Datasets:

Languages:
Thai
ArXiv:
License:
gowajee / gowajee.py
holylovenia's picture
Upload gowajee.py with huggingface_hub
db11d4c verified
raw
history blame
7.42 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
Licenses, Tasks)
_CITATION = """
@techreport{gowajee,
title = {{Gowajee Corpus}},
author = {Ekapol Chuangsuwanich and Atiwong Suchato and Korrawe Karunratanakul and Burin Naowarat and Chompakorn CChaichot
and Penpicha Sangsa-nga and Thunyathon Anutarases and Nitchakran Chaipojjana and Yuatyong Chaichana},
year = {2020},
institution = {Chulalongkorn University, Faculty of Engineering, Computer Engineering Department},
month = {12},
Date-Added = {2023-07-30},
url = {https://github.com/ekapolc/gowajee_corpus}
note = {Version 0.9.3}
}
"""
_DATASETNAME = "gowajee"
_DESCRIPTION = """
The Gowajee corpus was collected in the Automatic Speech Recognition class offered at
Chulalongkorn University as a homework assignment. Each group was asked to come up with an
example smart home application.
"""
_HOMEPAGE = "https://github.com/ekapolc/gowajee_corpus"
_LANGUAGES = ["tha"]
_LICENSE = Licenses.MIT.value
_LOCAL = False
_URL = "https://drive.google.com/file/d/1soriRMMuZI5w5RZOjAnbpocBZxT6i1-l/view" # ~1.5GB
_SUPPORTED_TASKS = [Tasks.SPEECH_TO_TEXT_TRANSLATION]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # sptext
_SOURCE_VERSION = "0.9.3"
_SEACROWD_VERSION = "2024.06.20"
class GowajeeDataset(datasets.GeneratorBasedBuilder):
"""Automatic Speech Recognition dataset on smart home application where the wakeword is "Gowajee"."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=_SEACROWD_SCHEMA,
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16_000),
"transcription": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA:
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
# check if gdown is installed
try:
import gdown
except ImportError as err:
raise ImportError("Please install `gdown` to enable downloading data from google drive.") from err
# download data from gdrive
output_dir = Path.cwd() / "data" / "gowajee"
output_dir.mkdir(parents=True, exist_ok=True)
output_file = output_dir / "gowajee_v0-9-3.zip"
if not output_file.exists():
gdown.download(_URL, str(output_file), fuzzy=True)
else:
print(f"File already downloaded: {str(output_file)}")
# extract data
data_dir = Path(dl_manager.extract(output_file)) / "v0.9.2"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_dir": data_dir,
"split": "dev",
},
),
]
def _generate_examples(self, data_dir: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
text_file = data_dir / split / "text"
utt2spk_file = data_dir / split / "utt2spk"
wav_scp_file = data_dir / split / "wav.scp"
# load the data
with open(text_file, "r", encoding="utf-8") as f:
text_lines = f.readlines()
text_lines = [line.strip().split(" ", 1) for line in text_lines]
with open(utt2spk_file, "r", encoding="utf-8") as f:
utt2spk_lines = f.readlines()
utt2spk_lines = [line.strip().split(" ") for line in utt2spk_lines]
with open(wav_scp_file, "r", encoding="utf-8") as f:
wav_scp_lines = f.readlines()
wav_scp_lines = [line.strip().split(" ", 1) for line in wav_scp_lines]
assert len(text_lines) == len(utt2spk_lines) == len(wav_scp_lines), f"Length of text_lines: {len(text_lines)}, utt2spk_lines: {len(utt2spk_lines)}, wav_scp_lines: {len(wav_scp_lines)}"
text_df = pd.DataFrame(text_lines, columns=["utt_id", "text"])
utt2spk_df = pd.DataFrame(utt2spk_lines, columns=["utt_id", "speaker"])
wav_df = pd.DataFrame(wav_scp_lines, columns=["utt_id", "wav_path"])
merged_df = pd.merge(text_df, utt2spk_df, on="utt_id")
merged_df = pd.merge(merged_df, wav_df, on="utt_id")
for _, row in merged_df.iterrows():
wav_file = data_dir / row["wav_path"]
if self.config.schema == "source":
yield row["utt_id"], {
"audio": str(wav_file),
"transcription": row["text"],
"speaker_id": row["speaker"],
}
elif self.config.schema == _SEACROWD_SCHEMA:
yield row["utt_id"], {
"id": row["utt_id"],
"path": str(wav_file),
"audio": str(wav_file),
"text": row["text"],
"speaker_id": row["speaker"],
"metadata": None,
}