|
import os |
|
from pathlib import Path, PureWindowsPath |
|
from typing import Dict, List, Tuple |
|
|
|
try: |
|
import cv2 |
|
except: |
|
print("Install the `cv2` package to use.") |
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{tupal4476867fsl105, |
|
title={FSL105: The Video Filipino Sign Language Sign Database of Introductory 105 FSL Signs}, |
|
author={Tupal, Isaiah Jassen Lizaso and Melvin, Cabatuan K}, |
|
journal={Available at SSRN 4476867} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "fsl_105" |
|
|
|
_DESCRIPTION = """\ |
|
FSL-105 is a video dataset for 105 different Filipino Sign Language (FSL) signs. |
|
Each sign is categorized into one of 10 categories and is each represented by approximately 20 four-second video samples. |
|
Signs were performed by adult deaf FSL signers on a blank blue background and reviewed by an FSL expert. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/48y2y99mb9/2" |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"clips": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/de95a3c3-02f4-4a3f-9a9e-ce2371160275", |
|
"train": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/09c71779-3a2a-4c98-8d9b-0ef74f54d92a", |
|
"test": "https://prod-dcd-datasets-public-files-eu-west-1.s3.eu-west-1.amazonaws.com/39af8117-6b44-47b9-a551-0bdc40837295", |
|
} |
|
|
|
_LANGUAGES = ["psp"] |
|
|
|
_SUPPORTED_TASKS = [Tasks.VIDEO_TO_TEXT_RETRIEVAL, Tasks.VIDEO_CAPTIONING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class FSL105Dataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
FSL-105 is a video dataset for 105 different Filipino Sign Language (FSL) signs. |
|
Each sign is categorized into one of 10 categories and is each represented by approximately 20 four-second video samples. |
|
Signs were performed by adult deaf FSL signers on a blank blue background and reviewed by an FSL expert. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_vidtext", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_vidtext", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
category = [ |
|
"CALENDAR", |
|
"COLOR", |
|
"DAYS", |
|
"DRINK", |
|
"FAMILY", |
|
"FOOD", |
|
"GREETING", |
|
"NUMBER", |
|
"RELATIONSHIPS", |
|
"SURVIVAL", |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"video_path": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"labels": datasets.ClassLabel(names=self.category), |
|
"metadata": { |
|
"resolution": { |
|
"width": datasets.Value("int64"), |
|
"height": datasets.Value("int64"), |
|
}, |
|
"duration": datasets.Value("float32"), |
|
"fps": datasets.Value("float32"), |
|
}, |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_vidtext": |
|
features = schemas.video_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
clips = dl_manager.download_and_extract(_URLS["clips"]) |
|
train = dl_manager.download_and_extract(_URLS["train"]) |
|
test = dl_manager.download_and_extract(_URLS["test"]) |
|
|
|
train_df = pd.read_csv(train) |
|
test_df = pd.read_csv(test) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": { |
|
"clips": clips, |
|
"data": train_df, |
|
}, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": {"clips": clips, "data": test_df}, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
for key, example in filepath["data"].iterrows(): |
|
video = cv2.VideoCapture(os.path.join(filepath["clips"], PureWindowsPath(example["vid_path"]).as_posix())) |
|
fps = video.get(cv2.CAP_PROP_FPS) |
|
frame_count = video.get(cv2.CAP_PROP_FRAME_COUNT) |
|
duration = frame_count / fps |
|
vid_width = video.get(cv2.CAP_PROP_FRAME_WIDTH) |
|
vid_height = video.get(cv2.CAP_PROP_FRAME_HEIGHT) |
|
|
|
if self.config.schema == "source": |
|
yield key, { |
|
"id": str(key), |
|
"video_path": os.path.join(filepath["clips"], example["vid_path"]), |
|
"text": example["label"], |
|
"labels": example["category"], |
|
"metadata": { |
|
"resolution": { |
|
"width": vid_width, |
|
"height": vid_height, |
|
}, |
|
"duration": duration, |
|
"fps": fps, |
|
}, |
|
} |
|
elif self.config.schema == "seacrowd_vidtext": |
|
yield key, { |
|
"id": str(key), |
|
"video_path": os.path.join(filepath["clips"], example["vid_path"]), |
|
"text": example["label"], |
|
"metadata": { |
|
"resolution": { |
|
"width": vid_width, |
|
"height": vid_height, |
|
}, |
|
"duration": duration, |
|
"fps": fps, |
|
}, |
|
} |
|
|