Datasets:

ArXiv:
License:
holylovenia commited on
Commit
7d4c4cd
·
verified ·
1 Parent(s): 0e2b354

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -13,9 +13,9 @@ tags:
13
  - image-captioning
14
  ---
15
 
16
- COCO-35L is a machine-generated image caption dataset, constructed by translating COCO Captions (Chen et al., 2015) to the other 34 languages using Google’s machine translation API.
17
- 152520 image ids are not found in the coco 2014 training caption. Validation set is ok Using COCO 2014 train and validation set.
18
-
19
 
20
  ## Languages
21
 
@@ -24,25 +24,25 @@ fil, ind, tha, vie
24
  ## Supported Tasks
25
 
26
  Image Captioning
27
-
28
  ## Dataset Usage
29
  ### Using `datasets` library
30
  ```
31
- from datasets import load_dataset
32
- dset = datasets.load_dataset("SEACrowd/coco_35l", trust_remote_code=True)
33
  ```
34
  ### Using `seacrowd` library
35
  ```import seacrowd as sc
36
  # Load the dataset using the default config
37
- dset = sc.load_dataset("coco_35l", schema="seacrowd")
38
  # Check all available subsets (config names) of the dataset
39
- print(sc.available_config_names("coco_35l"))
40
  # Load the dataset using a specific config
41
- dset = sc.load_dataset_by_config_name(config_name="<config_name>")
42
  ```
43
-
44
- More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
45
-
46
 
47
  ## Dataset Homepage
48
 
 
13
  - image-captioning
14
  ---
15
 
16
+ COCO-35L is a machine-generated image caption dataset, constructed by translating COCO Captions (Chen et al., 2015) to the other 34 languages using Google’s machine translation API.
17
+ 152520 image ids are not found in the coco 2014 training caption. Validation set is ok Using COCO 2014 train and validation set.
18
+
19
 
20
  ## Languages
21
 
 
24
  ## Supported Tasks
25
 
26
  Image Captioning
27
+
28
  ## Dataset Usage
29
  ### Using `datasets` library
30
  ```
31
+ from datasets import load_dataset
32
+ dset = datasets.load_dataset("SEACrowd/coco_35l", trust_remote_code=True)
33
  ```
34
  ### Using `seacrowd` library
35
  ```import seacrowd as sc
36
  # Load the dataset using the default config
37
+ dset = sc.load_dataset("coco_35l", schema="seacrowd")
38
  # Check all available subsets (config names) of the dataset
39
+ print(sc.available_config_names("coco_35l"))
40
  # Load the dataset using a specific config
41
+ dset = sc.load_dataset_by_config_name(config_name="<config_name>")
42
  ```
43
+
44
+ More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
45
+
46
 
47
  ## Dataset Homepage
48