|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from seacrowd.utils import schemas |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@inproceedings{wongso2021causal, |
|
title={Causal and masked language modeling of Javanese language using transformer-based architectures}, |
|
author={Wongso, Wilson and Setiawan, David Samuel and Suhartono, Derwin}, |
|
booktitle={2021 International Conference on Advanced Computer Science and Information Systems (ICACSIS)}, |
|
pages={1--7}, |
|
year={2021}, |
|
organization={IEEE} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "imdb_jv" |
|
|
|
_DESCRIPTION = """\ |
|
Javanese Imdb Movie Reviews Dataset is a Javanese version of the IMDb Movie Reviews dataset by translating the original English dataset to Javanese. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/w11wo/imdb-javanese" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://huggingface.co/datasets/w11wo/imdb-javanese/resolve/main/javanese_imdb_csv.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
class IMDbJv(datasets.GeneratorBasedBuilder): |
|
"""Javanese Imdb Movie Reviews Dataset is a Javanese version of the IMDb Movie Reviews dataset by translating the original English dataset to Javanese.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="imdb_jv_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="imdb_jv source schema", |
|
schema="source", |
|
subset_id="imdb_jv", |
|
), |
|
SEACrowdConfig( |
|
name="imdb_jv_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="imdb_jv Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="imdb_jv", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "imdb_jv_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string") |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(['1', '0', '-1']) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME])) |
|
|
|
data_files = { |
|
"train": "javanese_imdb_train.csv", |
|
"unsupervised": "javanese_imdb_unsup.csv", |
|
"test": "javanese_imdb_test.csv", |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, data_files["train"]), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="unsupervised", |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, data_files["unsupervised"]), |
|
"split": "unsupervised", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, data_files["test"]), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
data = pd.read_csv(filepath) |
|
length = len(data['label']) |
|
for id in range(length): |
|
ex = { |
|
"id": str(id), |
|
"text": data['text'][id], |
|
"label": data['label'][id], |
|
} |
|
yield id, ex |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
data = pd.read_csv(filepath) |
|
length = len(data['label']) |
|
for id in range(length): |
|
ex = { |
|
"id": str(id), |
|
"text": data['text'][id], |
|
"label": data['label'][id], |
|
} |
|
yield id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|