holylovenia commited on
Commit
cca2724
1 Parent(s): b609410

Upload hoasa.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. hoasa.py +170 -0
hoasa.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import Dict, List, Tuple
3
+
4
+ import datasets
5
+ import pandas as pd
6
+
7
+ from nusacrowd.utils import schemas
8
+ from nusacrowd.utils.configs import NusantaraConfig
9
+ from nusacrowd.utils.constants import Tasks
10
+
11
+ _CITATION = """
12
+ @inproceedings{azhar2019multi,
13
+ title={Multi-label Aspect Categorization with Convolutional Neural Networks and Extreme Gradient Boosting},
14
+ author={A. N. Azhar, M. L. Khodra, and A. P. Sutiono}
15
+ booktitle={Proceedings of the 2019 International Conference on Electrical Engineering and Informatics (ICEEI)},
16
+ pages={35--40},
17
+ year={2019}
18
+ }
19
+ """
20
+
21
+
22
+ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
23
+ _LOCAL = False
24
+
25
+ _DATASETNAME = "hoasa"
26
+
27
+ _DESCRIPTION = """
28
+ HoASA: An aspect-based sentiment analysis dataset consisting of hotel reviews collected from the hotel aggregator platform, AiryRooms.
29
+ The dataset covers ten different aspects of hotel quality. Similar to the CASA dataset, each review is labeled with a single sentiment label for each aspect.
30
+ There are four possible sentiment classes for each sentiment label:
31
+ positive, negative, neutral, and positive-negative.
32
+ The positivenegative label is given to a review that contains multiple sentiments of the same aspect but for different objects (e.g., cleanliness of bed and toilet).
33
+ """
34
+
35
+ _HOMEPAGE = "https://github.com/IndoNLP/indonlu"
36
+
37
+ _LICENSE = "CC-BY-SA 4.0"
38
+
39
+ _URLS = {
40
+ "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/train_preprocess.csv",
41
+ "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/valid_preprocess.csv",
42
+ "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/hoasa_absa-airy/test_preprocess.csv",
43
+ }
44
+
45
+ _SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
46
+
47
+ _SOURCE_VERSION = "1.0.0"
48
+
49
+ _NUSANTARA_VERSION = "1.0.0"
50
+
51
+
52
+ class HoASA(datasets.GeneratorBasedBuilder):
53
+ """HoASA is an aspect based sentiment analysis dataset"""
54
+
55
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
56
+ NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
57
+
58
+ BUILDER_CONFIGS = [
59
+ NusantaraConfig(
60
+ name="hoasa_source",
61
+ version=SOURCE_VERSION,
62
+ description="HoASA source schema",
63
+ schema="source",
64
+ subset_id="hoasa",
65
+ ),
66
+ NusantaraConfig(
67
+ name="hoasa_nusantara_text_multi",
68
+ version=NUSANTARA_VERSION,
69
+ description="HoASA Nusantara schema",
70
+ schema="nusantara_text_multi",
71
+ subset_id="hoasa",
72
+ ),
73
+ ]
74
+
75
+ DEFAULT_CONFIG_NAME = "hoasa_source"
76
+
77
+ def _info(self) -> datasets.DatasetInfo:
78
+ if self.config.schema == "source":
79
+ features = datasets.Features(
80
+ {
81
+ "index": datasets.Value("int64"),
82
+ "review": datasets.Value("string"),
83
+ "ac": datasets.Value("string"),
84
+ "air_panas": datasets.Value("string"),
85
+ "bau": datasets.Value("string"),
86
+ "general": datasets.Value("string"),
87
+ "kebersihan": datasets.Value("string"),
88
+ "linen": datasets.Value("string"),
89
+ "service": datasets.Value("string"),
90
+ "sunrise_meal": datasets.Value("string"),
91
+ "tv": datasets.Value("string"),
92
+ "wifi": datasets.Value("string"),
93
+ }
94
+ )
95
+
96
+ elif self.config.schema == "nusantara_text_multi":
97
+ features = schemas.text_multi_features(["pos", "neut", "neg", "neg_pos"])
98
+
99
+ return datasets.DatasetInfo(
100
+ description=_DESCRIPTION,
101
+ features=features,
102
+ homepage=_HOMEPAGE,
103
+ license=_LICENSE,
104
+ citation=_CITATION,
105
+ )
106
+
107
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
108
+ train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"]))
109
+ validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
110
+ test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"]))
111
+
112
+ data_dir = {
113
+ "train": train_csv_path,
114
+ "validation": validation_csv_path,
115
+ "test": test_csv_path,
116
+ }
117
+
118
+ return [
119
+ datasets.SplitGenerator(
120
+ name=datasets.Split.TRAIN,
121
+ gen_kwargs={
122
+ "filepath": data_dir["train"],
123
+ "split": "train",
124
+ },
125
+ ),
126
+ datasets.SplitGenerator(
127
+ name=datasets.Split.TEST,
128
+ gen_kwargs={
129
+ "filepath": data_dir["test"],
130
+ "split": "test",
131
+ },
132
+ ),
133
+ datasets.SplitGenerator(
134
+ name=datasets.Split.VALIDATION,
135
+ gen_kwargs={
136
+ "filepath": data_dir["validation"],
137
+ "split": "dev",
138
+ },
139
+ ),
140
+ ]
141
+
142
+ def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
143
+ """Yields examples as (key, example) tuples."""
144
+ df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
145
+ if self.config.schema == "source":
146
+ for row in df.itertuples():
147
+ entry = {
148
+ "index": row.index,
149
+ "review": row.review,
150
+ "ac": row.ac,
151
+ "air_panas": row.air_panas,
152
+ "bau": row.bau,
153
+ "general": row.general,
154
+ "kebersihan": row.kebersihan,
155
+ "linen": row.linen,
156
+ "service": row.service,
157
+ "sunrise_meal": row.sunrise_meal,
158
+ "tv": row.tv,
159
+ "wifi": row.wifi,
160
+ }
161
+ yield row.index, entry
162
+
163
+ elif self.config.schema == "nusantara_text_multi":
164
+ for row in df.itertuples():
165
+ entry = {
166
+ "id": str(row.index),
167
+ "text": row.review,
168
+ "labels": [label for label in row[3:]],
169
+ }
170
+ yield row.index, entry