|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{Tuhenay2021, |
|
title = {Perbandingan Klasifikasi Bahasa Menggunakan Metode Naïve Bayes Classifier (NBC) Dan Support Vector Machine (SVM)}, |
|
volume = {4}, |
|
ISSN = {2656-1948}, |
|
url = {http://dx.doi.org/10.33387/jiko.v4i2.2958}, |
|
DOI = {10.33387/jiko.v4i2.2958}, |
|
number = {2}, |
|
journal = {JIKO (Jurnal Informatika dan Komputer)}, |
|
publisher = {LPPM Universitas Khairun}, |
|
author = {Tuhenay, Deglorians}, |
|
year = {2021}, |
|
month = aug, |
|
pages = {105-111} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "identifikasi_bahasa" |
|
|
|
_DESCRIPTION = """\ |
|
The identifikasi-bahasa dataset includes text samples in Indonesian, Ambonese, and Javanese. \ |
|
Each entry is comprised of cleantext, representing the sentence content, and a label identifying the language. \ |
|
The manual input process involved grouping the data by language categories, \ |
|
with labels for language identification and cleantext representing sentence content. The dataset, excluding punctuation and numbers, \ |
|
consists of a minimum of 3,000 Ambonese, 10,000 Javanese, \ |
|
and 3,500 Indonesian language entries, meeting the research's minimum standard for effective language identification. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/joanitolopo/identifikasi-bahasa" |
|
_LANGUAGES = ["ind", "jav", "abs"] |
|
|
|
_LICENSE = Licenses.APACHE_2_0.value |
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/joanitolopo/identifikasi-bahasa/raw/main/DataKlasifikasi.xlsx", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
_TAGS = ["Ambon", "Indo", "Jawa"] |
|
|
|
|
|
class IdentifikasiBahasaDataset(datasets.GeneratorBasedBuilder): |
|
"""The "identifikasi-bahasa" dataset, manually grouped by language, \ |
|
contains labeled Indonesian, Ambonese, and Javanese text entries, excluding \ |
|
punctuation and numbers, with a minimum of 3,000 Ambonese, 10,000 Javanese, \ |
|
and 3,500 Indonesian entries for effective language identification.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"cleanText": datasets.Value("string"), "label": datasets.Value("string")}) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(_TAGS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
dataset = pd.read_excel(filepath) |
|
|
|
if self.config.schema == "source": |
|
for i, row in dataset.iterrows(): |
|
yield i, {"cleanText": row["cleanText"], "label": row["label"]} |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for i, row in dataset.iterrows(): |
|
yield i, {"id": i, "text": row["cleanText"], "label": row["label"]} |
|
|