holylovenia
commited on
Commit
•
69e4b62
1
Parent(s):
3b93899
Upload id_sts.py with huggingface_hub
Browse files
id_sts.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from nusacrowd.utils import schemas
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
"""
|
13 |
+
|
14 |
+
_DATASETNAME = "id_sts"
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
SemEval is a series of international natural language processing (NLP) research workshops whose mission is
|
18 |
+
to advance the current state of the art in semantic analysis and to help create high-quality annotated datasets in a
|
19 |
+
range of increasingly challenging problems in natural language semantics. This is a translated version of SemEval Dataset
|
20 |
+
from 2012-2016 for Semantic Textual Similarity Task to Indonesian language.
|
21 |
+
"""
|
22 |
+
|
23 |
+
_HOMEPAGE = "https://github.com/ahmadizzan/sts-indo"
|
24 |
+
|
25 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
26 |
+
_LOCAL = False
|
27 |
+
|
28 |
+
_LICENSE = "Unknown"
|
29 |
+
|
30 |
+
_URLS = {
|
31 |
+
_DATASETNAME: {
|
32 |
+
"train": "https://raw.githubusercontent.com/ahmadizzan/sts-indo/master/data/final-data/train.tsv",
|
33 |
+
"test": "https://raw.githubusercontent.com/ahmadizzan/sts-indo/master/data/final-data/test.tsv",
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
|
38 |
+
|
39 |
+
_SOURCE_VERSION = "1.0.0"
|
40 |
+
|
41 |
+
_NUSANTARA_VERSION = "1.0.0"
|
42 |
+
|
43 |
+
|
44 |
+
class IdSts(datasets.GeneratorBasedBuilder):
|
45 |
+
"""id_sts, translated version of SemEval Dataset
|
46 |
+
from 2012-2016 for Semantic Textual Similarity Task to Indonesian language"""
|
47 |
+
|
48 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
49 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
50 |
+
|
51 |
+
BUILDER_CONFIGS = [
|
52 |
+
NusantaraConfig(
|
53 |
+
name="id_sts_source",
|
54 |
+
version=SOURCE_VERSION,
|
55 |
+
description="ID_STS source schema",
|
56 |
+
schema="source",
|
57 |
+
subset_id="id_sts",
|
58 |
+
),
|
59 |
+
NusantaraConfig(
|
60 |
+
name="id_sts_nusantara_pairs_score",
|
61 |
+
version=NUSANTARA_VERSION,
|
62 |
+
description="ID_STS Nusantara schema",
|
63 |
+
schema="nusantara_pairs_score",
|
64 |
+
subset_id="id_sts",
|
65 |
+
),
|
66 |
+
]
|
67 |
+
|
68 |
+
DEFAULT_CONFIG_NAME = "id_sts_source"
|
69 |
+
|
70 |
+
def _info(self) -> datasets.DatasetInfo:
|
71 |
+
|
72 |
+
if self.config.schema == "source":
|
73 |
+
features = datasets.Features(
|
74 |
+
{
|
75 |
+
"text_1": datasets.Value("string"),
|
76 |
+
"text_2": datasets.Value("string"),
|
77 |
+
"label": datasets.Value("float64"),
|
78 |
+
}
|
79 |
+
)
|
80 |
+
elif self.config.schema == "nusantara_pairs_score":
|
81 |
+
features = schemas.pairs_features_score()
|
82 |
+
|
83 |
+
return datasets.DatasetInfo(
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
features=features,
|
86 |
+
homepage=_HOMEPAGE,
|
87 |
+
license=_LICENSE,
|
88 |
+
citation=_CITATION,
|
89 |
+
)
|
90 |
+
|
91 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
92 |
+
urls = _URLS[_DATASETNAME]
|
93 |
+
train_data_path = Path(dl_manager.download(urls["train"]))
|
94 |
+
test_data_path = Path(dl_manager.download(urls["test"]))
|
95 |
+
|
96 |
+
return [
|
97 |
+
datasets.SplitGenerator(
|
98 |
+
name=datasets.Split.TRAIN,
|
99 |
+
gen_kwargs={"filepath": train_data_path, "split": "train"},
|
100 |
+
),
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name=datasets.Split.TEST,
|
103 |
+
gen_kwargs={"filepath": test_data_path, "split": "test"},
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
108 |
+
"""Yields examples as (key, example) tuples."""
|
109 |
+
# Dataset does not have id, using row index as id
|
110 |
+
df = pd.read_csv(filepath, delimiter="\t").reset_index()
|
111 |
+
df.columns = ["id", "score", "original_text_1", "original_text_2", "source", "text_1", "text_2"]
|
112 |
+
|
113 |
+
if self.config.schema == "source":
|
114 |
+
for row in df.itertuples():
|
115 |
+
ex = {"text_1": row.text_1, "text_2": row.text_2, "label": row.score}
|
116 |
+
yield row.id, ex
|
117 |
+
|
118 |
+
elif self.config.schema == "nusantara_pairs_score":
|
119 |
+
for row in df.itertuples():
|
120 |
+
ex = {"id": str(row.id), "text_1": row.text_1, "text_2": row.text_2, "label": row.score}
|
121 |
+
yield row.id, ex
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|