|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@misc{ridife2019idsa, |
|
author = {Fe, Ridi}, |
|
title = {Indonesia Sentiment Analysis Dataset}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\\url{https://github.com/ridife/dataset-idsa}} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "id_sentiment_analysis" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset consists of 10806 labeled Indonesian tweets with their corresponding sentiment analysis: positive, negative, and neutral, up to 2019. |
|
This dataset was developed in Cloud Experience Research Group, Gadjah Mada University. |
|
There is no further explanation of the dataset. Contributor found this dataset after skimming through "Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy" (Lin CH and Nuha U, 2023). |
|
""" |
|
|
|
_HOMEPAGE = "https://ridi.staff.ugm.ac.id/2019/03/06/indonesia-sentiment-analysis-dataset/" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/ridife/dataset-idsa/master/Indonesian%20Sentiment%20Twitter%20Dataset%20Labeled.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdSentimentAnalysis(datasets.GeneratorBasedBuilder): |
|
"""This dataset consists of 10806 labeled Indonesian tweets with their corresponding sentiment analysis: positive, negative, and neutral, up to 2019.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
seacrowd_schema_config: List[SEACrowdConfig] = [] |
|
|
|
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS: |
|
|
|
seacrowd_schema_config.append( |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{seacrowd_schema}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} {seacrowd_schema} schema", |
|
schema=f"{seacrowd_schema}", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
) |
|
|
|
BUILDER_CONFIGS.extend(seacrowd_schema_config) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sentimen": datasets.Value("int32"), |
|
"tweet": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SENTIMENT_ANALYSIS]).lower()}": |
|
features = schemas.text_features(label_names=[1, -1, 0]) |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
path = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"path": path, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
idx = 0 |
|
|
|
if self.config.schema == "source": |
|
df = pd.read_csv(path, delimiter="\t") |
|
|
|
df.rename(columns={"Tweet": "tweet"}, inplace=True) |
|
|
|
for _, row in df.iterrows(): |
|
yield idx, row.to_dict() |
|
idx += 1 |
|
|
|
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SENTIMENT_ANALYSIS]).lower()}": |
|
df = pd.read_csv(path, delimiter="\t") |
|
|
|
df["id"] = df.index |
|
df.rename(columns={"sentimen": "label"}, inplace=True) |
|
df.rename(columns={"Tweet": "text"}, inplace=True) |
|
|
|
for _, row in df.iterrows(): |
|
yield idx, row.to_dict() |
|
idx += 1 |
|
|
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|