_text",
subset_id="imdb_jv",
),
]
DEFAULT_CONFIG_NAME = "imdb_jv_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value("string")
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(['1', '0', '-1'])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME]))
data_files = {
"train": "javanese_imdb_train.csv",
"unsupervised": "javanese_imdb_unsup.csv",
"test": "javanese_imdb_test.csv",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, data_files["train"]),
"split": "train",
},
),
datasets.SplitGenerator(
name="unsupervised",
gen_kwargs={
"filepath": os.path.join(data_dir, data_files["unsupervised"]),
"split": "unsupervised",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, data_files["test"]),
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
if self.config.schema == "source":
data = pd.read_csv(filepath)
length = len(data['label'])
for id in range(length):
ex = {
"id": str(id),
"text": data['text'][id],
"label": data['label'][id],
}
yield id, ex
elif self.config.schema == "seacrowd_text":
data = pd.read_csv(filepath)
length = len(data['label'])
for id in range(length):
ex = {
"id": str(id),
"text": data['text'][id],
"label": data['label'][id],
}
yield id, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")