Datasets:

Languages:
Indonesian
ArXiv:
id_qqp / id_qqp.py
holylovenia's picture
Upload id_qqp.py with huggingface_hub
28d489b verified
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import json
_CITATION = """\
@misc{quoraFirstQuora,
author = {},
title = {{F}irst {Q}uora {D}ataset {R}elease: {Q}uestion {P}airs --- quoradata.quora.com},
howpublished = {https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs},
year = 2017,
note = {Online},
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "id_qqp"
_DESCRIPTION = """\
Quora Question Pairs (QQP) dataset consists of over 400,000 question pairs,
and each question pair is annotated with a binary value indicating whether
the two questions are paraphrase of each other. This dataset is translated
version of QQP to Indonesian Language.
"""
_HOMEPAGE = "https://github.com/louisowen6/quora_paraphrasing_id"
_LICENSE = "Apache License, Version 2.0"
_URLS = {
_DATASETNAME: [
"https://github.com/louisowen6/quora_paraphrasing_id/raw/main/ID_Quora_Paraphrasing_train.json",
"https://github.com/louisowen6/quora_paraphrasing_id/raw/main/ID_Quora_Paraphrasing_val.json",
]
}
_SUPPORTED_TASKS = [Tasks.PARAPHRASING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IdQuoraQuestionPairs(datasets.GeneratorBasedBuilder):
"""
Quora Question Pairs (QQP) dataset consists of over 400,000 question pairs,
and each question pair is annotated with a binary value indicating whether
the two questions are paraphrase of each other. This dataset is translated
version of QQP to Indonesian Language.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="id_qqp_source",
version=SOURCE_VERSION,
description="ID QQP source schema",
schema="source",
subset_id="id_qqp",
),
SEACrowdConfig(
name="id_qqp_seacrowd_t2t",
version=SEACROWD_VERSION,
description="ID QQP Nusantara schema",
schema="seacrowd_t2t",
subset_id="id_qqp",
),
]
DEFAULT_CONFIG_NAME = "id_qqp_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"question_1": datasets.Value("string"),
"question_2": datasets.Value("string")
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir[0],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir[1],
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
with open(filepath, "r") as f:
lines = f.readlines()
if self.config.schema == "source":
for i, line in enumerate(lines):
line = json.loads(line.strip())
sample = {
"id": str(i),
"question_1": line["question_1"],
"question_2": line["question_2"]
}
yield i, sample
elif self.config.schema == "seacrowd_t2t":
for i, line in enumerate(lines):
line = json.loads(line.strip())
sample = {
"id": str(i),
"text_1": line["question_1"],
"text_2": line["question_2"],
"text_1_name": "question_1",
"text_2_name": "question_2"
}
yield i, sample