fsl_105 / fsl_105.py
holylovenia's picture
Upload fsl_105.py with huggingface_hub
386b31f verified
raw
history blame
6.82 kB
import os
from pathlib import Path, PureWindowsPath
from typing import Dict, List, Tuple
try:
import cv2
except:
print("Install the `cv2` package to use.")
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{tupal4476867fsl105,
title={FSL105: The Video Filipino Sign Language Sign Database of Introductory 105 FSL Signs},
author={Tupal, Isaiah Jassen Lizaso and Melvin, Cabatuan K},
journal={Available at SSRN 4476867}
}
"""
_DATASETNAME = "fsl_105"
_DESCRIPTION = """\
FSL-105 is a video dataset for 105 different Filipino Sign Language (FSL) signs.
Each sign is categorized into one of 10 categories and is each represented by approximately 20 four-second video samples.
Signs were performed by adult deaf FSL signers on a blank blue background and reviewed by an FSL expert.
"""
_HOMEPAGE = "https://data.mendeley.com/datasets/48y2y99mb9/2"
_LICENSE = Licenses.CC_BY_4_0.value
_LOCAL = False
_URLS = {
"clips": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/de95a3c3-02f4-4a3f-9a9e-ce2371160275",
"train": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/09c71779-3a2a-4c98-8d9b-0ef74f54d92a",
"test": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/39af8117-6b44-47b9-a551-0bdc40837295",
}
_LANGUAGES = ["psp"]
_SUPPORTED_TASKS = [Tasks.VIDEO_TO_TEXT_RETRIEVAL, Tasks.VIDEO_CAPTIONING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class FSL105Dataset(datasets.GeneratorBasedBuilder):
"""
FSL-105 is a video dataset for 105 different Filipino Sign Language (FSL) signs.
Each sign is categorized into one of 10 categories and is each represented by approximately 20 four-second video samples.
Signs were performed by adult deaf FSL signers on a blank blue background and reviewed by an FSL expert.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_vidtext",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_vidtext",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
category = [
"CALENDAR",
"COLOR",
"DAYS",
"DRINK",
"FAMILY",
"FOOD",
"GREETING",
"NUMBER",
"RELATIONSHIPS",
"SURVIVAL",
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"video_path": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": datasets.ClassLabel(names=self.category),
"metadata": {
"resolution": {
"width": datasets.Value("int64"),
"height": datasets.Value("int64"),
},
"duration": datasets.Value("float32"),
"fps": datasets.Value("float32"),
},
}
)
elif self.config.schema == "seacrowd_vidtext":
features = schemas.video_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
clips = dl_manager.download_and_extract(_URLS["clips"])
train = dl_manager.download_and_extract(_URLS["train"])
test = dl_manager.download_and_extract(_URLS["test"])
train_df = pd.read_csv(train)
test_df = pd.read_csv(test)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": {
"clips": clips,
"data": train_df,
},
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": {"clips": clips, "data": test_df},
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
for key, example in filepath["data"].iterrows():
video = cv2.VideoCapture(os.path.join(filepath["clips"], PureWindowsPath(example["vid_path"]).as_posix()))
fps = video.get(cv2.CAP_PROP_FPS)
frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT)
duration = frame_count / fps
vid_width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
vid_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
if self.config.schema == "source":
yield key, {
"id": str(key),
"video_path": os.path.join(filepath["clips"], example["vid_path"]),
"text": example["label"],
"labels": example["category"],
"metadata": {
"resolution": {
"width": vid_width,
"height": vid_height,
},
"duration": duration,
"fps": fps,
},
}
elif self.config.schema == "seacrowd_vidtext":
yield key, {
"id": str(key),
"video_path": os.path.join(filepath["clips"], example["vid_path"]),
"text": example["label"],
"metadata": {
"resolution": {
"width": vid_width,
"height": vid_height,
},
"duration": duration,
"fps": fps,
},
}