holylovenia
commited on
Commit
•
8eaec75
1
Parent(s):
1d80dec
Upload culturax.py with huggingface_hub
Browse files- culturax.py +150 -0
culturax.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
from urllib.parse import urljoin
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
from pyarrow import parquet as pq
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Tasks, Licenses
|
11 |
+
|
12 |
+
_CITATION = """\
|
13 |
+
@article{nguyen2023culturax,
|
14 |
+
author = {Thuat Nguyen and Chien Van Nguyen and Viet Dac Lai and Hieu Man and Nghia Trung Ngo and Franck Dernoncourt and Ryan A. Rossi and Thien Huu Nguyen},
|
15 |
+
title = {CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages},
|
16 |
+
journal = {arXiv preprint arXiv:2309.09400},
|
17 |
+
year = {2023},
|
18 |
+
url = {https://arxiv.org/abs/2309.09400},
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_DATASETNAME = "culturax"
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
CulturaX is a comprehensive multilingual dataset comprising 6.3 trillion tokens across 167
|
25 |
+
languages, designed for large language model development. It incorporates an advanced
|
26 |
+
cleaning and deduplication process, including language identification and fuzzy
|
27 |
+
deduplication with MinHash, to ensure high-quality data for model training. The dataset,
|
28 |
+
which spans 16TB in parquet format and 27TB when unpacked, is a combination of the latest
|
29 |
+
mC4 and OSCAR corpora, emphasizing non-English languages to support multilingual model
|
30 |
+
training. For data cleaning validation, CulturaX employs a SentencePiece tokenizer and
|
31 |
+
KenLM language models, utilizing recent Wikipedia dumps for perplexity scoring.
|
32 |
+
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/uonlp/CulturaX and use huggingface-cli login for authentication.
|
33 |
+
"""
|
34 |
+
|
35 |
+
_LOCAL=False
|
36 |
+
_LANGUAGES = ["ind", "jav", "khm", "lao", "tgl", "min", "mya", "sun", "tha", "vie", "zlm", "ceb", "war", "cbk", "bcl"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
37 |
+
|
38 |
+
_HOMEPAGE = "https://huggingface.co/datasets/uonlp/CulturaX"
|
39 |
+
_LICENSE = f"""{Licenses.OTHERS.value} | \
|
40 |
+
The licence terms for CulturaX strictly follows those of mC4 and OSCAR. \
|
41 |
+
Please refer to both below licenses when using this dataset. \
|
42 |
+
- mC4 license: https://huggingface.co/datasets/allenai/c4#license \
|
43 |
+
- OSCAR license: https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information \
|
44 |
+
"""
|
45 |
+
_BASE_URL = "https://huggingface.co/datasets/uonlp/CulturaX/resolve/main/{lang}/"
|
46 |
+
|
47 |
+
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
|
48 |
+
_SOURCE_VERSION = "1.0.0"
|
49 |
+
_SEACROWD_VERSION = "2024.06.20"
|
50 |
+
|
51 |
+
|
52 |
+
class CulturaXDataset(datasets.GeneratorBasedBuilder):
|
53 |
+
"""CulturaX subset for SEA languages."""
|
54 |
+
|
55 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
56 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
57 |
+
|
58 |
+
SEACROWD_SCHEMA_NAME = "ssp"
|
59 |
+
SUBSETS = ["id", "jv", "km", "lo", "tl", "min", "my", "su", "th", "vi", "ms", "ceb", "war", "cbk", "bcl"]
|
60 |
+
|
61 |
+
BUILDER_CONFIGS = [
|
62 |
+
SEACrowdConfig(
|
63 |
+
name=f"{_DATASETNAME}_{subset}_source",
|
64 |
+
version=datasets.Version(_SOURCE_VERSION),
|
65 |
+
description=f"{_DATASETNAME} {subset} source schema",
|
66 |
+
schema="source",
|
67 |
+
subset_id=subset,
|
68 |
+
)
|
69 |
+
for subset in SUBSETS
|
70 |
+
] + [
|
71 |
+
SEACrowdConfig(
|
72 |
+
name=f"{_DATASETNAME}_{subset}_seacrowd_ssp",
|
73 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
74 |
+
description=f"{_DATASETNAME} {subset} SEACrowd schema",
|
75 |
+
schema="seacrowd_ssp",
|
76 |
+
subset_id=subset,
|
77 |
+
)
|
78 |
+
for subset in SUBSETS
|
79 |
+
]
|
80 |
+
|
81 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_jv_source"
|
82 |
+
|
83 |
+
def _info(self) -> datasets.DatasetInfo:
|
84 |
+
if self.config.schema == "source":
|
85 |
+
features = datasets.Features(
|
86 |
+
{
|
87 |
+
"text": datasets.Value("string"),
|
88 |
+
"timestamp": datasets.Value("string"),
|
89 |
+
"url": datasets.Value("string"),
|
90 |
+
"source": datasets.Value("string"),
|
91 |
+
}
|
92 |
+
)
|
93 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
94 |
+
features = schemas.ssp_features
|
95 |
+
|
96 |
+
return datasets.DatasetInfo(
|
97 |
+
description=_DESCRIPTION,
|
98 |
+
features=features,
|
99 |
+
homepage=_HOMEPAGE,
|
100 |
+
license=_LICENSE,
|
101 |
+
citation=_CITATION,
|
102 |
+
)
|
103 |
+
|
104 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
105 |
+
"""Returns SplitGenerators."""
|
106 |
+
base_path = _BASE_URL.format(lang=self.config.name.split("_")[1])
|
107 |
+
|
108 |
+
checksum_url = urljoin(base_path, "checksum.sha256")
|
109 |
+
checksum_path = Path(dl_manager.download(checksum_url))
|
110 |
+
with open(checksum_path, encoding="utf-8") as f:
|
111 |
+
filenames = [line.split()[1] for line in f if line]
|
112 |
+
data_urls = [urljoin(base_path, filename) for filename in filenames]
|
113 |
+
|
114 |
+
data_paths = list(map(Path, dl_manager.download([url for url in data_urls if url.endswith(".parquet")])))
|
115 |
+
|
116 |
+
return [
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.TRAIN,
|
119 |
+
gen_kwargs={
|
120 |
+
"filepaths": data_paths,
|
121 |
+
"split": "train",
|
122 |
+
},
|
123 |
+
)
|
124 |
+
]
|
125 |
+
|
126 |
+
def _generate_examples(self, filepaths: [Path], split: str) -> Tuple[int, Dict]:
|
127 |
+
"""Yields examples as (key, example) tuples.
|
128 |
+
|
129 |
+
Iterate over row groups in each filepaths, then yield each row as an example.
|
130 |
+
"""
|
131 |
+
key = 0
|
132 |
+
for filepath in filepaths:
|
133 |
+
with open(filepath, "rb") as f:
|
134 |
+
pf = pq.ParquetFile(f)
|
135 |
+
for row_group in range(pf.num_row_groups):
|
136 |
+
df = pf.read_row_group(row_group).to_pandas()
|
137 |
+
for row in df.itertuples():
|
138 |
+
if self.config.schema == "source":
|
139 |
+
yield key, {
|
140 |
+
"text": row.text,
|
141 |
+
"timestamp": row.timestamp,
|
142 |
+
"url": row.url,
|
143 |
+
"source": row.source,
|
144 |
+
}
|
145 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
146 |
+
yield key, {
|
147 |
+
"id": str(key),
|
148 |
+
"text": row.text,
|
149 |
+
}
|
150 |
+
key += 1
|