|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
try: |
|
from typing import Literal, TypedDict |
|
except ImportError: |
|
from typing_extensions import Literal, TypedDict |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{id_panl_bppt, |
|
author = {PAN Localization - BPPT}, |
|
title = {Parallel Text Corpora, English Indonesian}, |
|
year = {2009}, |
|
url = {http://digilib.bppt.go.id/sampul/p92-budiono.pdf}, |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "id_panl_bppt" |
|
_DESCRIPTION = """\ |
|
Parallel Text Corpora for Multi-Domain Translation System created by BPPT (Indonesian Agency for the Assessment and |
|
Application of Technology) for PAN Localization Project (A Regional Initiative to Develop Local Language Computing |
|
Capacity in Asia). The dataset contains about 24K sentences in English and Bahasa Indonesia from 4 different topics |
|
(Economy, International Affairs, Science & Technology, and Sports). |
|
""" |
|
_HOMEPAGE = "http://digilib.bppt.go.id/sampul/p92-budiono.pdf" |
|
_LICENSE = "" |
|
_URLS = { |
|
_DATASETNAME: "https://github.com/cahya-wirawan/indonesian-language-models/raw/master/data/BPPTIndToEngCorpusHalfM.zip", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdPanlBppt(datasets.GeneratorBasedBuilder): |
|
"""\ |
|
Dataset contains about ~24K sentences in English and Bahasa Indonesia from 4 different topics (Economy, |
|
International Affairs, Science & Technology, and Sports) |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
class Topic(TypedDict): |
|
name: Literal["Economy", "International", "Science", "Sport"] |
|
|
|
words: Literal["150K", "100K"] |
|
|
|
TOPICS: List[Topic] = [{"name": "Economy", "words": "150K"}, {"name": "International", "words": "150K"}, {"name": "Science", "words": "100K"}, {"name": "Sport", "words": "100K"}] |
|
|
|
SOURCE_LANGUAGE = "en" |
|
TARGET_LANGUAGE = "id" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_panl_bppt_source", |
|
version=SOURCE_VERSION, |
|
description="PANL BPPT source schema", |
|
schema="source", |
|
subset_id="id_panl_bppt", |
|
), |
|
SEACrowdConfig( |
|
name="id_panl_bppt_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description="PANL BPPT Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="id_panl_bppt", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_panl_bppt_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"translation": datasets.features.Translation(languages=[self.SOURCE_LANGUAGE, self.TARGET_LANGUAGE]), |
|
"topic": datasets.features.ClassLabel(names=list(map(lambda topic: topic["name"], self.TOPICS))), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"dir": os.path.join(data_dir, "plain"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, dir: str, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
id = 0 |
|
for topic in self.TOPICS: |
|
src_path = f"PANL-BPPT-{topic['name'][:3].upper()}-{self.SOURCE_LANGUAGE.upper()}-{topic['words']}w.txt" |
|
tgt_path = f"PANL-BPPT-{topic['name'][:3].upper()}-{self.TARGET_LANGUAGE.upper()}-{topic['words']}w.txt" |
|
with open(os.path.join(dir, src_path), encoding="utf-8") as f1, open(os.path.join(dir, tgt_path), encoding="utf-8") as f2: |
|
src = f1.read().split("\n")[:-1] |
|
tgt = f2.read().split("\n")[:-1] |
|
for s, t in zip(src, tgt): |
|
if self.config.schema == "source": |
|
yield id, { |
|
"id": str(id), |
|
"translation": {self.SOURCE_LANGUAGE: s, self.TARGET_LANGUAGE: t}, |
|
"topic": topic["name"], |
|
} |
|
elif self.config.schema == "seacrowd_t2t": |
|
|
|
yield id, { |
|
"id": str(id), |
|
"text_1": s, |
|
"text_2": t, |
|
"text_1_name": self.SOURCE_LANGUAGE, |
|
"text_2_name": self.TARGET_LANGUAGE, |
|
} |
|
|
|
id += 1 |
|
|