|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
from seacrowd.utils import schemas |
|
import json |
|
|
|
_CITATION = """\ |
|
@misc{quoraFirstQuora, |
|
author = {}, |
|
title = {{F}irst {Q}uora {D}ataset {R}elease: {Q}uestion {P}airs --- quoradata.quora.com}, |
|
howpublished = {https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs}, |
|
year = 2017, |
|
note = {Online}, |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "id_qqp" |
|
|
|
_DESCRIPTION = """\ |
|
Quora Question Pairs (QQP) dataset consists of over 400,000 question pairs, |
|
and each question pair is annotated with a binary value indicating whether |
|
the two questions are paraphrase of each other. This dataset is translated |
|
version of QQP to Indonesian Language. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/louisowen6/quora_paraphrasing_id" |
|
|
|
_LICENSE = "Apache License, Version 2.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: [ |
|
"https://github.com/louisowen6/quora_paraphrasing_id/raw/main/ID_Quora_Paraphrasing_train.json", |
|
"https://github.com/louisowen6/quora_paraphrasing_id/raw/main/ID_Quora_Paraphrasing_val.json", |
|
] |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.PARAPHRASING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdQuoraQuestionPairs(datasets.GeneratorBasedBuilder): |
|
""" |
|
Quora Question Pairs (QQP) dataset consists of over 400,000 question pairs, |
|
and each question pair is annotated with a binary value indicating whether |
|
the two questions are paraphrase of each other. This dataset is translated |
|
version of QQP to Indonesian Language. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_qqp_source", |
|
version=SOURCE_VERSION, |
|
description="ID QQP source schema", |
|
schema="source", |
|
subset_id="id_qqp", |
|
), |
|
SEACrowdConfig( |
|
name="id_qqp_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="ID QQP Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="id_qqp", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_qqp_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"question_1": datasets.Value("string"), |
|
"question_2": datasets.Value("string") |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir[0], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir[1], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
|
|
with open(filepath, "r") as f: |
|
lines = f.readlines() |
|
|
|
if self.config.schema == "source": |
|
|
|
for i, line in enumerate(lines): |
|
line = json.loads(line.strip()) |
|
|
|
sample = { |
|
"id": str(i), |
|
"question_1": line["question_1"], |
|
"question_2": line["question_2"] |
|
} |
|
yield i, sample |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
|
|
for i, line in enumerate(lines): |
|
line = json.loads(line.strip()) |
|
|
|
sample = { |
|
"id": str(i), |
|
"text_1": line["question_1"], |
|
"text_2": line["question_2"], |
|
"text_1_name": "question_1", |
|
"text_2_name": "question_2" |
|
} |
|
yield i, sample |
|
|