|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, |
|
Licenses, Tasks) |
|
|
|
_CITATION = """ |
|
@techreport{gowajee, |
|
title = {{Gowajee Corpus}}, |
|
author = {Ekapol Chuangsuwanich and Atiwong Suchato and Korrawe Karunratanakul and Burin Naowarat and Chompakorn CChaichot |
|
and Penpicha Sangsa-nga and Thunyathon Anutarases and Nitchakran Chaipojjana and Yuatyong Chaichana}, |
|
year = {2020}, |
|
institution = {Chulalongkorn University, Faculty of Engineering, Computer Engineering Department}, |
|
month = {12}, |
|
Date-Added = {2023-07-30}, |
|
url = {https://github.com/ekapolc/gowajee_corpus} |
|
note = {Version 0.9.3} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "gowajee" |
|
|
|
_DESCRIPTION = """ |
|
The Gowajee corpus was collected in the Automatic Speech Recognition class offered at |
|
Chulalongkorn University as a homework assignment. Each group was asked to come up with an |
|
example smart home application. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ekapolc/gowajee_corpus" |
|
|
|
_LANGUAGES = ["tha"] |
|
|
|
_LICENSE = Licenses.MIT.value |
|
|
|
_LOCAL = False |
|
|
|
_URL = "https://drive.google.com/file/d/1soriRMMuZI5w5RZOjAnbpocBZxT6i1-l/view" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SPEECH_TO_TEXT_TRANSLATION] |
|
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" |
|
|
|
_SOURCE_VERSION = "0.9.3" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class GowajeeDataset(datasets.GeneratorBasedBuilder): |
|
"""Automatic Speech Recognition dataset on smart home application where the wakeword is "Gowajee".""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=_SEACROWD_SCHEMA, |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"transcription": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
try: |
|
import gdown |
|
except ImportError as err: |
|
raise ImportError("Please install `gdown` to enable downloading data from google drive.") from err |
|
|
|
|
|
output_dir = Path.cwd() / "data" / "gowajee" |
|
output_dir.mkdir(parents=True, exist_ok=True) |
|
output_file = output_dir / "gowajee_v0-9-3.zip" |
|
if not output_file.exists(): |
|
gdown.download(_URL, str(output_file), fuzzy=True) |
|
else: |
|
print(f"File already downloaded: {str(output_file)}") |
|
|
|
|
|
data_dir = Path(dl_manager.extract(output_file)) / "v0.9.2" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
text_file = data_dir / split / "text" |
|
utt2spk_file = data_dir / split / "utt2spk" |
|
wav_scp_file = data_dir / split / "wav.scp" |
|
|
|
|
|
with open(text_file, "r", encoding="utf-8") as f: |
|
text_lines = f.readlines() |
|
text_lines = [line.strip().split(" ", 1) for line in text_lines] |
|
with open(utt2spk_file, "r", encoding="utf-8") as f: |
|
utt2spk_lines = f.readlines() |
|
utt2spk_lines = [line.strip().split(" ") for line in utt2spk_lines] |
|
with open(wav_scp_file, "r", encoding="utf-8") as f: |
|
wav_scp_lines = f.readlines() |
|
wav_scp_lines = [line.strip().split(" ", 1) for line in wav_scp_lines] |
|
|
|
assert len(text_lines) == len(utt2spk_lines) == len(wav_scp_lines), f"Length of text_lines: {len(text_lines)}, utt2spk_lines: {len(utt2spk_lines)}, wav_scp_lines: {len(wav_scp_lines)}" |
|
|
|
text_df = pd.DataFrame(text_lines, columns=["utt_id", "text"]) |
|
utt2spk_df = pd.DataFrame(utt2spk_lines, columns=["utt_id", "speaker"]) |
|
wav_df = pd.DataFrame(wav_scp_lines, columns=["utt_id", "wav_path"]) |
|
merged_df = pd.merge(text_df, utt2spk_df, on="utt_id") |
|
merged_df = pd.merge(merged_df, wav_df, on="utt_id") |
|
|
|
for _, row in merged_df.iterrows(): |
|
wav_file = data_dir / row["wav_path"] |
|
|
|
if self.config.schema == "source": |
|
yield row["utt_id"], { |
|
"audio": str(wav_file), |
|
"transcription": row["text"], |
|
"speaker_id": row["speaker"], |
|
} |
|
elif self.config.schema == _SEACROWD_SCHEMA: |
|
yield row["utt_id"], { |
|
"id": row["utt_id"], |
|
"path": str(wav_file), |
|
"audio": str(wav_file), |
|
"text": row["text"], |
|
"speaker_id": row["speaker"], |
|
"metadata": None, |
|
} |
|
|