holylovenia commited on
Commit
59b39bf
1 Parent(s): a8d34be

Upload emot.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. emot.py +12 -12
emot.py CHANGED
@@ -4,13 +4,13 @@ from typing import List
4
  import datasets
5
  import pandas as pd
6
 
7
- from nusacrowd.utils import schemas
8
- from nusacrowd.utils.configs import NusantaraConfig
9
- from nusacrowd.utils.constants import DEFAULT_NUSANTARA_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
10
 
11
  _DATASETNAME = "emot"
12
  _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
13
- _UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
14
 
15
  _LANGUAGES = ["ind"] # We follow ISO639-3 langauge code (https://iso639-3.sil.org/code_tables/639/data)
16
  _LOCAL = False
@@ -51,25 +51,25 @@ _URLs = {
51
  _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]
52
 
53
  _SOURCE_VERSION = "1.0.0"
54
- _NUSANTARA_VERSION = "1.0.0"
55
 
56
 
57
  class EmoT(datasets.GeneratorBasedBuilder):
58
  """SMSA is a sentiment analysis dataset consisting of 3 labels (positive, neutral, and negative) which comes from comments and reviews collected from multiple online platforms."""
59
 
60
  BUILDER_CONFIGS = [
61
- NusantaraConfig(
62
  name="emot_source",
63
  version=datasets.Version(_SOURCE_VERSION),
64
  description="EmoT source schema",
65
  schema="source",
66
  subset_id="emot",
67
  ),
68
- NusantaraConfig(
69
- name="emot_nusantara_text",
70
- version=datasets.Version(_NUSANTARA_VERSION),
71
  description="EmoT Nusantara schema",
72
- schema="nusantara_text",
73
  subset_id="emot",
74
  ),
75
  ]
@@ -85,7 +85,7 @@ class EmoT(datasets.GeneratorBasedBuilder):
85
  "label": datasets.Value("string"),
86
  }
87
  )
88
- elif self.config.schema == "nusantara_text":
89
  features = schemas.text_features(["happy", "love", "fear", "anger", "sadness"])
90
 
91
  return datasets.DatasetInfo(
@@ -129,7 +129,7 @@ class EmoT(datasets.GeneratorBasedBuilder):
129
  for row in df.itertuples():
130
  ex = {"index": str(row.id), "tweet": row.tweet, "label": row.label}
131
  yield row.id, ex
132
- elif self.config.schema == "nusantara_text":
133
  for row in df.itertuples():
134
  ex = {"id": str(row.id), "text": row.tweet, "label": row.label}
135
  yield row.id, ex
 
4
  import datasets
5
  import pandas as pd
6
 
7
+ from seacrowd.utils import schemas
8
+ from seacrowd.utils.configs import SEACrowdConfig
9
+ from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
10
 
11
  _DATASETNAME = "emot"
12
  _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
13
+ _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
14
 
15
  _LANGUAGES = ["ind"] # We follow ISO639-3 langauge code (https://iso639-3.sil.org/code_tables/639/data)
16
  _LOCAL = False
 
51
  _SUPPORTED_TASKS = [Tasks.EMOTION_CLASSIFICATION]
52
 
53
  _SOURCE_VERSION = "1.0.0"
54
+ _SEACROWD_VERSION = "2024.06.20"
55
 
56
 
57
  class EmoT(datasets.GeneratorBasedBuilder):
58
  """SMSA is a sentiment analysis dataset consisting of 3 labels (positive, neutral, and negative) which comes from comments and reviews collected from multiple online platforms."""
59
 
60
  BUILDER_CONFIGS = [
61
+ SEACrowdConfig(
62
  name="emot_source",
63
  version=datasets.Version(_SOURCE_VERSION),
64
  description="EmoT source schema",
65
  schema="source",
66
  subset_id="emot",
67
  ),
68
+ SEACrowdConfig(
69
+ name="emot_seacrowd_text",
70
+ version=datasets.Version(_SEACROWD_VERSION),
71
  description="EmoT Nusantara schema",
72
+ schema="seacrowd_text",
73
  subset_id="emot",
74
  ),
75
  ]
 
85
  "label": datasets.Value("string"),
86
  }
87
  )
88
+ elif self.config.schema == "seacrowd_text":
89
  features = schemas.text_features(["happy", "love", "fear", "anger", "sadness"])
90
 
91
  return datasets.DatasetInfo(
 
129
  for row in df.itertuples():
130
  ex = {"index": str(row.id), "tweet": row.tweet, "label": row.label}
131
  yield row.id, ex
132
+ elif self.config.schema == "seacrowd_text":
133
  for row in df.itertuples():
134
  ex = {"id": str(row.id), "text": row.tweet, "label": row.label}
135
  yield row.id, ex